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1 Addition of angular momenta

Let J⃗1 and J⃗2 be two angular momentum operators acting on different Hilbert spaces,

J⃗i : Hi → Hi (i = 1, 2) , (1)

which satisfy the angular momentum algebra,

J⃗i × J⃗i = ıℏJ⃗i . (2)

The common eigenvector of Ji,z and J2 is denoted by |ji,mi⟩ ∈ Hi, where ji = 0, 1
2
, 1, 3

2
, . . .

and mi ∈ [−ji,−ji + 1, . . . , ji.1, ji],

Ji,z |ji,mi⟩ = ℏmi |ji,mi⟩ (3)

J2
i |ji,mi⟩ = ℏ2ji(ji + 1) |ji,mi⟩ (4)

Ji,± |ji,mi⟩ = ℏ
√
ji(ji + 1)−mi(mi ± 1) |ji,mi ± 1⟩ , (5)

where the raising and lowering operators, Ji,+ and Ji,−, are defined as Ji,± = Ji,x ± ıJi,y.

We extend these operators to the tensor product Hilbert space H1 ⊗H2 as

J⃗i : H1 ⊗H2 → H1 ⊗H2 , (6)

J⃗1 → J⃗1 ⊗ I2 , J⃗2 → I1 ⊗ J⃗2 , (7)

where Ii is the identity operator on the Hilbert space Hi. This means that J⃗i acts in Hi as in
Eqs. (3), (4), and (5), while it keeps the vectors of other Hilbert space unchanged. Accordingly,

the action of the operator J⃗1 on a vector |j1,m1⟩ ⊗ |j2,m2⟩ ∈ H1 ⊗H2 is (from now neglecting
the notation ⊗ from the tensor product vectors):

J1,z |j1,m1⟩ |j2,m2⟩ = ℏm1 |j1,m1⟩ |j2,m2⟩ , (8)

J2
1 |j1,m1⟩ |j2,m2⟩ = ℏ2j1(j1 + 1) |j1,m1⟩ |j2,m2⟩ , (9)

J1,± |j1,m1⟩ |j2,m2⟩ = ℏ
√
j1(j1 + 1)−m1(m1 ± 1) |j1,m1 ± 1⟩ |j2,m2⟩ , (10)

and similar for J⃗2. Obviously, the operators J⃗1 and J⃗2 commute and their sum J⃗ = J⃗1 + J⃗2 is
also an angular momentum operator. Namely,

J⃗ × J⃗ =
(
J⃗1 + J⃗2

)
×
(
J⃗1 + J⃗2

)
= J⃗1 × J⃗1 + J⃗1 × J⃗2 + J⃗2 × J⃗1︸ ︷︷ ︸

0

+ J⃗2 × J⃗2

= ıℏJ⃗1 + ıℏJ⃗2 = ıℏJ⃗ . (11)

Note that the second and third terms in the second row cancel each other because the vector
product is antisymmetric. Consequently, the common eigenvector of Jz and J2, |j,m⟩ ∈ H1 ⊗
H2, satisfy

Jz |j,m⟩ = ℏm |j,m⟩ (12)

J2 |j,m⟩ = ℏ2j(j + 1) |j,m⟩ (13)

J± |j,m⟩ = ℏ
√
j(j + 1)−m(m± 1) |j,m± 1⟩ . (14)
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We will demonstrate how the above eigenvectors |j,m⟩ can be constructed for given values
of j1 and j2 as a linear combination of the |j1,m1⟩ |j2,m2⟩ tensor product states,

|j,m⟩ =
∑

m1,m2

C (j1m1, j2m2|j,m) |j1,m1⟩ |j2,m2⟩ . (15)

The C (j1m1, j2m2|j,m) coefficients, or with other famous notation ⟨j1m1, j2m2 |j,m⟩, are called
the Clebsch–Gordan coefficients. According to the ususal convention, we choose them to be
real. Note that the dimension of the subspace in H1⊗H2 spanned by the states |j1,m1⟩ |j2,m2⟩
is (2j1 + 1) (2j2 + 1), which - as shown by representation theory - can be decomposed as a direct
sum of the eigensubspaces (irreducible representations) of Jz and J2. From this it also follows
that on this subspace we can combine (2j1 + 1) (2j2 + 1) common eigenvectors of Jz and J2.

The action of Jz on the state in (15) can be expressed as

Jz |j,m⟩ = (J1,z + J2,z)
∑

m1,m2

C (j1m1, j2m2|j,m) |j1,m1⟩ |j2,m2⟩

=
∑

m1,m2

ℏ (m1 +m2)C (j1m1, j2m2|j,m) |j1,m1⟩ |j2,m2⟩

= ℏ (m1 +m2) |j,m⟩ , (16)

which together with Eq. (12) leads to∑
m1,m2

ℏ (m1 +m2 −m)C (j1m1, j2m2|j,m) |j1,m1⟩ |j2,m2⟩ = 0 . (17)

Since the states |j1,m1⟩ |j2,m2⟩ are orthonormal, therefore, also linearly independent,

(m1 +m2 −m)C (j1m1, j2m2|j,m) = 0 , (18)

from which we conclude that C (j1m1, j2m2|j,m) = 0 if m ̸= m1+m2. This condition is usually
written as the first rule for the Clebsch-Gordan coefficients,

m = m1 +m2 . (19)

This also implies that, for given j1 and j2, the maximum of the possible m quantum numbers
is j1+ j2, therefore j can not be larger than j1+ j2, i.e., for j > j1+ j2 C (j1m1, j2m2|j,m) = 0.

Statement:
|j1 + j2, j1 + j2⟩ = |j1, j1⟩ |j2, j2⟩ , (20)

i.e.
C (j1j1, j2j2|j1 + j2, j1 + j2) = 1 . (21)

Proof:

On the one hand,

Jz |j1, j1⟩ |j2, j2⟩ = (J1,z + J2,z) |j1, j1⟩ |j2, j2⟩
= ℏ (j1 + j2) |j1, j1⟩ |j2, j2⟩ . (22)

On the other hand,

J2 =
(
J⃗1 + J⃗2

)2
= J2

1 + J2
2 + 2J⃗1J⃗2 = J2

1 + J2
2 + 2J1,x J2,x + 2J1,y J2,y + 2J1,z J2,z

= J2
1 + J2

2 + 2J1,z J2,z + J1,+ J2,− + J1,− J2,+ , (23)
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therefore, using the actions of the tensor product operators (8), (9), and (10),

J2 |j1, j1⟩ |j2, j2⟩ = ℏ2 (j1(j1 + 1) + j2(j2 + 1) + 2j1j2) |j1, j1⟩ |j2, j2⟩
+ J1,+ |j1, j1⟩︸ ︷︷ ︸

|0⟩1

J2,− |j2, j2⟩+ J1,− |j1, j1⟩ J2,+ |j2, j2⟩︸ ︷︷ ︸
|0⟩2

= ℏ2 (j1 + j2) (j1 + j2 + 1) |j1, j1⟩ |j2, j2⟩ , (24)

where |0⟩i is the zero vector of the Hilbert space, Hi.

Let us introduce the notation jmax = j1 + j2. It is obvious that the successive action of
the lowering operator J− = J1,− + J2,− starting from the state |jmax, jmax⟩ generates the states
|jmax,m⟩, m ∈ [−jmax,−jmax + 1, . . . , jmax − 1]. This procedure yields 2jmax + 1 eigenstates of
Jz and J2.

Example: The calculation of the Clebsch–Gordan coefficients for |jmax, jmax − 1⟩. Acting on
both sides of Eq. (20) with J−,

J− |j1 + j2, j1 + j2⟩ = ℏ
√
2 (j1 + j2) |j1 + j2, j1 + j2 − 1⟩ (25)

(J1,− + J2,−) |j1, j1⟩ |j2, j2⟩ = ℏ
√

2j1 |j1, j1 − 1⟩ |j2, j2⟩+ ℏ
√
2j2 |j1, j1⟩ |j2, j2 − 1⟩ , (26)

it immediately follows that

|j1 + j2, j1 + j2 − 1⟩ =

√
j1

j1 + j2
|j1, j1 − 1⟩ |j2, j2⟩+

√
j2

j1 + j2
|j1, j1⟩ |j2, j2 − 1⟩ , (27)

i.e. the corresponding Clebsch–Gordan coefficients are:

C (j1, j1 − 1; j2, j2|j1 + j2, j1 + j2 − 1) =

√
j1

j1 + j2
(28)

C (j1, j1; j2, j2 − 1|j1 + j2, j1 + j2 − 1) =

√
j2

j1 + j2
. (29)

Obviously,
(2j1 + 1) (2j2 + 1) = 2 (j1 + j2) + 1 (30)

only holds if one of j1 and j2 is zero. For these trivial cases, we have found all of the eigenstates
of J2 and Jz that satisfy (15). For all other cases, we can find further eigenstates corresponding
to the quantum numbers j < jmax = j1 + j2. Next we have to construct the eigenstates
|j1 + j2 − 1,m⟩ . The state |j1 + j2 − 1, j1 + j2 − 1⟩ should have the form,

|j1 + j2 − 1, j1 + j2 − 1⟩ = c1 |j1, j1 − 1⟩ |j2, j2⟩+ c2 |j1, j1⟩ |j2, j2 − 1⟩ , (31)

which follows from Eq. (19). This state can be calculated if we utilize the orthogonality of
the eigenstates |j1 + j2 − 1, j1 + j2 − 1⟩ and |j1 + j2, j1 + j2 − 1⟩, see in (27), being the linear
combinations of the same tensor product vectors. From the orthogonality of the eigenstates of
J2 and Jz we obtain,

c1

√
j1

j1 + j2
+ c2

√
j2

j1 + j2
= 0 .
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Normalizing the eigenstates to one implies,

c21 + c22 = 1 . (32)

Up to a multiplicative factor ±1, the solutions of the above two equations is

c1 = C (j1, j1 − 1; j2, j2|j1 + j2 − 1, j1 + j2 − 1) =

√
j2

j1 + j2
, (33)

c2 = C (j1, j1 − 1; j2, j2|j1 + j2 − 1, j1 + j2 − 1)−

√
j1

j1 + j2
, (34)

i.e.,

|j1 + j2 − 1, j1 + j2 − 1⟩ =

√
j2

j1 + j2
|j1, j1 − 1⟩ |j2, j2⟩ −

√
j1

j1 + j2
|j1, j1⟩ |j2, j2 − 1⟩ . (35)

Starting from this state, by successive actions of J−, we can generate the states |j1 + j2 − 1,m⟩
for m ∈ [−j1 − j2 + 1, . . . , j1 + j2 − 2]. If the total number of the eigenstates |j,m⟩ is
still less than (2j1 + 1) (2j2 + 1), we proceed with generating the subspace corresponding to
j = j1 + j2 − 2. First, we find the state |j1 + j2 − 2, j1 + j2 − 2⟩ by orthogonalizing it to the
states, |j1 + j2, j1 + j2 − 2⟩ and |j1 + j2 − 1, j1 + j2 − 2⟩, obtained previously and then applying
again J− until we get the state |j1 + j2 − 2,−(j1 + j2 − 2)⟩ (see Practical course).

The question naturally arises how long we can countinue this process. In other words, what
is the minimal quantum number jmin, the eigensubspace of which can be generated from the
states |j1,m1⟩ |j2,m2⟩? As we mentioned before, the dimension of the subspace in H1 ⊗ H2

spanned by the states |j1,m1⟩ |j2,m2⟩ is (2j1 + 1) (2j2 + 1), which should be equal to the sum
of the dimensions of the eigensubspaces of J2 and Jz that can be generated on this subspace,

(2j1 + 1) (2j2 + 1) =

jmax∑
j=jmin

(2j + 1) . (36)

There are two possible cases:

(1) j is integer (or 2j + 1 is odd):

The sum of the odd numbers up to j = n equals

n∑
j=0

(2j + 1) = 2
n∑

j=0

j + n+ 1 = 2
n (n+ 1)

2
+ n+ 1 = (n+ 1)2 , (37)

from which
jmax∑

j=jmin

(2j + 1) = (jmax + 1)2 − j2min = (j1 + j2 + 1)2 − j2min . (38)

(2) j is half-integer (or 2j + 1 is even):

n+ 1
2∑

j= 1
2

(2j + 1) = n+1+

n+ 1
2∑

j= 1
2

(2j) = n+1+
n∑

k=0

(2k + 1) = n+1+(n+ 1)2 = (n+ 1) (n+ 2) , (39)
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where we used the substitution k = j − 1/2. Using this identity,

jmax∑
j=jmin

(2j + 1) = (jmax +
1

2
)(jmax +

3

2
)− (jmin −

1

2
)(jmin +

1

2
)

= j2max + 2jmax + 1− j2min = (j1 + j2 + 1)2 − j2min , (40)

i.e., we get the same result in both cases. From Eq. (36) we get for jmin,

j2min = (j1 + j2 + 1)2 − (2j1 + 1) (2j2 + 1) = (j1 + j2)
2 − 4j1j2 = (j1 − j2)

2 (41)

or
jmin = |j1 − j2| . (42)

The possible quantum numbers j are then as follows,

j ∈ [ |j1 − j2| , |j1 − j2|+ 1, . . . , j1 + j2 − 1, j1 + j2] , (43)

or
C (j1m1, j2m2|j,m) = 0 if j < |j1 − j2| or j > j1 + j2 , (44)

which is usually termed as the second rule for the Clebsch-Gordan coefficients.

We note two important properties of the Clebsch–Gordan coefficients:

Orthonomality

It follows from the orthonormality of the angular momentum eigenstates:

⟨jm |j′m′⟩ = δjj′δmm′ (45)

Expanding the above scalar product using (15),

⟨jm |j′m′⟩ =
∑
m1m2

∑
m′

1m
′
2

C (j1m1; j2m2|jm)C (j′1m
′
1; j

′
2m

′
2|j′m′) ⟨j1m1 |j′1m′

1⟩︸ ︷︷ ︸
δj1j′1

δm1m
′
1

⟨j2m2 |j′2m′
2⟩︸ ︷︷ ︸

δj2j′2
δm2m

′
2

(46)

⇓∑
m1m2

C (j1m1; j2m2|jm)C (j1m1; j2m2|j′m′) = δjj′δmm′ . (47)

Completeness

A second identity follows from the fact that, being an orthonormal set of vectors, the eigen-
states |jm⟩ form a complet set of the subspace {|j1m1⟩ |j2m2⟩ : −j1 ≤ m1 ≤ j1, −j2 ≤ m2 ≤ j2}
:

j1+j2∑
j=|j1−j2|

j∑
m=−j

|jm⟩ ⟨jm| =
∑
m1m2

|j1m1⟩ |j2m2⟩ ⊗ ⟨j1m1| ⟨j2m2| (48)

≡
∑
m1m2

|j1m1⟩ ⟨j1m1| ⊗ |j2m2⟩ ⟨j2m2| . (49)
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Expanding the projectors on left-hand side of the identity using again (15),

jmax∑
j=jmin

j∑
m=−j

|jm⟩ ⟨jm| =
jmax+∑
j=jmin

j∑
m=−j

∑
m1m2

∑
m′

1m
′
2

C (j1m1; j2m2|jm)C (j1m
′
1; j2m

′
2|jm)

|j1m1⟩ ⟨j1m′
1| ⊗ |j2m2⟩ ⟨j2m′

2| (50)

=
∑
m1m2

∑
m′

1m
′
2

(
jmax∑

j=jmin

j∑
m=−j

C (j1m1; j2m2|jm)C (j1m
′
1; j2m

′
2|jm)

)
|j1m1⟩ ⟨j1m′

1| ⊗ |j2m2⟩ ⟨j2m′
2| , (51)

which, as compared with

jmax∑
j=jmin

j∑
m=−j

|jm⟩ ⟨jm| =
∑
m1m2

|j1m1⟩ ⟨j1m1| ⊗ |j2m2⟩ ⟨j2m2| ,

implies
jmax∑

j=jmin

j∑
m=−j

C (j1m1; j2m2|jm)C (j1m
′
1; j2m

′
2|jm) = δm1m′

1
δm2m′

2
. (52)
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2 The Helium atom

The Helium atom displays a prototypical system for two interacting electrons. The two-
electron Hamilton operator can be decomposed into two parts,

