Szemináriumok

Superconducting Quantum Interference in Edge State Josephson Junctions

Időpont: 
2020. 11. 09. 14:15
Hely: 
online (Teams)
Előadó: 
Tamás Galambos (Basel)
We study superconducting quantum interference in a Josephson junction linked via edge states in two-dimensional (2D) insulators. We consider two scenarios in which the 2D insulator is either a topological or a trivial insulator supporting one-dimensional (1D) helical or nonhelical edge states, respectively. In equilibrium, we find that the qualitative dependence of critical supercurrent on the flux through the junction is insensitive to the helical nature of the mediating states and can, therefore, not be used to verify the topological features of the underlying insulator. However, upon applying a finite voltage bias smaller than the superconducting gap to a relatively long junction, the finite-frequency interference pattern in the nonequilibrium transport current is qualitatively different for helical edge states as compared to nonhelical ones. 
 
 
Reference: T. Galambos et al., Phys. Rev. Lett. 125, 157701 – Published 9 October 2020

Felületi állapotok szupravezető többrétegekben

Időpont: 
2020. 11. 13. 10:15
Hely: 
online (Teams)
Előadó: 
Újfalussy Balázs (Wigner)

Az előadásban a szupravezető állapot következményeit vizsgálom réteges heteroszerkezetekben. Az ilyen rendszerek leírására használhatjuk a (teljesen relativisztikus) Bogoljubov–de Gennes-egyenleteket, amit a sűrűségfunkcionál elmélet segítségével anyag-specifikussá is tehetünk. Az előadás során az elmélet egy olyan változatát mutatom be, amelynek a segítségével lehetővé válik szupravezető-fém többrétegek kvázirészecske spektrumának kiszámítása. Ezt először egyszerűbb rendszerekre alkalmazom, és megmutatom az Andrejev szórás következményét a kvantumos bezártságra illetve a felületi állapotokra, konvencionális szupravezetők és nem szupravezető heteroszerkezetek példáján. Érdekességként rámutatok az Fulde-Ferrell-Larkin Ovchinnikov állapotok egy érdekes kialakulására is. Végül megmutatom, hogy egy sokkal összetettebb rendszer, a PdTe/BiSe2, egy szupravezető/topologikus szigetelő felületén kialakuló topologikus felületi állapotok sem viselkednek „különlegesen”.

Triple point fermions in a minimal symmorphic model

Időpont: 
2020. 11. 16. 14:15
Hely: 
online (Teams)
Előadó: 
Ion Cosma Fulga (IFW Dresden)
Gapless topological phases of matter may host emergent quasiparticle excitations which
have no analog in quantum field theory. This is the case of so called triple point fermions
(TPF), quasiparticle excitations protected by crystal symmetries, which show fermionic
statistics but have an integer (pseudo)spin degree of freedom. TPFs have been predicted in
certain three-dimensional non-symmorphic crystals, where they are pinned to high
symmetry points of the Brillouin zone. In this work, we introduce a minimal, three-band
model which hosts TPFs protected only by the combination of a C4 rotation and an anti-
commuting mirror symmetry. Unlike current non-symmorphic realizations, our model
allows for TPFs which are anisotropic and can be created or annihilated pairwise. It
provides a simple, numerically affordable platform for their study.

Triplet-blockaded Josephson supercurrent in double quantum dots

Időpont: 
2020. 11. 20. 10:15
Hely: 
online (Teams)
Előadó: 
Dávid Pataki (BME)
Topological superconductors are promising building blocks for future quantum computers, although their experimental  realization  remains  a  challenging  task. In this talk, I will present theory results on a Josephson junction with a double quantum dot, a minimal model system toward engineered topological superconductivity based on quantum dot chains [1].  In  the  (1,1) charge  sector of the serially coupled double quantum dot, I will illustrate a magnetically  induced  singlet-triplet  ground-state  transition  via  triplet blockade: the Josephson current carried by the triplet ground state at high magnetic field is much suppressed compared to the current carried by the singlet ground state at low magnetic field. The theory results I present are based on the zero-bandwidth approximation. I will provide simple arguments for a strong triplet blockade in the large-gap, and the strong-Coulomb-repulsion limit. Furthermore I also outline  a  process-counting argument that supports partial triplet blockade in the intermediate  regime, using perturbation theory. I will also present experimental data showing the triplet blockade predicted by the theory. The triplet blockade mechanism could provide a coupling mechanism between spin qubits, and (topological or non-topological) superconducting qubits.
 
