BMETETMP082

A tárgy címe: 
Programming Exercises for Data Science
Elsődleges képzés: 
Fizikus mérnök BSc
Kredit: 
2
A tárgy besorolása: 
compulsory
Óraszám - előadás: 
0
Óraszám - gyakorlat: 
1
Óraszám - labor: 
0
Egyéb oktatás: 
Számonkérés módja: 
Coursework grade
Egyéb számonkérés: 
Félév: 
6
Előtanulmányi feltételek: 
Introduction to Data Science (may be in the same semester)
Tantárgy felelőse: 
Dr. Roland Molontay, assistant professor, PhD
További oktatók: 
Tárgyleírás: 
The aim of the course is to introduce data science concepts and algorithms, which are less covered in the Introduction to Data Science course, in a practical approach based on the mathematical knowledge acquired previously. Subjects: Data manipulations Predictiv analysis Visualization with real datasets Python packages: pandas, scikit-learn, matplotlib, ggplot Introduction to R and other data sciece related tools Bayesian network Collective methods for clustering: random forest bagging, boosting Clustering: DBSCAN, EM algorithms Recommendation systems Assiciation rules Anomalies (outlier) detection Large scale case studies
Ajánlott irodalom: 
Tan, Pang-Ning, Michael Steinbach, and Vipin Kumar. Introduction to data mining. 2005. Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of massive datasets. Cambridge University Press, 2014. https://www.w3schools.com/python/pandas/default.asp
Kompetenciák: 
Please find the detailed list, as quoted from the Hungarian training and outcome requirements of the Physicist Engineer program, in the Hungarian version of the course description.