H (1, 2) = H0 (1, 2) + V (1, 2) , (53)

where H0 (1, 2) is the Hamilton operator of the independent electrons, while V (1, 2) describes
the interaction between the two electrons. H0 (1, 2) can be written as the sum of one-electron
Hamilton operators,

H0 (1, 2) = H1 (1) +H1 (2) , (54)

where H1 is a hydrogen type of Hamilton operator with Z = 2,

H1 (i) = − ℏ2

2m
∆i −

2ke2

ri
(i = 1, 2) . (55)

The interaction is the Coulomb repulsion between the two electrons,

V (1, 2) =
ke2

|r⃗1 − r⃗2|
. (56)

As we learned in the course Quantum Mechanics 1, the eigenstates of H1 (i) are labelled by
the principal quantum number n = 1, 2, 3, . . ., the angular momentum quantum number ℓ =
0, 1, . . . , n − 1, the magnetic quantum number m = −ℓ,−ℓ + 1, . . . , ℓ and the spin quantum
number ms = ±1

2
, ϕnℓmms (i) = ϕnℓm (r⃗i)

∣∣1
2
,ms

〉
i
,

H1 (i) ϕnℓmms (i) = En ϕnℓmms (i) (57)

En = −4
m (ke2)

2

ℏ2
1

n2
= − 4

n2
Ryd . (58)

2.1 Ground state

The lowest energy one-particle states are the 1s states,

ϕ1,0,0,+ 1
2
(i) = ϕ100 (r⃗i)

∣∣∣∣12 ,+1

2

〉
i

= ϕ1s (r⃗i)

∣∣∣∣12 ,+1

2

〉
i

(59)

ϕ1,0,0,− 1
2
(i) = ϕ100 (r⃗i)

∣∣∣∣12 ,−1

2

〉
i

= ϕ1s (r⃗i)

∣∣∣∣12 ,−1

2

〉
i

. (60)

The tensor product space generated by these wavefunctions is four-dimensional, but only one
of them is antisymmetric, i.e., describes a two-fermion state:

ψ1s,1s (1, 2) = ϕ1s(r⃗1)ϕ1s(r⃗2) |0, 0⟩ . (61)

where the spatial part, ϕ1s(r⃗1)ϕ1s(r⃗2), is symmetric and the spin part,

|0, 0⟩ = 1√
2

(∣∣∣∣12 ,+1

2

〉
1

∣∣∣∣12 ,−1

2

〉
2

−
∣∣∣∣12 ,−1

2

〉
1

∣∣∣∣12 ,+1

2

〉
2

)
(62)

is the antisymmetric singlet two-spin state (S = 0, mS = 0). This is the ground state of the
unperturbed (non-interacting) Helium atom, called parahelium, which has the energy,

H0(1, 2)ψ1s,1s(1, 2) = E
(0)
1s,1s ψ1s,1s(1, 2) (63)

E
(0)
1s,1s = −8Ryd . (64)
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What is the energy of the ground state in first order of the perturbation theory?

∆E
(1)
1s,1s = ⟨ψ1s,1s(1, 2)|V (1, 2) |ψ1s,1s(1, 2)⟩ (65)

= ⟨00 |00⟩︸ ︷︷ ︸
=1

ke2
∫ ∫

ϕ∗
1s(r⃗1)ϕ

∗
1s(r⃗2)ϕ1s(r⃗1)ϕ1s(r⃗2)

|r⃗1 − r⃗2|
d3r1d

3r2 (66)

= ke2
∫ ∫

ϱ1s(r⃗1)ϱ1s(r⃗2)

|r⃗1 − r⃗2|
d3r1d

3r2 = C1s,1s > 0 . (67)

Obviously, C1s,1s is the Coulomb interaction energy of the classical charge distribution, ϱ1s(r⃗) =
ϕ∗
1s(r⃗)ϕ1s(r⃗). The result of the calculation is,

C1s,1s =
5

4

Zm (ke2)
2

ℏ2
= 2.5Ryd , (68)

so that the first-order ground-state energy of the He atom equals to

E
(1)
1s,1s = E1s,1s +∆E

(1)
1s,1s = −5.5Ryd . (69)

Actually, this is a good approximation of the exact ground state energy, −5.807 Ryd .

2.2 Excited states

From the 1s and 2s states we can generate four antisymmetric two-electron wavefunctions
by using the orthonormal eigenstates of the Sz and S2 operators,

| 0 0⟩ = 1√
2

(∣∣∣∣12 ,+1

2

〉
1

∣∣∣∣12 ,−1

2

〉
2

−
∣∣∣∣12 ,−1

2

〉
1

∣∣∣∣12 ,+1

2

〉
2

)
singlet (70)

|1− 1⟩ =
∣∣∣∣12 ,−1

2

〉
1

∣∣∣∣12 ,−1

2

〉
2

|10⟩ = 1√
2

(∣∣∣∣12 ,+1

2

〉
1

∣∣∣∣12 ,−1

2

〉
2

+

∣∣∣∣12 ,−1

2

〉
1

∣∣∣∣12 ,+1

2

〉
2

)
|11⟩ =

∣∣∣∣12 ,+1

2

〉
1

∣∣∣∣12 ,+1

2

〉
2


triplet (71)

and the orthonormal symmetric and antisymmetric spatial components,

ϕ+
1s,2s(r⃗1, r⃗2) =

1√
2
(ϕ1s(r⃗1)ϕ2s(r⃗2) + ϕ2s(r⃗1)ϕ1s(r⃗2)) (72)

ϕ−
1s,2s(r⃗1, r⃗2) =

1√
2
(ϕ1s(r⃗1)ϕ2s(r⃗2)− ϕ2s(r⃗1)ϕ1s(r⃗2)) . (73)

The antisymmetric combinations are as follows,

ψ1
1s,2s(1, 2) = ϕ+

1s,2s(r⃗1, r⃗2) |00⟩ (74)

ψ2
1s,2s(1, 2) = ϕ−

1s,2s(r⃗1, r⃗2) |1− 1⟩ (75)

ψ3
1s,2s(1, 2) = ϕ−

1s,2s(r⃗1, r⃗2) |10⟩ (76)

ψ4
1s,2s(1, 2) = ϕ−

1s,2s(r⃗1, r⃗2) |11⟩ . (77)
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These states are degenerate eigenfunctions of the unperturbed Hamiltonian, H0(1, 2),

H0(1, 2)ψα
1s,2s(1, 2) = E1s,2s ψ

α
1s,2s(1, 2) (α = 1, 2, 3, 4) (78)

E1s,2s = −4

(
1 +

1

4

)
Ryd =− 5Ryd . (79)

In principle, we have to apply degenerate first-order perturbation theory, but the Coulomb
interaction is independent of the spin and we work with orthonormal spin states, therefore,
the matrix of the Coulomb interaction is diagonal on the basis

{
ψα
1s,2s

}
. We then obtain the

following energy corrections,

∆E
(1),1
1s,2s =

〈
ψ1
1s,2s(1, 2)

∣∣V (1, 2)
∣∣ψ1

1s,2s(1, 2)
〉

(80)

=

∫ ∫
ϕ+
1s,2s(r⃗1, r⃗2)

∗ ke2

|r⃗1 − r⃗2|
ϕ+
1s,2s(r⃗1, r⃗2) d

3r1d
3r2 , (81)

and for α ∈ {2, 3, 4}

∆E
(1),α
1s,2s =

〈
ψα
1s,2s(1, 2)

∣∣V (1, 2)
∣∣ψα

1s,2s(1, 2)
〉

(82)

=

∫ ∫
ϕ−
1s,2s(r⃗1, r⃗2)

∗ ke2

|r⃗1 − r⃗2|
ϕ−
1s,2s(r⃗1, r⃗2) d

3r1d
3r2 . (83)

The triplet states are still degenerate but the degeneracy between the triplet and singlet
states is lifted. Let’s see the meaning of the energy corrections:∫ ∫

ϕ±
1s,2s(r⃗1, r⃗2)

∗ ke2

|r⃗1 − r⃗2|
ϕ±
1s,2s(r⃗1, r⃗2) d

3r1d
3r2 = (84)

=
1

2

∫ ∫
ϕ1s(r⃗1)

∗ϕ2s(r⃗2)
∗ ke2

|r⃗1 − r⃗2|
ϕ1s(r⃗1)ϕ2s(r⃗2) d

3r1d
3r2 (85)

+
1

2

∫ ∫
ϕ2s(r⃗1)

∗ϕ1s(r⃗2)
∗ ke2

|r⃗1 − r⃗2|
ϕ2s(r⃗1)ϕ1s(r⃗2) d

3r1d
3r2 (86)

±1

2

∫ ∫
ϕ1s(r⃗1)

∗ϕ2s(r⃗2)
∗ ke2

|r⃗1 − r⃗2|
ϕ2s(r⃗1)ϕ1s(r⃗2) d

3r1d
3r2 (87)

±1

2

∫ ∫
ϕ2s(r⃗1)

∗ϕ1s(r⃗2)
∗ ke2

|r⃗1 − r⃗2|
ϕ1s(r⃗1)ϕ2s(r⃗2) d

3r1d
3r2 . (88)

The first two terms yield the classical Coulomb energy term,

C1s,2s = ke2
∫
ϱ1s(r⃗1)ϱ2s(r⃗2)

|r⃗1 − r⃗2|
d3r1d

3r2 , (89)

but the other two terms have no classical analogues. Since they contain two different wavefun-
tions with the same coordinate argument, we call these terms the exchange integral,

K1s,2s = ke2
∫ ∫

ϕ1s(r⃗1)
∗ϕ2s(r⃗2)

∗ϕ2s(r⃗1)ϕ1s(r⃗2)

|r⃗1 − r⃗2|
d3r1d

3r2 ∈ R (90)

which gives the energy splitting between the singlet and triplet states,

∆E
(1),singlet
1s,2s = C1s,2s +K1s,2s , (91)

∆E
(1),triplet
1s,2s = C1s,2s −K1s−2s . (92)
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For the investigation of the excited states of the Helium atom we have to consider also the
Slater determinants formed by the 1s and 2p states, because they are eigenfunctions of the
unperturbed Hamiltonian with the same energy, E = −5 Ryd. So, in principle, we have to
work on a 4×4 = 16-dimensional subspace of two-fermion wavefunctions and employ first-order
degenerate perturbation theory on this space. In order to avoid this high dimensional problem
we can make use that the two-electon orbital angular momentum operator, L⃗ = L⃗1 + L⃗2,
commutes with the Hamiltonian H(1, 2), so we can look for the eigenstates of the Hamiltonian

being simultaneously common eigenstates of the operators L⃗z and L2. Based on the addition
of the angular momenta, it is obvious that the (1s,2s) states correspond to the two-electron
orbital quantum number L = 0, while the (1s,2p) states correspond to L = 1. From the (1s,2p)
states related to ML = −1, 0, 1 the valid two-electron states can be constructed as (74)-(77),
thus they span a 12-dimensional subspace. Obviously, the matrix of V (1, 2) is again diagonal
and the degeneracies are lifted as above,

∆E
(1),singlet
1s,2p = C1s,2p +K1s,2p (93)

∆E
(1),triplet
1s,2p = C1s,2p −K1s,2p (94)

where C1s,2p is the Coulomb integral and K1s,2p is the exchange integral defined in (89) and
(90), respectively, we only have to replace ϕ2s by ϕ2pm with m = −1, 0, 1. It is easy to show
that the integrals C1s,2p and K1s,2p are independent of m by symmetry. The tensor product
space of the (1s, 2s) and (1s, 2p) states split then into four energy levels, as shown in the below
figure.

Figure 1: The energy levels of low-energy excited states in the He atom. The notations are as
follows: J20 = C1s,2s, J21 = C1s,2p, K20 = K1s,2s, K21 = K1s,2p.

For the description of the two-electron states of the He atom we use the notation 2S+1LJ ,
where J⃗ = J⃗1 + J⃗2 with J⃗i = L⃗i + S⃗i being the total angular momentum. Instead of L =
0, 1, 2, 3, . . . we use the conventional notation is S, P,D, F , respectively. Due to the addition
rules of angular momenta, for the singlet states S = 0 (2S + 1 = 1), J is unambiguously
defined, J = L. In case of the 3S1 triplet states, where L = 0, J is also defined unambiguously,
J = S = 1. These levels are 2J + 1 times degenerate. The 3PJ states, or in other words, the
L = 1 and S = 1 states can have J = 0, 1, 2, so this level is 1+ 3+ 5 = 9 times degenerate. We
will see later that this level is going to split according to the three different values of J due to
spin-orbit coupling as noted in the Figure.

Remark: Effective spin Hamiltonian for the spin singlet and triplet states. The energy of the
singlet and triplet states,

E(S = 0) = C +K (95)

E(S = 1) = C −K (96)
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can be written as
E(S) = C − (S(S + 1)− 1)K . (97)

In the above expression we recognize the eigenvalue of the S2 operator, so we define the effective
Hamiltonian, which describes the interaction of the spins of the two electrons,

Hspin(S⃗1, S⃗2) = C +K − 1

ℏ2
(S⃗1 + S⃗2)

2K = C − 1

2
K − 2K

ℏ2
S⃗1S⃗2 (98)

= H0 − J S⃗1S⃗2 . (99)

This is a prototype of the so-called isotropic Heisenberg interaction with the so-called exchange
coupling J related to the exchange inegral K as

J =
2K

ℏ2
. (100)
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3 Scattering theory

In this section, we investigate the propagation of particles through a scattering medium
termed as the target. The scattered particles are detected far from the target. As in the case
of one-dimensional scattering, we use plane-wave states for the incoming particle,

ıℏ∂tψ0 (r⃗, t) = H0ψ0 (r⃗, t) = −ℏ2∆
2m

ψ0 (r⃗, t) , (101)

ψ0 (r⃗, t) = Aei(k⃗r⃗−
E
ℏ t) (102)

E =
ℏ2k2

2m
. (103)

In case of a particle described by a wave packet localized both in coordinate and momentum
space we have to consider the superposition of the corresponding plane waves.

3.1 Lippmann–Schwinger equation, Green’s function, Born series

The scattering process is described by the time dependent Schrödinger equation,

ıℏ∂tψ (r⃗, t) = (H0 + V (r⃗))ψ (r⃗, t) (104)

where V (r⃗) is the interaction potential between the scattered particle and the target. Since
the potential is time independent, the energy of the particle is a conserved quantity (elastic
scattering), so we can switch to the time independent Schrödinger equation:

ψ (r⃗, t) = ψ (r⃗) e−iEℏ t (105)

⇓

(H0 + V (r⃗)) ψ (r⃗) = E ψ (r⃗) . (106)

Without loss of generality it is worth to take the steady solution ψ (r⃗) as the sum of the
incident wave ψ0 (r⃗) and a scattered wave ψsc (r⃗):

ψ (r⃗) = ψ0 (r⃗) + ψsc (r⃗) . (107)

As the detectors are far from the target, we will need to express the scattered wave for large
r = |r⃗|, called the asymptotic limit.

Substituting (107) into the Schrödinger equation (106),

(H0 + V (r⃗)) (ψ0 (r⃗) + ψsc (r⃗)) = E (ψ0 (r⃗) + ψsc (r⃗)) , (108)

we proceed as
(H0 + V (r⃗))ψsc (r⃗) + V (r⃗)ψ0 (r⃗) = E ψsc (r⃗) (109)

(H0 − E)ψsc (r⃗) = −V (r⃗) (ψ0 (r⃗) + ψsc (r⃗)) (110)

and obtain the following equation for the scattered wave,

(H0 − E)ψsc (r⃗) =

(
− ℏ2

2m
∆− E

)
ψsc (r⃗) = −V (r⃗)ψ (r⃗) . (111)
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The above equation can be solved by Green’s function techniqe. The Green’s funtion of the
free particles is defined as (

− ℏ2

2m
∆− E

)
G0(r⃗, r⃗

′;E) = −δ(r⃗ − r⃗′) . (112)

It is then straightforward to show that the solution of (111) is

ψsc (r⃗) =

∫
G0 (r⃗, r⃗

′, E)V (r⃗′)ψ (r⃗′) d3r′ , (113)

consequently, the stationary solution of (107) can be written as

ψ (r⃗) = ψ0 (r⃗) +

∫
G0(r⃗, r⃗

′;E)V (r⃗′)ψ (r⃗′) d3r′ , (114)

which is called the Lippmann–Schwinger equation. The Lippmann–Schwinger equation is an
integral equation that provides the solution of the time-independent Schrödinger equation in-
cluding the boundary conditions for the solution by a suitable choice of the Green’s function
G0 (r⃗, r⃗

′;E). In the scattering case, we expect spherical outgoing wave solutions far away from
the target.