[1] Bouman et al, arXiv:2008.04375

Solid state defect qubits – the dawn of revolutionary quantum-enhanced technologies

Időpont: 
2020. 11. 24. 14:30
Hely: 
online (Teams)
Előadó: 
Ádám Gali (Wigner/BME)
Qubits are such two-level quantum mechanical systems in which the quantum states can be coherently controlled. One of the most successful realizations of qubits is the artificial atom in solids that is called point defect. We show on the exemplary nitrogen-vacancy center in diamond how the readout and initialization processes of this type of qubits work and how they lead to novel technologies with unprecedented sensitivity at the nanoscale which may revolutionize the discoveries in solid state physics, biology, human diagnosis and therapy. Furthermore, they are prospective building blocks for quantum communication and have a great potential in the realization of novel quantum computers. We show that the success of nitrogen-vacancy center in diamond opened up a new research field to seek alternative systems acting as quantum-coherent materials that suit the desired properties of the selected applications and technologies.

Extended and interacting Yu-Shiba-Rusinov states on the surface of elemental superconductors

Időpont: 
2020. 12. 04. 10:15
Hely: 
online (Teams)
Előadó: 
Levente Rózsa (Konstanz)
Magnetic impurities in conventional superconductors locally break Cooper pairs, leading to the emergence of Yu-Shiba-Rusinov (YSR) bound states. Chains of YSR impurities have been theoretically predicted to give rise to Majorana bound states, representing promising building blocks of topological quantum computers. Revealing the topological properties of YSR bands necessitates a fundamental understanding of the extension of individual YSR states, as well as of the interactions between the states.
 
Here, a theoretical explanation of recent scanning tunneling microscopy and spectroscopy experiments on YSR bound states in elemental superconductors is presented. On the La(0001) surface, YSR states are found to extend up to 30-40 nm distance along certain crystallographic directions, approximately one order of magnitude longer than what has been previously observed in similar setups [1]. This is explained by an effectively reduced dimensionality of the electronic structure, with the scattering processes dominated by surface states with a strongly anisotropic Fermi surface. The presence of multi-orbital YSR states has been observed in the vicinity of Mn adatoms on the Nb(110) surface, with a hybridization and energy splitting of the states in both ferromagnetically and antiferromagnetically aligned dimers [2]. In the antiferromagnetic dimer, such a splitting of the YSR states has been ruled out in theoretical considerations so far, since their degeneracy is protected by Kramers' theorem via an effective time-reversal symmetry. It is shown that this degeneracy is lifted if spin-orbit coupling is taken into account, together with the breaking of inversion symmetry at the surface.
 
[1] H. Kim, L. Rózsa, D. Schreyer, E. Simon, and R. Wiesendanger, Nat. Commun. 11, 4573 (2020).
[2] P. Beck, L. Schneider, L. Rózsa, K. Palotás, A. Lászlóffy, L. Szunyogh, J. Wiebe, and R. Wiesendanger, arXiv:2010.04031. 

Fizikus Mikulás

Időpont: 
2020. 12. 04. 17:00
Hely: 
online (youtube)
Előadó: 
Härtlein Károly (BME)
A Fizikus Mikulás idén is érdekes kísérleteket hoz a puttonyában! Härtlein Károly kísérletekkel tarkított online előadása, december 4-én pénteken 17:00 órakor.
 
Szeretettel várunk mindenkit, aki szereti, illetve szeretné megismerni a fizikát.
 
Élőben, december 4-én 17:00-kor,
 
Az előadást utólag a BME TTK YouTube csatornáján lehet majd megtalálni
 
Kapcsolat: Asbóth János, Elméleti Fizika Tanszék, BME TTK Science Campus koordinátor

Interacting jammed granular systems

Időpont: 
2020. 12. 11. 10:15
Hely: 
online (Teams)
Előadó: 
Sára Lévay (BME)
Sam Edwards more than 30 years ago proposed a model to describe the statistics of granular packings by an ensemble of equiprobable jammed states. Experimental tests of this model remained scarce so far. We introduce a simple system to analyse statistical properties of jammed granular ensembles to test Edwards' theory [1]. Identical spheres packed in a nearly two-dimensional geometrical confinement were studied in experiments and numerical simulations. When tapped, it evolves towards a ground state, but due to incompatible domain structures it gets trapped. Analytical calculations reproduce relatively well our simulation results, which allows us to test Edwards' theory on a coupled system of two subsystems with different properties. We find that the joint system can only be described by a common compactivity if the stress equilibrium is also taken into account. The results show some counterintuitive effects, as the side with less free volume compactifies.
 
[1]: S. Levay et al,  arXiv:2007.04789

Oldalak