BMETE11AF06

Tantárgy adatok
Tárgy címe: Szilárdtestfizika gyakorlat
Neptun kód: BMETE11AF06
Felelős oktató: Dr. Makk Péter
Felelős tanszék: Fizika Tanszék
Képzés: BSc fizikus
Tantárgy adatlapja: BMETE11AF06
Követelmények, Információk

Tárgyfelelős: Makk Péter, egyetemi docens
Követelmény: 0/2/0/F/2
Félév: ősz
Nyelv: magyar

 

Gyakorlatvezetők:
Tóth Boglárka (toth.boglarka_at_ ttk.bme.hu)
Márffy Albin (marffya_at_edu.bme.hu )

 

Gyakorlatok - helye

Tóth Boglárka:F3_M01,

Márffy Albin: F3_213

Csütörtök, 14:15-16:00

 

Az első gyakorlat elmarad.

A félév során két zárthelyi dolgozat lesz, melyek egyenként 40% fölötti eredmény esetén érvényesek, és 40-40%-ban járulnak hozzá a gyakorlati jegyhez. Két sikertelen zárthelyi dolgozat esetén félévközi jegy nem szerezhető.

 

ZH1: Nov 4., 14.00-16.00
ZH2: Dec. 9., 14.00-16.00

 

A gyakorlatok 70%-n kötelező a részvétel.

A gyakorlatokon az alábbi tematika alapján haladunk és az itt található jegyzet használható segédanyagként. A félév során minden hallgatónak előre kiadott házi feladatok megoldását kell bemutatnia és a feladat témakörével kapcsolatos kérdésekre válaszolnia. A házi feladatok itt találhatók. A feladat megoldását papíron kidolgozva is be kell nyújtania a gyakorlatot megelőző munkanap déli 12 óráig elektronikusan a gyakorlatvezető email címére. A feladatmegoldás és a gyakorlatvezető kérdéseire adott válaszok súlya az érdemjegyben 20%. A kidolgozandó feladatot a második gyakorlat alkalmával kapják meg a hallgatók.

 

Tematika

 

Az első zárthelyi dolgozat anyaga (jegyzet 1-6. fejezete):

  • Kristályok szimmetriái. Nevezetes rácsok és reciprok rácsaik. Miller index, kristálysíkok, reciprok rácsvektorok kapcsolata. Neumann-elv.
  • Röntgen-diffrakció tökéletes kristályon. Rácsösszeg. Atomi alaktényező számítása különböző töltéseloszlások esetén.
  • Röntgen-diffrakció nem-tökéletes kristályon. Rácsrezgések figyelembe vétele. Véletlen ötvözetek.
  • Rácsrezgések dinamikája. Két dimenziós rácsok rugós modelljei. Rezgési módusok és frekvenciájuk.
  • Rácsfajhő és állapotsűrűség. Az állapotsűrűség viselkedése különböző dimenziókban izotrop és anizotrop hangsebesség esetén. Debye-modell. Debye-Waller faktor. Lindemann kritérium az olvadáspontra.

A második zárthelyi dolgozat anyaga (jegyzet 7-11. fejezete):

  • Elektronok szoros kötésű közelítésben. Atomi hullámfüggvények egydimenziós Dirac-delta potenciál esetén. Elektronok kétdimenziós ferdeszögű rácsban. S- és p-típusú pályák.
  • Kváziszabad elektron közelítés. Tilos sáv számítása egydimenziós Dirac-delta potenciál esetén. Elektronsávok négyzetrács esetén.
  • Elektronok állapotsűrűsége és fajhője. Fermi-hullámszám számítása. Állapotsűrűség kétdimenziós derékszögű tight-binding modellben.

 

A gyakorlat szorosan kapcsolódik A szilárdtestfizika alapjai tárgy tematikájához.

 

 

Irodalom

 

Sólyom Jenő: A modern szilárdtestfizika alapjai I-II, második kiadás, Eötvös Kiadó, Budapest (2009).

 

László Mihály, Michael C. Martin: Solid State Physics: Problems and Solutions, 2nd edition, John Wiley & Sons, New York, (2009).

 

Charles Kittel: Introduction to Solid State Physics, 8th edition, John Wiley & Sons, New York (2008).