In order to determine the Green’s function we introduce the resolvent operator, G0 (z),

(H0 − zI)G0 (z) = −I (115)

where I is the unit operator of the Hilbert space and z ∈ C is a complex energy argument.
Taking the coordinate representation of the above operator equation,

⟨r⃗| (H0 − zI)G0 (z) |r⃗′⟩ = −⟨r⃗ |r⃗′⟩ = −δ (r⃗ − r⃗′) (116)

⇓∫
d3r′′ ⟨r⃗| (H0 − zI) |r⃗′′⟩ ⟨r⃗′′|G0 (z) |r⃗′⟩ = (H0 (r⃗)− z)G0 (r⃗, r⃗

′; z) = −δ (r⃗ − r⃗′) , (117)

where we used that H0 is diagonal in coordinate representation,

⟨r⃗|H0 |r⃗′⟩ = H0 (r⃗, r⃗
′) = H0 (r⃗) δ (r⃗ − r⃗′) . (118)

It is then obvious that the coordinate representation of the resolvent operator, ⟨r⃗|G0 (z) |r⃗′⟩ =
G0 (r⃗, r⃗

′; z), is the required Green’s function.

Let’s recall the spectral resolution of H0,

H0 =
∑
n

εn |n⟩ ⟨n| , (119)

where εn and |n⟩ are the eigenvalues and eigenvectors of H0, and they form an orthonormal
basis on the Hilbert space. Note that in the case of a continuous spectrum, instead of the
summation we have to take an integral over generalized eigenvalues. From Eq. (115) it follows,

⟨n| (zI −H0)G0 (z) |m⟩ = (z − εn) ⟨n|G0 (z) |m⟩ = δnm (120)

from which we get

⟨n|G0 (z) |m⟩ = δnm
1

z − εn
, (121)
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and the spectral resolution of the resolvent,

G0 (z) =
∑
n

|n⟩ ⟨n|
z − εn ± ı0

. (122)

Since εn can take only real values, in order to avoid the division by zero, for real values of z
we take the limits when the imaginary part goes to zero. Depending on whether this limit is
taken from the upper or lower complex semiplane, we define G+

0 (E) and G−
0 (E) as

G±
0 (E) = G0 (E ± i0) .

Obviously G+
0 (E) and G−

0 (E) are the adjoint operators of each other, and identical only if E
is not an eigenvalue of H0.

The Green’s function can be written as

G±
0 (r⃗′, r⃗; z) =

∑
n

⟨r⃗′ |n⟩ ⟨n |r⃗⟩
z − εn ± ı0

=
∑
n

φn (r⃗
′)φn (r⃗)

∗

z − εn ± ı0
, (123)

where φn (r⃗) denote the eigenfunctions of H0.

Taking into account that the properly normalized generalized eigenfunctions of H0 are
φp⃗ (r⃗) = 1

h3/2 e
i
ℏ p⃗r⃗ with the generalized eigenvalues εp⃗ = p2

2m
, and writing the energy variable

of the Green’s function as z = ℏ2k2
2m

, we get the following expression:

G0 (r⃗
′, r⃗; z) =

1

h3

∫
e

i
ℏ p⃗(r⃗

′−r⃗)

ℏ2k2
2m

− p2

2m

d3p =
2m

h3

∫
e

i
ℏ p⃗(r⃗

′−r⃗)

ℏ2k2 − p2
d3p (124)

=
4πm

h3

∫ ∞

0

p2dp

ℏ2k2 − p2

∫ 1

−1

dx e
ı
ℏp|r⃗

′−r⃗|x (125)

=
2m

ih2|r⃗ − r⃗′|

∫ ∞

0

pdp
e

ı
ℏp|r⃗−r⃗′| − e−

ı
ℏp|r⃗−r⃗′|

ℏ2k2 − p2
(126)

=
m

ih2|r⃗ − r⃗′|

[∫ ∞

−∞
dp

pe
ı
ℏp|r⃗−r⃗′|

ℏ2k2 − p2
−
∫ ∞

−∞
dp
pe−

ı
ℏp|r⃗−r⃗′|

ℏ2k2 − p2

]
. (127)

The integrals can be calculated by using the residue theorem. Obviously, the first and second
integrals can be closed in the upper and lower complex semiplane, respectively. Thus by
choosing Re z > 0 and Im z > 0 → Im k > 0 yields

G0 (r⃗
′, r⃗; z) = − 2πm

h2|r⃗ − r⃗′|

[
Res(

pe
ı
ℏp|r⃗−r⃗′|

(p− ℏk) (p+ ℏk)
, ℏk)− Res(

pe−
ı
ℏp|r⃗−r⃗′|

(p− ℏk) (p+ ℏk)
,−ℏk)

]
= −2m

ℏ2
eik|r⃗−r⃗′|

4π |r⃗ − r⃗′|
, (128)

while by choosing Re z > 0 and Im z < 0 → Im k < 0,

G0 (r⃗
′, r⃗; z) = − 2πm

h2|r⃗ − r⃗′|

[
Res(

pe
ı
ℏp|r⃗−r⃗′|

(p− ℏk) (ℏk + p)
,−ℏk)− Res(

pe−
ı
ℏp|r⃗−r⃗′|

(p− ℏk) (ℏk + p)
, ℏk)

]
= −2m

ℏ2
e−ik|r⃗−r⃗′|

4π |r⃗ − r⃗′|
, (129)

⇓
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E > 0 : G±
0 (r⃗′, r⃗;E) = −2m

ℏ2
e±ık|r⃗−r⃗′|

4π|r⃗ − r⃗′|
. (130)

In order to derive the asymptotic form of the scattered wave, we will use G+
0 (r⃗′, r⃗;E) providing

outgoing spherical waves as mentioned already. We also should mention that for E < 0,
E ± i0 = (±ik)2 with k =

√
−E, therefore,

G±
0 (r⃗′, r⃗;E) = −2m

ℏ2
e−k|r⃗−r⃗′|

4π|r⃗ − r⃗′|
, (131)

being identical for both side-limits.

Choosing the positive side limit of the free Green’s function, the abstract form of the
Lippmann–Schwinger equation reads as

|ψ⟩ = |ψ0⟩+G+
0 V |ψ⟩ , (132)

where we dropped the energy argument. The above equation can be solved by successive
approximation,

|ψ(0)⟩ = |ψ0⟩ (133)

|ψ(1)⟩ = |ψ0⟩+G+
0 V |ψ0⟩ = |ψ0⟩+G+

0 V |ψ0⟩ (134)

|ψ(2)⟩ = |ψ0⟩+G+
0 V |ψ(1)⟩ = |ψ0⟩+G+

0 V |ψ0⟩+
(
G+

0 V
)2 |ψ0⟩ (135)

|ψ(3)⟩ = |ψ0⟩+G+
0 V |ψ(2)⟩ = |ψ0⟩+G+

0 V |ψ0⟩+
(
G+

0 V
)2 |ψ0⟩+

(
G+

0 V
)3 |ψ0⟩ (136)

. . .

what we call the Born series. It is easy to see, that the complete solution is:

|ψ⟩ = |ψ0⟩+G+
0

∞∑
n=0

(
V G+

0

)n
V |ψ0⟩ . (137)

If
∥∥V G+

0

∥∥ < 1, that is the scattering potential is weak, we can use the sum of the Neumann-
series,

∞∑
n=0

(
V G+

0

)n
=
(
I − V G+

0

)−1
(138)

and the solution of the Lippmann–Schwinger equation is

|ψ⟩ = |ψ0⟩+G+
0

(
I − V G+

0

)−1
V |ψ⟩0 . (139)

Further manipulations,

G+
0

(
I − V G+

0

)−1
=
((
G+

0

)−1 − V
)−1

= (E + i0−H0 − V )−1

= (E + i0−H)−1 = G+ (E) (140)

lead to the resolvent operator of the scattering target. The Lippmann–Schwinger equation with
this resolvent reads as

|ψ⟩ = |ψ0⟩+G+V |ψ0⟩ (141)

or in coordinate representation,

ψ (r⃗) = ψ0 (r⃗) +

∫
G+ (r⃗, r⃗′;E)V (r⃗′)ψ0 (r⃗

′) d3r′ . (142)
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3.2 Scattering amplitudes and cross sections

In this section we are going to use the first term of the Born series called the Born approxi-
mation:

ψ (r⃗) ≃ ψ(1) (r⃗) = ψ0 (r⃗) +

∫
G+

0 (r⃗, r⃗′;E)V (r⃗′)ψ0 (r⃗
′) d3r′ . (143)

Putting the origin of the coordinate system into the compact domain of the potential V (r⃗′)
(target) we get the asymptotic form of the scattered wave by determining the Green’s function
in the limit of r ≫ r′. In the denominator of Eq. (131) we can take the approximation
|r⃗− r⃗′| ≃ r, because higher order terms in the expansion 1/|r⃗− r⃗′| lead to contributions to ψ (r⃗)
proportional with 1/r2 or 1/r3 etc., which decay faster than the leading term proportional with
1/r. On the contrary, in the numerator we have to go further in the expansion of |r⃗ − r⃗′| in
order to obtain an asymptotic form for the scattered wave that depends on the direction of the
detector,

k |r⃗ − r⃗′| =
e⃗r=

r⃗
r

kr

√(
e⃗r −

r⃗′

r

)2

= kr

√
1− 2r⃗r⃗′

r2
+
r′2

r2
→
r≫r′

kr

(
1− r⃗r⃗′

r2

)
(144)

from which the asymptotic form of the Green’s function reads as

G±
0 (r⃗′, r⃗;E) → −2m

ℏ2
e±ıkr

4πr
e∓ı⃗k′r⃗′ , (145)

where

k⃗′ = ke⃗r = k
r⃗

r
(146)

denotes the wavevector for the particle propagating towards the detector at the position r⃗.

Considering the time dependent phase factor e−ıEℏ t involved in the wavefunction, the function
eıkr/r describes a spherical wave propagating outwards (away from the target), while e−ıkr/r
stands for a spherical wave propagating inwards (towards the target). This is why we choose
the Green’s function G+

0 (r⃗, r⃗′;E) for the solution of the scattering problem,

ψsc (r⃗) ≃ −e
ıkr

r

m

2πℏ2

∫
e−ı⃗k′r⃗′V (r⃗′) eı⃗kr⃗

′
d3r′ . (147)

The asymptotic wavefunction can then be written in the following form,

ψ (r⃗) ≃ A

(
eı⃗kr⃗ + f (q⃗)

eıkr

r

)
, (148)

where we introduced the so called scattering amplitude

f (q⃗) = − m

2πℏ2

∫
V (r⃗′) e−ıq⃗ r⃗ ′

d3r′ , (149)

with

q⃗ = k⃗′ − k⃗ = k
r⃗

r
− k⃗ = k (e⃗r − e⃗k) . (150)

It seems to be a natural to choose the z axis of our coordinate system parallel to the direction
of the incoming wave, e⃗k = e⃗z. In general, the q⃗ vector depends on the polar and azimuth angles
of e⃗r, namely

f (q⃗) = f (ϑ, φ) , (151)
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but the length of q⃗ depends only on ϑ,

q⃗ 2 = 2k2 (1− e⃗z e⃗r) = 2k2 (1− cosϑ) = 4k2 sin2 ϑ

2
→ q = 2k sin

ϑ

2
. (152)

In case of spherically symmetric (central) potentials the scattering amplitude depends just on
q, i.e., on the polar angle ϑ,

f (q) = −m
ℏ2

∫ ∞

0

r′2dr′V (r′)

∫ 1

−1

dx e−iqr′x

= −2m

qℏ2

∫ ∞

0

r′dr′V (r′) sin(qr′) , (153)

where we choose the z′ axis along the direction of the q⃗ vector.

As we mentioned before, the condition for the Born approximation is that scattering potential
should be weak. In the denominator of the above expression, q is proportional to the square-root
of the energy, which suggests that the scattering amplitude is going to be small for high energies,
making the Born approximation applicable. We note that the Born approximation works also
for infinitely extended potentials in case of sufficiently fast spatial decay. An example is given
by the Yukawa potential, where in case of the limit of zero screening length we get correct
scattering amplitude for the Coulomb potential (Rutherford scattering).

In the scattering experiments we measure cross sections, i.e., the current density (number of
particles per unit area and per unit time) at the detector devided by the current density of the
incoming particles. The probability current density of the incoming plane wave is

j⃗0 = |A|2 ℏk⃗
m

,

being obviously proportional with the current density of the incoming particles. The radial
current density of the scattered wave is,

j⃗sc(r⃗)e⃗r =
ℏ

2mı
(ψ∗

sc(r⃗)∂rψsc(r⃗)− ψsc(r⃗)∂rψ
∗
sc(r⃗))

= Re

(
ℏ
ım
ψ∗
sc(r⃗)∂rψsc(r⃗)

)
. (154)

Making the following approximation,

∂rψsc(r⃗) = f (ϑ, φ) ∂r
eıkr

r
= −f (ϑ, φ) e

ıkr

r2
+ ıkf (ϑ, φ)

eıkr

r
→

r→∞
ıkf (ϑ, φ)

eıkr

r
, (155)

the radial current density can be expressed as

j⃗sc(r⃗)e⃗r ≃ |A|2 ℏk
m

|f (ϑ, φ)|2

r2
= j0

|f (ϑ, φ)|2

r2
. (156)

The number of the scattered particles flowing through the area of the detector dA⃗ = e⃗rr
2dΩ

per unit time is then given by,

dN (ϑ, φ)

dt
= j⃗sc dA⃗ = (⃗jsce⃗r) r

2dΩ = j0 |f (ϑ, φ)|2 dΩ . (157)
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This expression should be compared with

dN (ϑ, φ)

dt
= σ (ϑ, φ) j0dΩ , (158)

where σ (ϑ, φ) is the differential cross section. Obviously, we obtained a simple relationship
between the differential cross section and the scattering amplitude,

σ (ϑ, φ) = |f (ϑ, φ)|2 . (159)

In the Born approximation this yields,

σ (ϑ, φ) =
m2

4π2ℏ4

∣∣∣∣∫ V (r⃗) e−iq⃗r⃗d3r

∣∣∣∣2 . (160)

The total cross section is defined as

σ =

∫
dΩσ (Ω) . (161)

Note, however, that the calculation of the total cross section within the Born approximation
could be missleading because the result does not satisfy the optical theorem (see later).

