BMETE15AF36

Course data
Course name: Quantum Mechanics 2
Neptun ID: BMETE15AF36
Responsible teacher: László Szunyogh
Programme: BSc Physics
Course data sheet: BMETE15AF36
Requirements, Information

Quantum Mechanics 2 lectures 2024/25/1

 

Lecturer:  Balázs Dóra  

 

Time and place:  Monday 12:30-14:00  KF81 

 

Actual information: -

 

Necessary background: Quantum Mechanics 1 

 

Subjects

Based on the undergraduate learning of Quantum Mechanics this course provides advanced knowledge in Quantum Mechanics according to the following topics: Identical particles, He-atom, Hartree- and Hartree-Fock approximation. Scattering theory, scattering amplitude and cross section, Green functions, Lippmann-Schwinger equation, Born series, method of partial waves. Motion in electromagnetic field, Aharonov-Bohm effect, Landau levels. Time evolution and pictures in Quantum Mechanics (Schrödinger, Heisenberg and Dirac pictures). Adiabatic motion and Berry phase. Relativistic Quantum Mechanics: Klein-Gordon equation, Dirac equation, continuity equation, Lorentz invariance, spin and total angular momentum, free electron and positron, non-relativistic limit, spin-orbit interaction.

 

 

Grades

  • Prerequisite for exam/grade: a valid grade from the Quantum Mechanics 2 practical course.

  • Grades can be obtained by an oral exam:  one subject is given from the list below:

1. Clebsch-Gordan coefficients
2. He-atom
3. Scattering theory, relation between scattering amplitude and differential cross section
4. Method of partial wave scattering, optical theorem
5. QM pictures
6. Motion in EM field, Schrödinger equation, para and diamagnetic interaction.
7. Continuity equation, gauge transformation, Aharonov Bohm effect
8. flux quantization in superconductors, Landau levels
9. Klein-Gordon equation
10. Dirac-equation, Dirac matrices, standard representation                                                                            
11. Gauge transformation, Dirac-Hamiltonian, spectrum of free particles
12. Continuity equation, Lorentz invariance, rotations and spin
13. Relativistic mass enhancement, spin-orbit coupling, Darwin term, spin magnetization current density

 

 

 

 

Literature:

Quantum Mechanics 2 Lecture notes (László Szunyogh & Bendegúz Nyári)

Relativistic Quantum Mechanics Lecture notes (László Szunyogh & Bendegúz Nyári)

Franz Schwabl: Quantummechanics, Springer 1990

Albert Messiah: Quantummechanics, Vol. 1-2, North Holland, 1986