Course data
Course name: Quantum Mechanics 2
Neptun ID: BMETE15AF36
Responsible teacher: László Szunyogh
Programme: BSc Physics
Course data sheet: BMETE15AF36
Requirements, Informations

Quantum Mechanics 2 lectures 2023/24/1


Lecturer:  Balázs Dóra  


Time and place:  Monday 12:30-14:00  F3M01 (seminar room)  


Actual information: -


Necessary background: Quantum Mechanics 1 



Based on the undergraduate learning of Quantum Mechanics this course provides advanced knowledge in Quantum Mechanics according to the following topics: Identical particles, He-atom, Hartree- and Hartree-Fock approximation. Scattering theory, scattering amplitude and cross section, Green functions, Lippmann-Schwinger equation, Born series, method of partial waves. Motion in electromagnetic field, Aharonov-Bohm effect, Landau levels. Time evolution and pictures in Quantum Mechanics (Schrödinger, Heisenberg and Dirac pictures). Adiabatic motion and Berry phase. Relativistic Quantum Mechanics: Klein-Gordon equation, Dirac equation, continuity equation, Lorentz invariance, spin and total angular momentum, free electron and positron, non-relativistic limit, spin-orbit interaction.




  • Prerequisite for exam/grade: a valid grade from the Quantum Mechanics 2 practical course.

  • Grades can be obtained by an oral exam:  two subjects are drawn from the list of exam items. You must pass in both subjects for a successful oral exam..






Quantum Mechanics 2 Lecture notes (László Szunyogh & Bendegúz Nyári), in Hungarian

Relativistic Quantum Mechanics Lecture notes (László Szunyogh & Bendegúz Nyári), in Hungarian

Franz Schwabl: Quantummechanics, Springer 1990

Albert Messiah: Quantummechanics, Vol. 1-2, North Holland, 1986