The scattering cross section of a composite target
If the scattering medium consists of identical atomic potentials V0 (r⃗) centered at the lattice

points R⃗i, then the potential energy of the system can be written as

V (r⃗) =
∑
i

V0

(
r⃗ − R⃗i

)
, (162)

where we also supposed that the atomic potentials are of compact, non-overlapping domains Ωi.
In this case the following expression enters the scattering amplitude in Born approximation,∫

V (r⃗) e−ıq⃗r⃗d3r =
∑
i

∫
Ωi

V0

(
r⃗ − R⃗i

)
e−ıq⃗r⃗d3r =

∑
i

∫
Ω0

V0 (r⃗) e
−ıq⃗(r⃗+R⃗i)d3r (163)

=

(∫
Ω0

V0 (r⃗) e
−ıq⃗r⃗d3r

)∑
i

e−iq⃗R⃗i . (164)

The differential cross section can then be written in the following form,

σ (q⃗) = σ0 (q⃗) S (q⃗) , (165)

where the cross section corresponding to the atomic potential is called the form factor,

σ0 (q⃗) =
m2

4π2ℏ4

∣∣∣∣∫
Ω0

V0 (r⃗) e
−ıq⃗r⃗d3r

∣∣∣∣2 , (166)

and the information about the atomic positions is included in the structure constant,

S (q⃗) =
∑
i,j

e−iq⃗(R⃗j−R⃗i) . (167)

Note that the structure constant is usually defined by normalizing the above expression to one
atom, i.e., divided by the number of atoms N .
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3.3 The method of partial waves

We have learned that for spherically symmetric potentials the wavefunctions,

ψℓm (E, r⃗) =
Rℓ (E, r)

r
Y m
ℓ (ϑ, φ) (168)

are solutions of the Schrödinger equation, whereRℓ (E, r) is the solution of the radial Schrödinger
equation, (

− ℏ2

2m

d2

dr2
+

ℏ2

2m

ℓ (ℓ+ 1)

r2
+ V (r)− E

)
Rℓ (E, r) = 0 , (169)

and Y m
ℓ (ϑ, φ) are the (complex) spherical harmonics.

Let us investigate first the free electron solutions! Introducing the wavenumber k =
√

2mE
ℏ2

(E > 0), the radial Schrödinger equation can be transformed to the second order differential
equation, (

d2

dr2
− ℓ (ℓ+ 1)

r2
+ k2

)
Rℓ (r) = 0 . (170)

The solutions, being finite at the origin, termed as regular solutions are given by

Rreg
ℓ (r) = r jℓ (kr) , (171)

where jℓ (x) are the so-called spherical Bessel functions. They exhibit the following boundary
conditions,

jℓ (x) →
x→0

xℓ

(2ℓ+ 1)!!
jℓ (x) →

x→∞

1

x
sin
(
x− ℓ

π

2

)
. (172)

The irregular solutions (diverging at the origin) are,

Rirreg
ℓ (r) = r nℓ (kr) , (173)

where nℓ (x) are the spherical Neumann functions with the following limits,

nℓ (x) →
x→0

−(2ℓ− 1)!!

xℓ+1
nℓ (x) →

x→∞
−1

x
cos
(
x− ℓ

π

2

)
. (174)

Far from the target (V = 0) a solution of the Schrödinger equation with cylindrical symmetry
can be taken in the following form,

ψ (r⃗) =
∑
ℓm

[Aℓ jℓ (kr)−Bℓ nℓ (kr)]Y
0
ℓ (ϑ) (175)

≃
∑
ℓm

1

kr

[
Aℓ sin

(
kr − ℓ

π

2

)
+Bℓ cos

(
kr − ℓ

π

2

)]
Y 0
ℓ (ϑ) . (176)

Here we omitted the contributions containing Y m
ℓ (ϑ, φ) with m ̸= 0, since they break the

cylindrical symmetry of the asymptotic wavefunction. Up to a complex phase, the radial
wavefunctions can be chosen as real functions. This means that the coefficients Aℓ and Bℓ have
the same complex phase,

Aℓ

Bℓ

∈ R ,
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thus ∃Cℓ ∈ C |Cℓ|2 = |Aℓ|2 + |Bℓ|2 such that

Aℓ = Cℓ cos δℓ ,

Bℓ = Cℓ sin δℓ ,

where δℓ ∈ R are called the partial phase shifts. The asymptotic form of the wavefunction can
then be written as,

ψ (r⃗) =
∑
ℓm

Cℓ

kr

[
cos δℓ sin

(
kr − ℓ

π

2

)
+ sin δℓ cos

(
kr − ℓ

π

2

)]
Y 0
ℓ (ϑ) (177)

=
∑
ℓm

Cℓ

kr
sin
(
kr − ℓ

π

2
+ δℓ

)
Y 0
ℓ (ϑ) . (178)

The incoming plane wave with a wave vector along the z direction can be expanded with
respect to the spherical Bessel functions (Bauer’s identity),

eıkz = eıkr cosϑ =
∑
ℓ

√
4π (2ℓ+ 1)ıℓ jℓ (kr)Y

0
ℓ (ϑ) . (179)

Recalling the asymptotic form of the wavefunction (148),

ψ (r⃗) = Aeıkz + ψsc (r⃗)

=
∑
ℓ

A

kr

√
4π (2ℓ+ 1) ıℓ sin

(
kr − ℓ

π

2

)
Y 0
ℓ (ϑ) + Af (ϑ, φ)

eıkr

r
(180)

=
∑
ℓ

A

kr

√
4π (2ℓ+ 1) ıℓ

eı(kr−ℓπ
2 ) − e−ı(kr−ℓπ

2 )

2ı
Y 0
ℓ (ϑ) + Af (ϑ, φ)

eıkr

r
(181)

=
eıkr

r

(
Af (ϑ, φ) +

∑
ℓ

A

2kı

√
4π (2ℓ+ 1)Y 0

ℓ (ϑ)

)

− e−ıkr

r

(∑
ℓ

A (−1)ℓ

2kı

√
4π (2ℓ+ 1)Y 0

ℓ (ϑ)

)
, (182)

which is the superposition of an incoming and an outgoing spherical wave.

We have to compare the expression (182) with the function in (178):

ψ (r⃗) =
∑
ℓ

Cℓ

kr

eı(kr−ℓπ
2
+δℓ) − e−ı(kr−ℓπ

2
+δℓ)

2ı
Y 0
ℓ (ϑ) (183)

=
eıkr

r

(∑
ℓ

Cℓe
ıδℓı−ℓ

2kı
Y 0
ℓ (ϑ)

)
− e−ıkr

r

(∑
ℓ

Cℓe
−ıδℓıℓ

2kı
Y 0
ℓ (ϑ)

)
. (184)

Matching of the coefficients of the incoming spherical wave we obtain,

∑
ℓ

A (−1)ℓ

2kı

√
4π (2ℓ+ 1)Y 0

ℓ (ϑ) =
∑
ℓ

Cℓe
−ıδℓıℓ

2kı
Y 0
ℓ (ϑ) (185)

⇓
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A (−1)ℓ

2kı

√
4π (2ℓ+ 1) =

Cℓe
−ıδℓıℓ

2kı
(186)

⇓

Cℓ = Aeıδℓıℓ
√

4π (2ℓ+ 1) . (187)

From the matching of the coefficient of the outgoing spherical wave in (182),

Af (ϑ) +
∑
ℓ

A

2kı

√
4π (2ℓ+ 1)Y 0

ℓ (ϑ) =
∑
ℓ

Cℓe
ıδℓı−ℓ

2kı
Y 0
ℓ (ϑ)

=
∑
ℓ

Ae2ıδℓ

2kı

√
4π (2ℓ+ 1)Y 0

ℓ (ϑ) , (188)

we derive the partial wave expansion of the scattering amplitude,

f (ϑ) =
∑
ℓ

e2ıδℓ − 1

2kı

√
4π (2ℓ+ 1)Y 0

ℓ (ϑ)

=
∑
ℓ

√
4π (2ℓ+ 1)

k
eıδℓ sin δℓ Y

0
ℓ (ϑ) . (189)

It is then straightforward to calculate the total (integrated) cross section,

σtot =

∫
dΩσ (ϑ) =

∫
dΩ |f (ϑ)|2

=
4π

k2

∑
ℓ,ℓ′

√
(2ℓ+ 1) (2ℓ′ + 1) eıδℓe−ıδℓ′ sin δℓ sin δℓ′

∫
dΩY 0

ℓ (ϑ)∗ Y 0
ℓ′ (ϑ)︸ ︷︷ ︸

δℓℓ′

=
4π

k2

∑
ℓ

(2ℓ+ 1) sin2 δℓ , (190)

where we used that the spherical harmonics Y m
ℓ (ϑ) are orthonormal.

The above expression of the total cross section is, in principle, exact, but the evaluation of
the sum of infinite partial contributions is obviously a hard task. The square of the angular
momentum of a particle in the ℓth partial wave state can be given as

L2 = ℏ2ℓ (ℓ+ 1) . (191)

By analogy with classical mechanics, the angular momentum of the particle moving parallel to
the z axis can be expressed as L = pa, where the so-called impact parameter a is ascribed to
the distance of the particle from the z axis. If the scattering potential is zero beyond a radius
R, then we don’t expect scattering for a≫ R, so the partial waves with

a =
L

p
≫ R → L2

p2
≫ R2 → L2

2mE
≫ R2

→ E ≪ L2

2mR2
=

ℏ2ℓ (ℓ+ 1)

2mR2
,

do not give a significant contribution to the scattering. This implies that for small energies we
have to consider only a few scattering chanel (ℓ) in the calculation of (190). So the method of
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partial waves can usually be applied for small energies and for central potentials with compact
support.

For very small energies, scattering happens in the partial channel ℓ = 0. In 1921 C. Ramsauer
and J.S. Townsend investigated independently the scattering of the very slow electrons on nobel
gases like Ar, Kr and Xe. They found that at E ≈ 0.7 eV the electron propagates through the
medium essentially without scattering. The reason for this is that around this energy the ℓ = 0
phaseshift passes π, δ0 (E) ≈ π, making the total cross section nearly zero.

We note that for δℓ(E) =
(
n+ 1

2

)
π the partial cross section has a maximum, σℓ =

4π(2ℓ+1)
k2

.
For large ℓ this maximum can be sharp (as a function of the energy) which is called a resonant
scattering.

3.4 Optical theorem

Based on Eqs. (189) and (190) there is a direct connection between the scattering amplitude
and the total cross section. Namely

Im f (ϑ) =
∑
ℓ

√
4π (2ℓ+ 1)

k
sin2 δℓ Y

0
ℓ (ϑ) (192)

and using the identity Y 0
ℓ (ϑ = 0) =

√
2ℓ+1
4π

, we get,

Im f (ϑ = 0) =
1

k

∑
ℓ

(2ℓ+ 1) sin2 δℓ , (193)

implying

σtot =
4π

k
Im f (ϑ = 0) , (194)

that means, the imaginary part of the forward scattering is proportional to the total cross
section. This is the so-called optical theorem. In a very general sense, it is related to the
conservation of the number of particles in scattering processes, so it follows from the continuity
equation. The probability current (i.e. the flux of the probability current density) of the
incoming plane wave is zero for a closed surface, while the probability current of the scattered
wave (outgoing spherical wave) is proportional to the total scattering cross section. However,
the probability current for a stationary wavefunction has to vanish on a closed surface. So,
the probability current arising due to the superposition of the incoming plane wave and the
scattered wave (interference term) has to eliminate the probability current of the scattered wave.
This leads to the optical theorem (194) being valid for both elastic and inelastic scattering.

Proof for elastic scattering:

The wavefunction is the sum of the incoming wavefunction and the scattered wave,

ψ (r⃗) = ψ0 (r⃗) + ψsc (r⃗) . (195)

The probability current density can theb be expressed as

j⃗ =
ℏ

2mı

(
ψ∗∇⃗ψ − ψ∇⃗ψ∗

)
=

ℏ
2mı

[
(ψ∗

0 + ψ∗
sc) ∇⃗ (ψ0 + ψsc)− (ψ0 + ψsc) ∇⃗ (ψ∗

0 + ψ∗
sc)
]

(196)
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⇓
j⃗ = j⃗0 + j⃗sc + j⃗int , (197)

with the current density of the incoming wave,

j⃗0 =
ℏ

2mı

(
ψ∗
0∇⃗ψ0 − ψ0∇⃗ψ∗

0

)
, (198)

the current density of the scattered wave,

j⃗sc =
ℏ

2mı

(
ψ∗
sc∇⃗ψsc − ψsc∇⃗ψ∗

sc

)
, (199)

and the current density from the superposition of the two waves (the interference term),

j⃗int =
ℏ

2mı

[
ψ∗
0∇⃗ψsc + ψ∗

sc∇⃗ψ0 − ψ0∇⃗ψ∗
sc − ψsc∇⃗ψ∗

0

]
. (200)

The asymptotic form of the radial component of the interference term,

j⃗inte⃗r =
ℏ

2mı
[ψ∗

0∂rψsc + ψ∗
sc∂rψ0 − ψ0∂rψ

∗
sc − ψsc∂rψ

∗
0] , (201)

can be formulated by the below approximations,

ψ0 (r⃗) = eıkr cosϑ → ∂rψ0 (r⃗) = ık cosϑeikr cosϑ (202)

ψsc (r⃗) = f (ϑ, φ)
eıkr

r
→ ∂rψsc (r⃗) = ıkf (ϑ, φ)

eıkr

r
+ o

(
1

r2

)
, (203)

yielding

j⃗inte⃗r ≃
ℏk
2mr

[
eıkr(1−cosϑ)f (ϑ, φ) + e−ıkr(1−cosϑ) cosϑ f ∗ (ϑ, φ) (204)

+ e−ıkr(1−cosϑ)f ∗ (ϑ, φ) + eıkr(1−cosϑ) cosϑ f (ϑ, φ)
]

≃ ℏk
2mr

[
eıkr(1−cosϑ) (1 + cosϑ) f (ϑ, φ) + e−ıkr(1−cosϑ) (1 + cosϑ) f ∗ (ϑ, φ)

]
(205)

=
ℏk
mr

Re
(
eıkr(1−cosϑ) (1 + cosϑ) f (ϑ, φ)

)
. (206)

If ϑ ̸= 0, then 1− cosϑ ̸= 0, so because of kr ≫ 1 the function eikr(1−cosϑ) oscillates rapidly
as a function of ϑ. Since the function (1 + cosϑ) f (ϑ, φ) varies slowly, the integral of the
interference current density vanishes out of a small region around ϑ = 0, so we are going to get
a contribution to the interference current only from a cone given by 0 ≤ ϑ ≤ δϑ and 0 ≤ φ ≤ 2π,
where δϑ is small non-zero value. In this region we can approximate the interference term of
the current density as:

lim
ϑ→0

j⃗inte⃗r ≃
2ℏk
mr

Re
(
eıkrϑ

2/2f (ϑ = 0)
)

(207)

and the corresponding flux is,∫
dΩ j⃗inte⃗r ≃

2ℏk
mr

Re

(
f (0)

∫ 2π

0

dφ

∫ δϑ

0

dϑ sinϑeıkrϑ
2/2

)
≃ 4πℏk

mr
Re

(
f (0)

∫ δϑ

0

dϑϑeıkrϑ
2/2

)
=

x=ϑ2/2

4πℏk
mr

Re

(
f (0)

∫ δx

0

dx eıkrx
)

=
4πℏk
mr

Re

(
f (0)

ıkr

(
eıkrδx − 1

))
(208)
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where we used the substitution δx = (δϑ)2 /2. In the Lippmann–Schwinger equation we used
the Green’s function of the outgoing wave, that can be determined from contour integration
and given by the following limit,

lim
α→+0

G0 (r⃗
′, r⃗, E + ıα) = −2m

ℏ2
lim

β→+0

eı(k+ıβ)|r⃗′−r⃗|

4π |r⃗′ − r⃗|
, (209)

where E + ıα = ℏ2(k+iβ)2

2m
. For arbitrary small positive β,

eı(k+ıβ)rδx = eıkrδxe−βrδx r→∞→ 0 , (210)

this way we can neglect the oscillating term form the intrference current,∫
dΩ j⃗inte⃗r ≃

4πℏk
mr

Re

(
−f (0)
ıkr

)
≃ −4π

r2
ℏ
m

Im f (0) . (211)

The probability current of the incoming wave vanishes,∫
dΩ j⃗0e⃗r =

ℏk⃗
m

∫
dΩ e⃗r = 0 , (212)

while the probablity current of the outgoing wave is given by

r2
∫

dΩ j⃗se⃗r =
ℏk
m
σtot . (213)

The total probability current of the stationary wavefunction is zero,

r2
∫
dΩ j⃗e⃗r =

ℏk
m
σtot − 4π

ℏ
m

Im f (0) = 0 , (214)

leading to the optical theorem,

σtot =
4π

k
Im f (0) . (215)
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4 The pictures of quantum mechanics

In quantum mechanics we can use three different view points (pictures) to describe the time
evolution of the states and the operators. As we will see they are related to each other in
terms of unitary transformations, thus, we have the freedom to use either one according to the
Hamilton operator of the system.

4.1 The Schrödinger picture

All we we have learned in quantum mechanics so far is related to the so-called Schrödinger
picture. For sake of simplicity we consider a time independent Hamilton operator,

∂tH
S (t) = 0 , (216)

where the superscript S notes that the Hamilton operator considered in the Schrödinger picture.
This picture is defined by the time dependent Schrödinger equation valid for the physical states,

iℏ∂tψS (t) = HSψS (t) , (217)

where the initial condition for the wavefunction is fixed by,

ψS (t0) = φ . (218)

Let us introduce the time evolution operator U(t, t0) as

ψS (t) = U (t, t0)ψ
S (t0) , (219)

with the obvious boundary condition,

U (t0, t0) = I . (220)

Substituting the right-hand side of Eq. (219) into the Schrödinger equation (217), we get

ıℏ
d

dt
U (t, t0) = HSU (t, t0) , (221)

or after integration,

U (t, t0) = I − ı

ℏ

∫ t

t0

HSU (t′, t0) dt
′ . (222)

This equation can be solved by successive approximation,

U (k+1) (t, t0) = I − ı

ℏ

∫ t

t0

HSU (k) (t′, t0) dt
′ , (223)

⇓

U (0) (t, t0) = I (224)

U (1) (t, t0) = I − ı

ℏ

∫ t

t0

HSdt′ = I − ı

ℏ
HS (t− t0) (225)

U (2) (t, t0) = I − ı

ℏ
HS (t− t0) +

(
− ı

ℏ

)2 (HS
)2

(t− t0)
2

2
(226)

U (3) (t, t0) = I − ı

ℏ
HS (t− t0) +

(
− ı

ℏ

)2 (HS
)2

(t− t0)
2

2
+
(
− ı

ℏ

)3 (HS
)3

(t− t0)
3

3!
(227)

(228)
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⇓

U (k) (t, t0) =
k∑

l=0

1

l!

(
− ı

ℏ
HS (t− t0)

)l
.

We can realize that this is the Taylor expansion of the exponential function, so the final solution
can be written as

U (t, t0) = e−
ı
ℏH

S(t−t0) , (229)

satisfying the commutation relation, [
U (t, t0) , H

S
]
= 0 . (230)

Statement: The time evolution operator is unitary.

Proof:

iℏ
d

dt
U † (t, t0) = −U † (t, t0)H

S (231)

⇓
d

dt

[
U † (t, t0)U (t, t0)

]
=

1

iℏ
(
−U † (t, t0)HU (t, t0) + U † (t, t0)HU (t, t0)

)
= 0 . (232)

Since
U † (t0, t0)U (t0, t0) = I (233)

⇓

U † (t, t0)U (t, t0) = I =⇒ U † (t, t0) = U (t, t0)
−1 . (234)

Note that the inverse of U (t, t0) describes a reversed time evolution:

U (t, t0)
−1 = e−

ı
ℏH

S(t0−t) = U (t0, t) . (235)

For two arbitrary states, ψS
i (t) and ψS

j (t), the matrix element of the hermitian operator
AS (t), that can have explicit time dependence, is defined as

aSij (t) =
〈
ψS
i (t)

∣∣AS (t)
∣∣ψS

j (t)
〉
= ⟨φi|U † (t, t0)A

S (t)U (t, t0) |φj⟩ . (236)

The time evolution of this matrix element can be expressed as

d

dt
aSij (t) = − 1

ıℏ
〈
ψS
i (t)

∣∣HSAS (t)
∣∣ψS

j (t)
〉
+

1

ıℏ
〈
ψS
i (t)

∣∣AS (t)HS
∣∣ψS

j (t)
〉

+
〈
ψS
i (t)

∣∣ ∂tAS (t)
∣∣ψS

j (t)
〉

=
〈
ψS
i (t)

∣∣ 1
ıℏ
[
AS (t) , HS

]
+ ∂tA

S (t)
∣∣ψS

j (t)
〉
. (237)

As we learned already, the quantum mechanical time derivative 1
ıℏ

[
AS (t) , HS

]
enters the above

identity.
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4.2 The Heisenberg picture

The wavefunctions in the Heisenberg picture are defined as,

ψH (t) = U † (t, t0)ψ
S (t) = ψS (t0) = φ , (238)

used to be tipified such that the states are stopped. This fixes the transformation of the
operators:

φS (t) = AψS (t) → φH (t) = U † (t, t0) (A
S (t)ψS (t)) (239)

= U † (t, t0) (A
S (t)U (t, t0)U

† (t, t0)ψ
S (t)) (240)

= U † (t, t0)A
S (t)U (t, t0)ψ

H (t) (241)

= AH (t)ψH (t) → AH (t) = U † (t, t0)A
S (t)U (t, t0) . (242)

This means that even the operators being time independent in the Schrödinger picture become
time dependent (i.e. move) in the Heisenberg picture.

The equation of motion for the operators reads as

d

dt
AH (t) =

1

ıℏ
(
−U † (t, t0)H

SAS (t)U (t, t0) + U † (t, t0)A
S (t)HSU (t, t0)

)
+ U † (t, t0) ∂tA

S (t)U (t, t0) (243)

=
1

ıℏ
[
AH (t) , HH (t)

]
+ ∂tA

H (t) , (244)

where
HH (t) = U † (t, t0)H

SU (t, t0) (245)

and
∂tA

H (t) ≡ U † (t, t0) ∂tA
S (t)U (t, t0) . (246)

It is easy to prove that the Hamilton operator is independent of time in the Heisenberg
picture if it is independent of time in the Schrödinger picture:

d

dt
HH (t) =

1

ıℏ

(
−U † (t, t0)

(
HS
)2
U (t, t0) + U † (t, t0)

(
HS
)2
U (t, t0)

)
= 0 (247)

⇓

HH (t) = HS . (248)

The matrix element of the observables are identical in the Heisenberg and Schrödinger pic-
tures:

aHij (t) =
〈
ψH
i

∣∣AH (t)
∣∣ψH

j

〉
=
〈
ψS
i (t)

∣∣AS (t)
∣∣ψS

j (t)
〉
= aSij (t) , (249)

while its time dependence can also be expressed as in the Schrödinger picture:

d

dt
aHij (t) =

〈
ψH
i

∣∣ 1
ıℏ
[
AH (t) , HH (t)

]
+ ∂tA

H (t)
∣∣ψH

j

〉
(250)
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4.3 The Dirac (interaction) picture

We consider a Hamilton operator, which in Schrödinger picture is composed as the sum of a
time independent part, HS

0 , and a time dependent perturbation, V S (t) ,

HS (t) = HS
0 + V S (t) . (251)

Within the Dirac picture, the operators evolve in time according to the time evolution operator
related to HS

0 ,

U (t, t0) = e−
i
ℏH

S
0 (t−t0) (252)

⇓

ψD (t) = U † (t, t0)ψ
S (t) , (253)

with the boundary condition,
ψD (t0) = ψS (t0) = φ . (254)

and
AD (t) = U † (t, t0)A

S (t)U (t, t0) . (255)

The equation of motion of the operators looks formally similar as in the Heisenberg picture:

d

dt
AD (t) = − 1

ıℏ
U † (t, t0)H

S
0 A

S (t)U (t, t0) +
1

ıℏ
U † (t, t0)A

S (t)HS
0 U (t, t0)

+ U † (t, t0) ∂tA
S (t)U (t, t0) (256)

=
1

iℏ
[
AD (t) , HD

0 (t)
]
+ ∂tA

D (t) , (257)

where
∂tA

D (t) ≡ U † (t, t0) ∂tA
S (t)U (t, t0) . (258)

In particular, the time independent part of the Hamilton operator remains time independent,

d

dt
HD

0 (t) = 0 =⇒ HD
0 (t) = HS

0 . (259)

Equation of motion for the wavefunction within the Dirac picture,

iℏ∂tψD (t) = ıℏ∂tU † (t, t0)ψ
S (t) + ıℏU † (t, t0) ∂tψ

S (t) (260)

= −U † (t, t0)H
S
0 ψ

S (t) + U † (t, t0)
(
H0 + V S (t)

)
ψS (t) (261)

= U † (t, t0)V
S (t)ψS (t) (262)

= V D (t)ψD (t) , (263)

where
V D (t) = U † (t, t0)V

S (t)U (t, t0) (264)

is the perturbation operator in the Dirac picture.

The time dependence of the matrix elements of observables,

aij (t) =
〈
ψD
i (t)

∣∣AD (t)
∣∣ψD

j (t)
〉

(265)

⇓
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d

dt
aij (t) = − 1

ıℏ
〈
ψD
i (t)

∣∣V D (t)AD (t) |ψD
j (t)⟩+ 1

ıℏ
〈
ψD
i (t)

∣∣AD (t)V D (t) |ψD
j (t)⟩ (266)

+
1

ıℏ
〈
ψD
i (t)

∣∣ [AD (t) , HD
0

]
|ψD

j (t)⟩+
〈
ψD
i (t)

∣∣ ∂tAD (t) |ψD
j (t)⟩ (267)

=
1

ıℏ
〈
ψD
i (t)

∣∣ [AD (t) , HD (t)
]
|ψD

j (t)⟩+
〈
ψD
i (t)

∣∣ ∂tAD (t) |ψD
j (t)⟩ (268)

which is formally the same as in the Schrödinger and Heisenberg pictures.

The time dependence of the wavefunction can be expressed in terms of a new time evolution
operator:

ψD (t) = UD (t, t0)ψ
D (t0) = UD (t, t0)φ , (269)

with
UD (t0, t0) = I . (270)

Using Eq. (263) we get the differential equation for the time evolution operator in the Dirac
picture,

d

dt
UD (t, t0) = − ı

ℏ
V D (t)UD (t, t0) , (271)

which yields by integration,

UD (t, t0) = I − ı

ℏ

∫ t

t0

V D (t′)UD (t′, t0) dt
′ . (272)

This integral equation can be solved by successive approximation as we discussed before,

UD(0) (t, t0) = I

UD(k+1) (t, t0) = I − ı

ℏ

∫ t

t0

V D (t′)UD(k) (t′, t0) dt
′ (k = 0, 1, 2, . . .) (273)

⇓

UD (t, t0) =
∞∑
k=0

(
− ı

ℏ

)k ∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tk−1

t0

dtk V
D (t1)V

D (t2) . . . V
D (tk) (274)

=
∞∑
k=0

1

k!

(
− ı

ℏ

)k ∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtkT
[
V D (t1)V

D (t2) . . . V
D (tk)

]
(275)

:= T exp

(
− ı

ℏ

∫ t

t0

dt1V
D (t1)

)
, (276)

where we introduced the time ordered product of the operators:

T
[
V D (t1)V

D (t2) . . . V
D (tk)

]
= V D (ti1)V

D (ti2) . . . V
D (tik) (277)

til ∈ {t1, t2, . . . , tk} (l = 1, 2, . . . , k) (278)

ti1 > ti2 > ti3 . . . > tk−1 > tk (279)

Statement : Using the notation,

f (t1, t2, . . . , tk) = V D (t1)V
D (t2) . . . V

D (tk) ,
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∫ t

t0

dt1

∫ t

t0

dt2 . . .

∫ t

t0

dtk Tf (t1, t2 . . . , tk) =

k!

∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tk−1

t0

dtk f (t1, t2 . . . , tk) . (280)

Proof: k = 2∫ t

t0

dt1

∫ t

t0

dt2Tf (t1, t2) =

∫ t

t0

dt1

∫ t1

t0

dt2 f (t1, t2) +

∫ t

t0

dt2

∫ t2

t0

dt1 f (t2, t1)

= 2

∫ t

t0

dt1

∫ t1

t0

dt2 f (t1, t2) , (281)

k = 3: ∫ t

t0

dt1

∫ t

t0

dt2

∫ t

t0

dt3Tf (t1, t2, t3) =

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 f (t1, t2, t3)

+

∫ t

t0

dt1

∫ t1

t0

dt3

∫ t3

t0

dt2 f (t1, t3, t2)

+

∫ t

t0

dt2

∫ t2

t0

dt1

∫ t1

t0

dt3 f (t2, t1, t3)

+

∫ t

t0

dt2

∫ t2

t0

dt3

∫ t3

t0

dt1 f (t2, t3, t1)

+

∫ t

t0

dt3

∫ t3

t0

dt1

∫ t1

t0

dt3 f (t3, t1, t2)

+

∫ t

t0

dt3

∫ t3

t0

dt2

∫ t2

t0

dt1 f (t3, t2, t1)

= 6

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 f (t1, t2, t3) . (282)

In general: On the left hand side of Eq. (280) we divide the integration domain to k! peaces,
where the variables t1, t2 . . . , tk are time ordered: we have k choices for the smallest one, k − 1
for the next one etc. By redefining the variables to t1, t2 . . . , tk, it turns out that all off them
are identical with the integral that appears on the right hand side of Eq. (280).

Connection with time dependent perturbation theory:

We take the time evolution operator up to first order in the Dirac picture:

UD(1) (t, t0) = I − ı

ℏ

∫ t

t0

V D (t′) dt′ = I − ı

ℏ

∫ t

t0

e
ı
ℏH

S
0 (t′−t0)V S (t′) e−

ı
ℏH

S
0 (t′−t0)dt′ , (283)

and the wave function in the Dirac picture reads as,

|ψD(1) (t)⟩ = |φ⟩ − ı

ℏ

∫ t

t0

e
ı
ℏH

S
0 (t′−t0)V S (t′) e−

ı
ℏH

S
0 (t′−t0) |φ⟩ dt′ . (284)

The wavefunction in the Schrödinger picture can be written as,

|ψS(1) (t)⟩ = e−
ı
ℏH

S
0 (t−t0)|ψD(1) (t)⟩ (285)

= e−
ı
ℏH

S
0 (t−t0) |φ⟩ − ı

ℏ
e−

ı
ℏH

S
0 (t−t0)

∫ t

t0

e
ı
ℏH

S
0 (t′−t0)V S (t′) e−

ı
ℏH

S
0 (t′−t0) |φ⟩ dt′. (286)
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As before (in the course Quantum Mechanics 1), we assume that the initial state at t0 is an
eigenstate of HS

0 ,
|ψ (t0)⟩ = |φ⟩ = |k⟩ , (287)

and we will use the spectral resolution of HS
0 ,

HS
0 =

∑
n

εn |n⟩ ⟨n| . (288)

The wave function can then be evaluated as

|ψS(1) (t)⟩ = e−
ı
ℏH

S
0 (t−t0) |k⟩− ı

ℏ
∑
n

e−
ı
ℏH

S
0 (t−t0)×∫ t

t0

e
ı
ℏH

S
0 (t′−t0) |n⟩ ⟨n|V S (t′) e−

ı
ℏH

S
0 (t′−t0) |k⟩ dt′ (289)

= e−
ı
ℏ εk(t−t0) |k⟩− ı

ℏ
∑
n

e−
ı
ℏ εn(t−t0) |n⟩

∫ t

t0

e
ı
ℏωnk(t

′−t0)V S
nk (t

′) dt′ (290)

where

ωnk =
εn − εk

ℏ
(291)

and
V S
nk (t) = ⟨n|V S (t) |k⟩ .

Thus, the wave function in first order in V S (t) reads as

|ψS(1) (t)⟩ =
∑
n

c(1)n (t) e−
ı
ℏ εn(t−t0) |n⟩ , (292)

where

c
(1)
k (t) = 1− ı

ℏ

∫ t

t0

V S
kk (t

′) dt′ ≃ 1 (293)

and for n ̸= k

c(1)n (t) = − ı

ℏ

∫ t

t0

eiωnk(t
′−t0)V S

nk (t
′) dt′ . (294)

The above expressions are identical with the results we obtained in first order of the time
dependent perturbation theory in the course QM1.
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5 Motion in electromagnetic field

According to special relativity the Hamiltonian of a particle with rest mass m and electric
charge q in an external electromagnetic field is given by

H (r⃗, p⃗) =

√
m2c4 + c2

(
p⃗− qA⃗(r⃗)

)2
+ qϕ(r⃗) , (295)

where p⃗ is the canonical momentum, while ϕ(r⃗) and A⃗(r⃗) are the scalar and the vector potentials,

respectively. Note that the eletric field E⃗ and the magnetic field (B-field) B⃗ are related to the
potentials as

E⃗ = −∇⃗ϕ− ∂A⃗

∂t
and B⃗ = ∇⃗ × A⃗ . (296)

Using the approximation,

mc2
√

1 +
1

m2c2

(
p⃗− qA⃗(r⃗)

)2
≃ mc2 +

(
p⃗− qA⃗(r⃗)

)2
2m

in the nonrelativistic limit we use the following form for the Hamiltonian,

H (r⃗, p⃗) =

(
p⃗− qA⃗(r⃗)

)2
2m

+ V (r⃗) , (297)

where we have dropped the rest energy and introduced the potential energy, V (r⃗) = qϕ(r⃗).
The kinetic momentum is defined as,

K⃗ = p⃗− qA⃗ = mv⃗ . (298)

5.1 The commutation relations of the kinetic momentum

We extend quantum mechanics to the case of electromagnetic field, described by the Hamil-
tonian (297), by keeping the commutator relation between the position and the canonical
momentum operators,

[pi, xj] =
ℏ
ı
δij. (299)

In coordinate representation, the position operators being the mutiplication with the coordi-
nates, the canonical momentum operator is defined as,

p⃗ =
ℏ
i
∇⃗ , (300)

and for the kinetic momentum as

K⃗ =
ℏ
i
∇⃗ − qA⃗ . (301)

The components of the canonical momentum operator commute with each other, but this is
not necessarily true for the kinetic momentum operators:

[Ki, Kj] = ıℏq ([∂i, Aj] + [Ai, ∂j])

= ıℏq (∂iAj − Aj∂i + Ai∂j − ∂jAi)

= ıℏq ((∂iAj)− (∂jAi)) , (302)

34



where (∂iAj) means the multiplication with the function
∂Aj

∂xi
. Since B⃗ = rot A⃗,

εijkBk = εijkεlmk (∂lAm) = (δilδjm − δimδjl) (∂lAm) = (∂iAj)− (∂jAi) , (303)

therefore,
[Ki, Kj] = ıℏq εijkBk ,

which can also be expressed as (see the angular momentum operators):

K⃗ × K⃗ = ıℏq B⃗ . (304)

This means that the kinetic energy operators commute with each other only in absence of
magnetic field. We note the commutator relations of the position and the kinetic momentum
operators,

[Ki, xj] = [pi, xj] =
ℏ
ı
δij . (305)

5.2 The Hamilton operator

As what follows, we investigate the coordinate representation of the Hamiltonian (297). To
this end, we expand the square of the kinetic momentum operator,(

ℏ
i
∇⃗ − qA⃗

)2

= −ℏ2∆+ q2A2 − ℏq
i

(
∇⃗A⃗+ A⃗∇⃗

)
. (306)

Inferring the action of the last term on a wavefunction ψ,

∂iAiψ + Ai∂iψ = (∂iAi)ψ + 2Ai(∂iψ) , (307)

or
∇⃗A⃗+ A⃗∇⃗ = divA⃗+ 2A⃗∇⃗ , (308)

yields the Hamilton operator

H = − ℏ2

2m
∆+ V +

q2

2m
A2 +

iℏq
2m

divA⃗+
iℏq
m
A⃗∇⃗ . (309)

Using Coulomb gauge for the vector potential, divA⃗ = 0, the Hamilton operator reduces to

H = − ℏ2

2m
∆+ V︸ ︷︷ ︸
H0

+
iℏq
m
A⃗∇⃗+

q2

2m
A2 . (310)

As what follows, we will investigate the third and fourth terms in the above Hamilton operator.

5.3 Para- and diamagnetism

In homogeneous static magnetic field, the vector potential can be written using the so-called
symmetric gauge,

A⃗ =
1

2
B⃗ × r⃗ . (311)
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This is a Coulomb gauge,

divA⃗ = ∂iAi =
1

2
εijk Bj ∂ixk =

1

2
εijk δik Bj =

1

2
εkjk Bj = 0 , (312)

and, indeed,

(∇⃗ × A⃗)i =
1

2
εijk εklm ∂jxmBl

=
1

2
(δilδjm − δimδjl) δjmBl

=
1

2
(δilδjj − δil) Bl

=
1

2
(3Bi −Bi) = Bi . (313)

For the case of B⃗ = (0, 0, B), this gives A⃗ = 1
2
(−By,Bx, 0). It is easy to see that the asymmetric

gauges A⃗ = (−By, 0, 0) and A⃗ = (0, Bx, 0) also reproduce the desired magnetic field. The action
of the third term of the Hamiltonian in Eq. (310) can be expressed as

ıℏq
m
A⃗∇⃗ψ =

ıℏq
2m

(B⃗ × r⃗)(∇⃗ψ) = ıℏq
2m

(r⃗ × (∇⃗ψ))B⃗

=
ıℏq
2m

(r⃗ × ∇⃗)B⃗ ψ , (314)

where we took into account that the spatial derivatives of B⃗ disappear. Employing the co-
ordinate representation of the momentum operator, p⃗ = ℏ

i
∇⃗, this term can then be written

as
ıℏq
m
A⃗∇⃗ = − q

2m
(r⃗ × p⃗) B⃗ = − q

2m
L⃗B⃗ = −M⃗LB⃗ , (315)

where for electrons, q = −e,

M⃗L =
q

2m
L⃗ = −µB

L⃗

ℏ
, (316)

e being the unit charge, m the electron mass and µB = eℏ
2m

= 9.27× 10−24 J/T the Bohr mag-
neton. Together with the coupling of the spin with the magnetic field, the Pauli paramagnetic
term reads as,

Hpara = −(M⃗L + 2M⃗S)B⃗ =
µB

ℏ
(L⃗+ 2S⃗)B⃗ . (317)

The ordinary Zeemann effect

The energy levels of the hidrogen atom in a homogeneous magnetic field along the z direction
split as

Enℓmℓms = E(0)
n + µB (mℓ + 2ms)B . (318)

Interestingly, the level spacing corresponds to the Larmour frequency ωL = µBB/ℏ = qB
2m

known from classical electrodynamics. The original level is 2ℓ + 1 times degenerate in the
angular momentum and 2 times degenerate in the spin, so there is an overall degeneracy of
2(2ℓ + 1). If we consider the combinations mℓ + 2ms with mℓ ∈ {−ℓ,−ℓ + 1, . . . , ℓ − 1, ℓ}
and ms ∈ {−1/2, 1/2}, then we get 2ℓ+ 3 different combinations. The levels with the energies

E
(0)
n +µBB{−ℓ−1,−ℓ, ℓ, ℓ+1} are nondegenerate, while the ones with energies E

(0)
n +µBB{−ℓ+

1,−ℓ + 2, . . . , ℓ − 2, ℓ − 1} are doubly degenerate, so the total number of levels is retained,
4 + 2(2ℓ− 1) = 2(2ℓ+ 1). (In fact, the relativistic spin-orbit coupling can strongly modify the
above level splittings.)
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The second term in the Hamiltonian in Eq. (310) is the so called Langevin diamagnetic
term. Using the symmetric gauge again,

q2

2m
A2 =

q2

8m
(B⃗ × r⃗)2 =

q2

8m
(r2B2 − (r⃗B⃗)2) =

q2B2

8m

(
x2 + y2

)
, (319)

where for the final expression we assumed that the magnetic field points to the z direction. In
atoms this term is usually negligible as compared to the paramagnetic term:

δEdia

δEpara

=
e2B2

8m

(
eB

2m

)−1 |⟨x2 + y2⟩|
|⟨Lz + 2Sz⟩|

≃ ea20
4ℏ

B .

In the estimate above we used |⟨x2 + y2⟩| ∼ a20 and |⟨Lz + 2Sz⟩| ∼ ℏ. If the magnetic field is
measured in Tesla, the above ratio equals

2π × 1.602177× 10−19 × (5.2917721× 10−11)
2

4× 6.62607× 10−34
B

[
C m2

J s

kg

s2A

]
= 1.0636× 10−6B .

However, if the paramagnetic term vanishes, ⟨Lz + 2Sz⟩ = 0, the effect of the magnetic field
arises from the diamagnetic term.

The paramagnetic term appears because the atomic magnetic moment µ⃗ = −µB

ℏ ⟨L⃗ + 2S⃗⟩
interacts with the external magnetic field and it turns along B⃗. On the contrary, the Langevin
diamagnetism is related to the induced magnetic moment created by the external field,

µ⃗dia = −∂Edia

∂B⃗
= − e2

8m

∂⟨(B⃗ × r⃗)2⟩
∂B⃗

= − e2

4m

(
⟨r2⟩B⃗ − ⟨r⃗(r⃗B⃗)⟩

)
=

B⃗∥e⃗z
−e

2B

4m
⟨x2 + y2⟩e⃗z , (320)

being proportional to the external magnetic field and pointing along the opposite direction.
This is indeed in agreement with Lenz’s law. In the framework of linear response theory, we
can introduce the diamagnetic susceptibility tensor as

χ
dia

= − e2

4m

(
⟨r2⟩I − ⟨r⃗ ◦ r⃗⟩

)
, (321)

where I is the 3× 3 unit matrix, such that

µ⃗dia = χ
dia
B⃗ (322)

and

δEdia = −1

2
B⃗χ

dia
B⃗ =

e2

8m
⟨(B⃗ × r⃗)2⟩ . (323)

5.4 Probability current densities in electromagnetic field

Similarly as we discussed earlier, in the presence of electromagnetic field we can derive
a continuity equation that provides the probability interpretation of the wavefunction. The
initial point of the calculation is the time dependent Pauli–Schrödinger equation,

ıℏ∂tψ = − ℏ2

2m
∆ψ +

q2

2m
A⃗2ψ +

ıℏq
2m

(div A⃗+ 2 A⃗ ∇⃗)ψ

+ V ψ + µB B⃗σ⃗ ψ , (324)
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where we considered the interaction between the magnetic field and the spin of the electron, so
we ha a spinor wavefunction:

ψ =

(
ψ1

ψ2

)
. (325)

In terms of components, the Pauli-Schrödinger equation reads as

ıℏ∂tψr = − ℏ2

2m
∆ψr +

q2

2m
A⃗2ψr +

ıℏq
2m

(div A⃗+ 2 A⃗∇⃗)ψr

+ V ψr + µBBi σ
rs
i ψs (r, s ∈ {1, 2}) , (326)

where σrs
i denotes the matrixelements of the ith Pauli matrix, i ∈ {x, y, z}. Note the hermiticity

of the Pauli matrices, σrs
i = (σsr

i )∗. From the conjugation of the above equation we get

−ıℏ∂∗t ψr = − ℏ2

2m
∆ψ∗

r +
q2

2m
A⃗2ψr −

ıℏq
2m

(
div A⃗+ 2 A⃗∇⃗

)
ψ∗
r

+ V ψ∗
r + µBBi ψ

∗
sσ

sr
i (r, s ∈ {1, 2}) , (327)

which can compactly be written as,

−ıℏ∂tψ† = − ℏ2

2m
∆ψ† +

q2

2m
A⃗2ψ† − ıℏq

2m

(
div A⃗+ 2 A⃗∇⃗

)
ψ†

+ V ψ† + µB ψ
†B⃗σ⃗ , (328)

where
ψ† =

(
ψ∗
1 ψ∗

2

)
. (329)

From Eqs. (324) and (328) we get,

ıℏ
(
ψ†(∂tψ) + (∂tψ

†)ψ
)
= − ℏ2

2m

(
ψ†∆ψ − (∆ψ†)ψ

)
+
iℏq
mc

(
(∇⃗A⃗)ψ†ψ + A⃗ ψ†(∇⃗ψ) + A⃗(∇⃗ψ†)ψ

)
, (330)

where the inner rounded brackets explicitly mark on which functions the differential operators
act. Remarkably, the Pauli paramagnetic part of Eq. (324) containing the Pauli matrices don’t
contribute to the right-hand side of the above equation. After manipulating both sides of the
equation above:

ψ†∂tψ + (∂tψ
†)ψ = ∂t

(
ψ†ψ

)
(331)

ψ†∆ψ − (∆ψ†)ψ = ∇⃗
(
ψ†∇⃗ψ − (∇⃗ψ†)ψ

)
, (332)

and
(∇⃗A⃗)ψ†ψ + A⃗ ψ†(∇⃗ψ) + A⃗(∇⃗ψ†)ψ = ∇⃗(A⃗ ψ†ψ) , (333)

we arrive at the following continuity equation,

∂tρ+ ∇⃗ j⃗ = 0 , (334)

where
ρ = ψ†ψ (335)

and

j⃗ =
ℏ

2mi

(
ψ†(∇⃗ψ − (∇⃗ψ†)ψ)

)
− q

m
A⃗ψ†ψ . (336)
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We thus see that the result for the finding probability density is the same as in case without
electromagnetic field (vector potential), but the finding probability current density is extended
by a term containing explicitly the vector potential. We can understand this if we relate the
probability current density with the kinetic momentum instead of the canonical momentum,

j⃗ =
1

m
Re(ψ†K⃗ψ) =

1

m
Re(ψ†(p⃗− q

c
A⃗)ψ) (337)

=
ℏ

2mi

{
ψ†(∇⃗ψ)− (∇⃗ψ†)ψ

}
− q

m
A⃗ψ†ψ . (338)

We note that the continuity equation remains valid, if we add a magnetisation term with zero
divergence to the probability current density. The calculation showed here doesn’t give any
information about the spin magnetisation current density,

j⃗M = −1

e
rot(ψ†M⃗Sψ) =

1

m
rot(ψ†S⃗ ψ) =

ℏ
2m

rot(ψ†σ⃗ ψ) . (339)

We shall come back to this problem in details when we discuss the nonrelativistic limit of the
Dirac equation.

5.5 Gauge transformation

As mentioned already the electric and the magnetic field are related to the scalar and vector
potentials as

E⃗ = −∇⃗ϕ− ∂A⃗

∂t
and B⃗ = ∇⃗ × A⃗ . (340)

We can introduce the following gauge transformation of the potentials,

A⃗′ (r⃗, t) = A⃗ (r⃗, t) + ∇⃗Λ (r⃗, t) ϕ′ (r⃗, t) = ϕ (r⃗, t)− ∂tΛ (r⃗, t) , (341)

since the fields remain unchanged.

Since the time dependent Schrödinger equation contains the potentials instead of the fields,
which manifest physical observables,

ıℏ∂tψ (r⃗, t) =

[
1

2m

(
ℏ
i
∇⃗ − qA⃗ (r⃗, t)

)2

+ qϕ (r⃗, t)

]
ψ (r⃗, t) , (342)

it is mandatory to look for the solutions ψ′ (r⃗, t) when substituting the gauge transformed
potentials in Eq. (342),

ıℏ∂tψ′ (r⃗, t) =

[
1

2m

(
ℏ
ı
∇⃗ − qA⃗′ (r⃗, t)

)2

+ qϕ′ (r⃗, t)

]
ψ′ (r⃗, t)

=

[
1

2m

(
ℏ
ı
∇⃗ − qA⃗ (r⃗, t)− q∇⃗Λ (r⃗, t)

)2

+ qϕ (r⃗, t)− q∂tΛ (r⃗, t)

]
ψ′ (r⃗, t) . (343)

Statement: The solution of Eq. (343) is

ψ′ (r⃗, t) = ψ (r⃗, t) exp
( ıq
ℏ
Λ (r⃗, t)

)
. (344)
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Proof: Substituting the expression,

ıℏ∂t
[
exp

(
iq

ℏ
Λ (r⃗, t)

)
ψ (r⃗, t)

]
= exp

(
iq

ℏ
Λ (r⃗, t)

)
(ıℏ∂t − q∂tΛ (r⃗, t))ψ (r⃗, t) , (345)

into the left-hand side of Eq. (343), after trivial manipulations we get

ıℏ∂tψ (r⃗, t) =

[
1

2m
e−

ıq
ℏ Λ(r⃗,t)

(
ℏ
ı
∇⃗ − qA⃗ (r⃗, t)− q∇⃗Λ (r⃗, t)

)2

e
iq
ℏ Λ(r⃗,t) + qϕ (r⃗, t)

]
ψ (r⃗, t) .

(346)
Using the following identity,

e−
ı
ℏf(r⃗)

(
ℏ
ı
∇⃗+ g (r⃗)− ∇⃗f (r⃗)

)
e

ı
ℏf(r⃗)ψ(r⃗, t) =

(
ℏ
ı
∇⃗+ g (r⃗)

)
ψ(r⃗, t) (347)

or generalized for arbitrary n ∈ N,

e−
ı
ℏf(r⃗)

(
ℏ
ı
∇⃗+ g (r⃗)− ∇⃗f (r⃗)

)n

e
i
ℏf(r⃗)ψ(r⃗, t) =

(
ℏ
i
∇⃗+ g (r⃗)

)n

ψ(r⃗, t) , (348)

and substituting the functions f (r⃗) = qΛ (r⃗, t) and g (r⃗) = −qA⃗ (r⃗, t) , Eq. (346) trivially
transforms to the Schrödinger equation (342).

5.6 The Aharanov–Bohm effect

For static (time independent) electromagnetic fields, the potentials are also time independent,
thus we can choose a time independent gauge function Λ (r⃗). Integrating the gauge transformed
vector potential along a path between the points r⃗0 and r⃗, we obtain∫ r⃗

r⃗0

A⃗′ (s⃗) ds⃗ =

∫ r⃗

r⃗0

A⃗ (s⃗) ds⃗+ Λ (r⃗)− Λ (r⃗0) . (349)

In zero magnetic field we can choose the gauge such that the vector potential A⃗′ (r⃗) becomes
zero,

Λ (r⃗) = −
∫ r⃗

r⃗0

A⃗ (s⃗) ds⃗ , (350)

where, by choosing a suitable additive constant for Λ (r⃗), we fixed Λ (r⃗0) = 0. Obviously
the above construction only provides a unique Λ (r⃗) for a curl-free vector potential, i.e., for
zero magnetic field, which ensures that the integral of the vector potential between r⃗0 and r⃗
is independent of the path chosen. Furthermore, we have to assume that the domain where
B⃗ = 0, which we will denote by Ω0, is simply connected. On the other hand, if we have a
compact region ΩB, where B⃗ ̸= 0, surrounded by Ω0 then Λ(r⃗) for r⃗ ∈ Ω0 is determined only
up to the enclosed magnetic flux,

ΦB =

∮
A⃗ (s⃗) ds⃗ . (351)

It is then a fundamental question whether the change of the magnetic field in domain ΩB does
have any effect on the motion of a charged particle moving in the region where the magnetic
field is zero. According to the gauge transformation of the wavefunction (344) the magnetic
field can have a nonlocal effect through the vectorpotential. We, however, know that only the
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magnetic field is measurable and, in classical electrodynamics, the fields are introduced as a
mathematical concept. In addition, the change in the magnetic field appears in a phase shift
in the wavefunction, so it is also a nontrivial experimental question, how this effect can be
measured.

The Aharanov–Bohm effect gives a positive answer to these questions. Imagine a double-slit
electron interference experiment, where a perpendicular magnetic field generated by a solenoid
is enclosed between the two slits. Let r⃗0 be the position of the source and r⃗ is a point of
the screen. Instead of looking for an exact quantum mechanical solution, i.e., a single-valued
wavefunction, the interference pattern at the screen is constructed from the wavefunctions
ψ1(r⃗, t) and ψ2(r⃗, t) for the cases when one of the slits is covered (impenetrable). In both cases,
the region with zero magnetic field becomes simply connected and the vector potential can be
transformed to zero. Denoting the wavefunctions by ψA and ψ0 for vector potential A⃗ (r⃗) ̸= 0

and A⃗ (r⃗) = 0 (r⃗ ∈ Ω0), respectively,

ψ0 (r⃗, t) = ψA (r⃗, t) exp
( ıq
ℏ
Λ (r⃗)

)
= ψA (r⃗, t) exp

(
− ıq
ℏ

∫ r⃗

r⃗0

A⃗ (s⃗) ds⃗

)
, (352)

or

ψA (r⃗, t) = ψ0 (r⃗, t) exp

(
ıq

ℏ

∫ r⃗

r⃗0

A⃗ (s⃗) ds⃗

)
. (353)

Note that ψ0 is identical with the wavefunction when the magnetic field is switched off in ΩB,
since in this case a zero vectorpotential can be chosen in all space.

We use this result for the selectively covered slits,

ψ1A (r⃗, t) = ψ10 (r⃗, t) exp

(
ıq

ℏ

∫
2

A⃗ (s⃗) ds⃗

)
(354)

and

ψ2A (r⃗, t) = ψ20 (r⃗, t) exp

(
ıq

ℏ

∫
1

A⃗ (s⃗) ds⃗

)
, (355)

where the paths 1 and 2 conduct through either the first or second slit, respectively. The
intensity observed on the screen is proportional to the square of the magnitude of the superposed
wavefunctions,

I ∼ |ψ1A (r⃗, t) + ψ2A (r⃗, t)|2

=

∣∣∣∣ψ10 (r⃗, t) exp

(
ıq

ℏ

[∫
2

A⃗ (s⃗) ds⃗−
∫
1

A⃗ (s⃗) ds⃗

])
+ ψ20 (r⃗, t)

∣∣∣∣2
=

∣∣∣∣ψ10 (r⃗, t) exp

(
ıq

ℏ

∮
A⃗ (s⃗) ds⃗

)
+ ψ20 (r⃗, t)

∣∣∣∣2 (356)

=
∣∣∣ψ10 (r⃗, t) exp

( ıq
ℏ
ΦB

)
+ ψ20 (r⃗, t)

∣∣∣2 . (357)

If we assume plane waves for the wavefunctions we can give a qualitative estimate for the
positions of the interference pattern,

I ∼
∣∣∣∣exp(ikℓ1 + iq

ℏ
ΦB

)
+ exp (ikℓ2)

∣∣∣∣2
=
∣∣∣1 + exp

(
i
[
kℓ1 − kℓ2 +

q

ℏ
ΦB

])∣∣∣2
= 2 + 2 cos

(
kℓ1 − kℓ2 +

q

ℏ
ΦB

)
, (358)
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where ℓ1 and ℓ2 denote the lengths of path 1 and 2. The positions of the maxima of the electron
interference pattern can be identified from

k (ℓ1 − ℓ2)−
e

ℏ
ΦB = 2πn −→ ℓ1 − ℓ2 = λ

(
n+

ΦB

h/e

)
= λ

(
n+

ΦB

Φ0

)
, (359)

where n ∈ Z, k = 2π
λ

and λ = h
mv

is the de Broglie wavelength and Φ0 = h/e = 4.135 ·
10−11 Tcm2 the flux quantum. This implies that the positions of the interference maxima
(minima) can be tuned by the magnetic flux. The shift of the positions of the interference lines
is a periodic function of ΦB and the period is Φ0. These theoretical results are confirmed by
several experiments.

The explanation of the Aharanov–Bohm effect presented here is rather qualitative. In the
experiment both slits are open, so we have to construct the wavefunction in region Ω0 enclosing
a magnetic flux, i.e. Ω0 being not simply connected. The problem becomes obvious when
considering the scattering of plane waves on a solenoid. The interference pattern on the srceen
shows a similar dependence on ΦB as in the double-slit experiment, though the transformation
of the wavefunction (353) can not be used. Sir Michael V. Berry et al. [M.V.Berry et al., Eur.
J. Phys. 1, 154 (1980), M.V. Berry, Eur. J. Phys. 1, 240 (1980)] showed that a single-valued
(exact) scattering wavefuntion can be constructed in the region Ω0 region and the asymptotic
form of this wavefunction provides a good explanation of the experimental observation.

For a simple demonstration of an exact single-valued wavefunction we consider a line flux ΦB.
In cylindrical coordinates (r, ϕ, z) a possible choice for the vector potential can be expressed as

Aφ =
ΦB

2πr
, Ar = Az = 0 . (360)

As a further simplification the motion of the charged particle is confined to a circle with radius
a. This way the Hamilton operator is given by

H =
1

2m

(
ℏ
ı

1

a

∂

∂φ
− qAφ

)2

= − ℏ2

2ma2

(
∂

∂φ
− iq

h
ΦB

)2

(361)

= − ℏ2

2ma2

(
∂

∂φ
− ı

ΦB

Φ0

)2

. (362)

The solution of the eigenvalue equation is:

E =
ℏ2C2

2ma2
, (363)

ψ (E;φ) =
1√
2π

exp

(
ı

[
C +

ΦB

Φ0

]
φ

)
, (364)

where the single-valuedness of the wavefunction is provided by the condition,

C +
ΦB

Φ0

= n ∈ Z . (365)

So the eigenenergies are

En =
ℏ2

2ma2

(
n− ΦB

Φ0

)2

, (366)

with the wavefunctions,

ψn (φ) =
1√
2π

einφ . (367)
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We can interpret this result as:

ψ (E;φ) =
1√
2π

exp

(
ı

√
2ma2E

ℏ
φ

)
exp

(
ı
ΦB

Φ0

φ

)
, (368)

where the wavefunction for a given energy explicitly contains a phase factor known from the
Aharanov-Bohm effect.

5.7 Flux quantisation in type-I superconductors

Due to the Meissner–Ochsenfeld effect inside a type-I superconductor the magnetic field
the magnetic field is zero. Imagine a superconducting ring where inside the ring there is
a perpendicular magnetic field to the plane of the ring. Experiments [B.S.Deaver,Jr. and
W.F.Fairbank, Phys. Rev. Lett.7, 43 (1961); R.Doll and M.Näbauer, Phys. Rev.Lett. 7, 51
(1961)] show that the closed flux is quantised.

In order to understand the phenomenon we have to use the specific properties of type-I super-
conductors. Namely, the superconductor is an ideal diamagnet, i.e. inside the superconductor
the magnetic field is zero. In the stationary case, the Maxwell equation,

∇× B⃗ = µ0

(
j⃗ + ε0

∂E⃗

∂t

)
, (369)

implies that inside the superconductor the current density j⃗ is also zero. The current flows
only at the surface of the superconductor within the London penetration depth. One can show
that in the superconducting phase the charge density is homogeneous, so the wavefunction in
the superconducting state can be written as

ψ (r⃗) =
√
ϱeıϑ(r⃗) , (370)

where ϱ is the density of the superconducting particles and ϑ (r⃗) is the phase of the supercon-
ducting state. The current density can then be expressed as

j⃗ (r⃗) =
ℏq
m

(
∇⃗ϑ (r⃗)− q

ℏ
A⃗ (r⃗)

)
ϱ . (371)

From j⃗ = 0 it follows,

∇⃗ϑ (r⃗) = q

ℏ
A⃗ (r⃗) . (372)

Now we are going to utilize the single valuedness of the wavefunction, namely, travelling along
a closed loop in the superconducting ring the wavefunction can just pick up a phase of multiples
of 2π:

∆ϑ =

∮
∇⃗ϑ (s⃗) ds⃗ = q

ℏ

∮
A⃗ (r⃗) ds⃗ =

q

ℏ
ΦB = 2πn , (373)

i.e.

ΦB =
h

q
n . (374)

Since the superconducting media is a condensate of Cooper pairs with charge q = −2e, the
magnetic flux closed by the type-I superconductor is multiples of Φ0/2.
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5.8 The motion of free electrons in magnetic field: Landau levels

In classical electrodynamics, a charged particle in a homogeneous magnetic field displays a
uniform circular motion in the plane perpendicular to the magnetic field with frequency

ωc =
|q|B
m

. (375)

The energy of the system is

E =
1

2
mR2ω2

c , (376)

that can be quantised using the Bohr–Sommerfeld quantisation principle for the angular mo-
ment as ∮

Lzdφ = 2πmRv = 2πmR2ωc = hn ⇒ mR2ωc = nℏ ⇒ En =
1

2
nℏωc . (377)

It is tempting that using a proper quantum mechanical treatment the planar motion also leads
to quantised energy levels.

Let’s consider a homogeneous magnetic field along the z axis, B⃗ = (0, 0, B). In symmetric
gauge the vector potential can be expressed as

A⃗ =

(
−1

2
By,

1

2
Bx, 0

)
, (378)

thus, the kinetic momentum is given by

K⃗ = (Kx, Ky, Kz) =

(
px −

eB

2
y, py +

eB

2
x, pz

)
(379)

=
(
px −

mωc

2
y, py +

mωc

2
x, pz

)
. (380)

(Note that for electrons q = −e!), As we learned, the commutator of Kx and Ky is

[Kx, Ky] =
ℏe
i
B =

ℏ
i
mωc . (381)

The eigenfunctions of the Hamiltonian,

H =
1

2m

(
K2

x +K2
y

)
+

p2z
2m

, (382)

can be written as
ψ (r⃗) = φk (x, y) e

ıkz , (383)

where k ∈ R and φk (x, y) satisfies the equation,

1

2m

(
K2

x +K2
y

)
φk (x, y) =

(
E − ℏ2k2

2m

)
φk (x, y) . (384)

Now we can introduce the operators,

X =
Kyc

eB
=

Ky

mωc

és P = Kx . (385)
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From Eq. (381) the following commutation relation follows,

[P,X] =
ℏ
ı
, (386)

and the eigenvalue equation (384) transforms to(
P 2

2m
+

1

2
mω2

cX
2

)
φk (x, y) =

(
E − ℏ2k2

2m

)
φk (x, y) , (387)

which is analogouos with the Schrödinger equation of a linear harmonic oscillator. We then
introduce the creation and annihilation operators,

a =

√
mωc

2ℏ

(
X +

ı

mωc

P

)
(388)

=
1√
2LH

1

mωc

(Kx + ıKy) (389)

and

a+ =

√
mωc

2ℏ

(
X − ı

mωc

P

)
(390)

=
1√
2LH

1

mωc

(Kx − ıKy) , (391)

where

LH =

√
ℏ

mωc

=

√
ℏ
eB

(392)

is the so-called magnetic length. By substituting ℏ and e we get

LH =
25.66√
B [T ]

nm , (393)

where the magnetic field is measured in tesla. For ordinary magnetic fields the magnetic length
is orders of magnitude larger than the atomic length scale. The Hamiltonian can obviously be
expressed in terms of the ladder operators,

H =
1

2
mω2

cX
2 +

P 2

2m
+

p2z
2m

= ℏωc

(
a+a+

1

2

)
+

p2z
2m

. (394)

Consequently, the eigenenergies are

En,k = ℏωc

(
n+

1

2

)
+

ℏ2k2

2m
, (395)

where the index n = 0, 1, 2, . . . denotes the Landau levels.

We can solve the quantum mechanical problem in the asymmetric or Landau gauge, too

A⃗ = (−By, 0, 0) , (396)

which leads to the wavefunction (see Practical course),

ψn,kx,kz (x, y, z) ∼ exp (ıkzz) exp (ıkxx) exp

(
− 1

2L2
H

(
y − kxL

2
H

)2)
Hn

(
y − kxL

2
H

LH

)
, (397)
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where Hn denotes the Hermite polynomials. From here we can see that the characteristic length
corresponding to the y direction is LH . Since the energy doesn’t depend on kx, the Landau leves
are degenerate. If the planar system has finite widths (Lx, Ly), then kx becomes quantised,

kx =
2π

Lx

m (m ∈ N) . (398)

Because the distance between the Landau orbitals is kxL
2
H in the y direction, only a finite

number of these orbitals can occur,

L2
H

2π

Lx

M︸ ︷︷ ︸
max kx

= Ly −→M =
LxLy

2πL2
H

=
A |q|B
h

=
Φ

Φ0

, (399)

where M is the degeneracy of a Landau level, A is the surface of the sample and Φ is the flux
of the magnetic field.

We can interpret this result as a Landau level stands for a unit flux and the number of
the Landau levels in the sample is in linear relationship with the flux. If in a quasiclassical
approximation we consider a Landau state as a circular motion on a circle with radius LH and
we include the broadening of the state (r ≃

√
2LH), then we get

Φ = 2πL2
HB =

hB

mωc

=
h

e
= Φ0 (400)

for the flux represented by a Landau state.

Finally, let us note that in symmetric gauge we can construct the b and b+ ladder operators
from the x, y, px, py operators that correspond to the center of gravity of the particle. These
operators commute with the a and a+ operators, so they also commute with the Hamiltonian.
This implies that b and b+ operators step between degenerate states inside a Landau level.
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A Identical (indistinguishable) particles

The wavefunction of a system containing identical particles

The one-particle wavefunction in coordinate-spin representation:

ψ1 ∈ H1 = L2
(
R3
)
⊗ C2s+1 =⇒ ψ1 (r⃗1)χs ≡ ψ1 (r⃗1, s) ≡ ψ1 (1) , (401)

where ψ1 (r⃗1) is the spatial part of the wavefunction and χs is the spin part.

The wavefunction of N identical particles:

ψN ∈ HN = H1 ⊗H1 ⊗ . . .⊗H1︸ ︷︷ ︸
N−times

=⇒ ψN (1, 2, . . . , N) . (402)

Exchanging two particles: the exchange operator

P (i, j)ψN (. . . , i, . . . , j, . . .) = ψN (. . . , j, . . . , i, . . .) . (403)

Properties of the exchange operator:

Hermitian

⟨φN (. . . , i, . . . , j, . . .) |P (i, j)ψN (. . . , i, . . . , j, . . .)⟩
= ⟨φN (. . . , i, . . . , j, . . .) |ψN (. . . , j, . . . , i, . . .)⟩
= ⟨φN (. . . , j, . . . , i, . . .) |ψN (. . . , i, . . . , j, . . .)⟩
= ⟨P (i, j)φN (. . . , i, . . . , j, . . .) |ψN (. . . , i, . . . , j, . . .)⟩

Unitary
P (i, j)2 = I →P (i, j) = P (i, j)−1 → P (i, j)† = P (i, j)−1 (404)

Eigenvalues
P (i, j)ψ = kψ → k2 = 1 → k = ±1 (405)

Principle of indistinguishability

The result of any measurement is invariant under the exchange of two identical particles,
i.e., for any Hermitian N -particle operator A,

⟨ψN |A |ψN⟩ = ⟨P (i, j)ψN |A |P (i, j)ψN⟩ . (406)

Take A = ⟨ϕ|ϕ⟩, where ϕ ∈ HN . In this case

⟨ψN |ϕ⟩ ⟨ϕ |ψN⟩ = ⟨P (i, j)ψN |ϕ⟩ ⟨ϕ |P (i, j)ψN⟩ , (407)

which can be also written as

⟨ϕ |ψN⟩ ⟨ψN |ϕ⟩ = ⟨ϕ |P (i, j)ψN⟩ ⟨P (i, j)ψN |ϕ⟩ . (408)

In order to satisfy the above equation for any ϕ, a sufficient condition can be written as

|ψN⟩ ⟨ψN | = |P (i, j)ψN⟩ ⟨P (i, j)ψN | , (409)

which implies

|ψN⟩ =
⟨P (i, j)ψN |ψN⟩

⟨ψN |ψN⟩
P (i, j) |ψN⟩ . (410)
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This means that ψN is eigenfuntion of P (i, j),

P (i, j) |ψN⟩ = k |ψN⟩ , (411)

where

k =
⟨P (i, j)ψN |ψN⟩

⟨ψN |ψN⟩
= ±1 , (412)

as we proved already.

Classification:

P (i, j)ψN =

{
ψN bosons (s = 0, 1, . . .)

−ψN fermions
(
s = 1

2
, 3
2
, . . .

) (413)

Applying the exchange operator to the Schrödinger equation,

ıℏ∂tψN = HN ψN (414)

where HN is the N -particle Hamilton operator, we obtain.

ıℏ∂tP (i, j)ψN = P (i, j)HNψN = P (i, j)HNP (i, j)P (i, j)ψN . (415)

On the other hand, P (i, j)ψN = ±ψN also solves the Schrödinger equation,

ıℏ∂tP (i, j)ψN = HNP (i, j)ψN . (416)

Comparing Eqs. (415) and (416), we get

(HN − P (i, j)HNP (i, j))ψN = 0 , (417)

thus, we conclude that the Hamilton operator commutes with the exchange operator,

[P (i, j) , HN ] = 0 . (418)

What is the meaning of the operator P (i, j)HNP (i, j)?

P (i, j) [HN (i, j)P (i, j)ψN (i, j)] = P (i, j) [HN (i, j)ψN (j, i)] = HN (j, i)ψN (i, j) (419)

i.e.
P (i, j)HN (i, j)P (i, j) = HN (j, i) (420)

or
HN (i, j) = HN (j, i) , (421)

therefore, the Hamilton operator of identical particles should be invariant under the exchange
of two particles.

Consequently, the symmetry of the N -particle wavefunction is a conserved quantity,

d

dt
⟨ψN |P (i, j) |ψN⟩ =

1

ıℏ
⟨ψN | [P (i, j) , HN ] |ψN⟩ = 0 , (422)

that means, fermionic particles remain fermionic under the time evolution dictated by the
Schrödinger equation and vica versa.

The Pauli principle: The electrons are fermions, therefore, the many-electron wavefunction is
antisymmetric against the exchange of two electrons.
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Construction of the antisymmetric wavefunctions

First we show the construction of the two-electron wavefunction and then we generalize it
for N electrons. Let’s choose two one-electron basis functions φa and φb ∈ H1 = L2 (R3)⊗C2.
The tensor product vectors that can be generated from these basis functions are

φa (1)⊗ φa (2) , φb (1)⊗ φb (2) , φa (1)⊗ φb (2) , φb (1)⊗ φa (2) (423)

or, by droping the notation ⊗,

φa (1)φa (2) , φb (1)φb (2) , φa (1)φb (2) , φb (1)φa (2) . (424)

The general form of the two-particle wavefunctions is

ψ (1, 2) = caaφa (1)φa (2) + cbbφb (1)φb (2) + cabφa (1)φb (2) + cbaφb (1)φa (2) . (425)

After the exchange of the two particles we obtain,

ψ (2, 1) = caaφa (2)φa (1) + cbbφb (2)φb (1) + cabφa (2)φb (1) + cbaφb (2)φa (1)

= caaφa (1)φa (2) + cbbφb (1)φb (2) + cabφb (1)φa (2) + cbaφa (1)φb (2) (426)

while using that the wavefunction is antisymmetric,

ψ (2, 1) = −ψ (1, 2)

= −caaφa (1)φa (2)− cbbφb (1)φb (2)− cabφa (1)φb (2)− cbaφb (1)φa (2) . (427)

Matching the coefficients from the two last equations yields,

caa = −caa = 0 (428)

cbb = −cbb = 0 (429)

cab = −cba (430)

i.e.

ψ (1, 2) =
1√
2
(φa (1)φb (2)− φb (1)φa (2)) , (431)

where ψ (1, 2) is normalized to 1. This can be formally written in a determinant form:

ψ (1, 2) =
1√
2

∣∣∣∣ φa (1) φb (1)
φa (2) φb (2)

∣∣∣∣ . (432)

Generalization for φi1 , φi2 , . . . , φiN ∈ H1 orthonormal functions:

ΨA
i1,i2,...,iN

(1, . . . , N) =
1√
N !

∑
P (1,...,N)

(−1)P P (1, . . . , N) φi1 (1) . . . φiN (N) , (433)

where P (1, . . . , N) is the permutation of the (1, . . . , N) elements and P is the parity of the
given permutation and the summation goes through all possible permutations. This is exactly
the expansion of a determinant, called the Slater determinant:

ΨA
φi1

,φi2
,...,φiN

(1, . . . , N) =
1√
N !

∣∣∣∣∣∣∣∣∣
φi1 (1) φi2 (1) . . . φiN (1)
φi1 (2) φi2 (2) . . . φiN (2)

...
...

. . .
...

φi1 (N) φi2 (N) . . . φiN (N)

∣∣∣∣∣∣∣∣∣ . (434)

49



Pauli extension principle: In the N -fermion wavefunction, constructed as an antisymmetric
linear combination of the tensor product of N one-particle wavefunctions, each one-particle
wavefunction appears only once. (We used to say that there can not be more than one fermion
in the same one-particle state).

The general fermionic wavefunction: if {φn ∈ H1, n ∈ N} is a complete orthonormal set,

ψ (1, . . . , N) =
∑

i1,i2,...,iN∈N
(il ̸=ik)

C (i1, i2, . . . , iN)Ψ
A
i1,i2,...,iN

(1, . . . , N) (435)

Symmetric wavefunctions

The bosonic wavefunction is symmetric for the interchange of the particles. In the two-boson
case the following combinations are symmetric:

φa (1)φa (2) , φb (1)φb (2) ,
1√
2
(φa (1)φb (2) + φb (1)φa (2)) . (436)

Consequently, the bosons do not respect the Pauli extension principle, so there can be more
particles in the same one-particle state, or even all of them (see Bose–Einstein condensation in
statistical physics).

General construction: if {φn ∈ H1 = L2 (R3)⊗ C2s+1} (s = 0, 1, 2, . . .) is a complete or-
thonormal set,

ΨS
i1,i2,...,iN

(1, . . . , N) =

√
N1!N2! . . .

N !

∑
P ′(1,...,N)

P ′ (1, . . . , N) φi1 (1) . . . φiN (N) , (437)

where P ′ contains the permutations between different one-particle states, because the permu-
tation of identical states doesn’t give a new N -particle wavefunction. N1, N2, . . . stand for
the number of identical one-particle states. The general N boson wavefunction is the linear
combination of such symmetrized wavefunctions:

ψ (1, . . . , N) =
∑

i1,i2,...,iN ∈N

C (i1, i2, . . . , iN) Ψ
S
i1,i2,...,iN

(1, . . . , N) . (438)

Occupation number representation

On the tensor product space of a complete set of one particle states (called Fock space) the
basis functions of the symmetric or antisymmetric N particle state can be uniquely determined
by the numbers specifying how many times the one particle states occur, called the occupation
numbers, {

Fermions ni ∈ {0, 1}
Bosons ni ∈ N (439)

⇓
ΨA

i1,i2,...,iN
(il ̸= ik)

ΨS
i1,i2,...,iN

}
= |n1, n2, . . . , ni, . . .⟩ . (440)

The sum of the occupation numbers neccessarily N :∑
i∈N

ni = N . (441)
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If the one particle wavefunctions are the eigenfunctions of the one-particle Hamiltonian,

H1 φi = εi φi , (442)

the |n1, n2, . . . , ni, . . .⟩ state is eigenfunction of the non-interactiong N particle Hamiltonian,

HN(1, . . . , N) = H1 (1) +H1 (2) . . .+ H1 (N) (443)

with the energy

EN =
∑
i∈N

εini . (444)

This follows from:

(H1 (1) +H1 (2) . . .+ H1 (N)) [φi1 (1)⊗ . . .⊗ φiN (N)] =

= H1 (1)φi1 (1)⊗ . . .⊗ φiN (N)

+ φi1 (1)⊗H1 (2)φi1 (1)⊗ . . .⊗ φiN (N) + . . .

+ φi1 (1)⊗ . . .⊗H1 (N)φiN (N)

= (εi1 + εi2 + . . .+ εiN ) [φi1 (1)⊗ . . .⊗ φiN (N)]
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B Variation principle

We can get the eigenvectors of a hermition Hamiltonian from the minimalization of the
energy functional:

E [ψ] = ⟨ψ |Hψ⟩ , (445)

under the normalisation condition
⟨ψ |ψ⟩ = 1 . (446)

In order to do that we take under consideration the normalisation condition with a Lagrange
multiplicator and we introduce the following functional:

F [ψ] = ⟨ψ |Hψ⟩ − ε ⟨ψ |ψ⟩ , (447)

where ε is the Lagrange multiplicator. Let’s calculate the functional at |ψ⟩ + |δψ⟩ up to first
order in δψ:

F [ψ + δψ] = ⟨ψ |Hψ⟩+ ⟨δψ |Hψ⟩+ ⟨ψ |Hδψ⟩ − ε ⟨ψ |ψ⟩ − ε ⟨δψ |ψ⟩ − ε ⟨ψ |δψ⟩+O(δϕ2)

= F [ψ] + ⟨δψ |(H − ε)ψ⟩+ ⟨ψ |(H − ε) δψ⟩+O(δϕ2)

= F [ψ] + ⟨δψ |(H − ε)ψ⟩+ ⟨(H − ε)ψ |δψ⟩+O(δϕ2) , (448)

from that, by neglecting the terms second order in δψ we get the variation of F [ψ]:

δF [ψ, δψ] = F [ψ + δψ]− F [ψ]

= ⟨δψ |(H − ε)ψ⟩+ ⟨(H − ε)ψ |δψ⟩ = 2Re ⟨δψ |(H − ε)ψ⟩ . (449)

Now consider the variation for |ψ⟩+ |ıδψ⟩:

δF [ψ, ıδψ] = ⟨ıδψ |(H − ε)ψ⟩+ ⟨(H − ε)ψ |ıδψ⟩
= −ı (⟨δψ |(H − ε)ψ⟩ − ⟨(H − ε)ψ |δψ⟩) = 2Im ⟨δψ |(H − ε)ψ⟩ . (450)

Let |ψ⟩ be such a vector that for a small change in it the change in F [ψ] is zero, so F [ψ] is
stacinary for the change in |ψ⟩:

δF [ψ] = 0 , (451)

and from that follows:

⟨δψ |(H − ε)ψ⟩ = 0 ⇐⇒ (H − ε) |ψ⟩ = 0 , (452)

Remark: We can arrive to the result above directly if we calculate the variation of the F [ψ]
functional with respect to ⟨ψ|+ ⟨δψ|, while we fix |ψ⟩.
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C Hartree–Fock approximation

The Hamiltonian of an atom with atomic number Z and N electrons:

H =
N∑
i=1

H0 (r⃗i) +
1

2

N∑
i,j=1
(i ̸=j)

V (r⃗i, r⃗j) (453)

where H0 is the one-electron Hamiltonian:

H0 (r⃗i) = − ℏ2

2m
∆i −

kZe2

ri
(454)

and the electron-electron interaction is:

V (r⃗i, r⃗j) =
ke2

|r⃗i − r⃗j|
. (455)

This Hamiltonian contains only the energy of the electron system and for the core we assumed
it is in rest.

We are looking for the wavefunction of the N electron system as a Slater determinant:

ψ (1, 2, . . . , N) =
1√
N !

∑
P (1,...,N)

(−1)P P (1, . . . , N)φi1 (1)φi2 (2) . . . φiN (N) (456)

= Aφi1 (1)φi2 (2) . . . φiN (N) , (457)

where

A =
1√
N !

∑
P (1,...,N)

(−1)P P (1, . . . , N) (458)

is the antisymmetrizing operator, and the φi one electron wavefunctions are form an orthonor-
mal set:

⟨φi |φj⟩ = δij . (459)

The functional describing the energy of the system by including the normalisation condition
is:

F [{φi}] = ⟨ψ |Hψ⟩ −
∑
i,j

εij ⟨φi |φj⟩ , (460)

where εij = εji, what provides the real valuednes off the energy functional.

The expectation value of the Hamiltonian:

⟨ψ |Hψ⟩ = ⟨Aφi1 (1)φi2 (2) . . . φiN (N) |HAφi1 (1)φi2 (2) . . . φiN (N)⟩ (461)

= ⟨φi1 (1)φi2 (2) . . . φiN (N) |AHAφi1 (1)φi2 (2) . . . φiN (N)⟩ (462)

because A is hermition.

See for N = 2
1√
2
⟨φ3 (1)φ4 (2) |φ1 (1)φ2 (2)− φ1 (2)φ2 (1)⟩

=
1√
2
⟨φ3 (1)φ4 (2) |φ1 (1)φ2 (2)⟩ −

1√
2
⟨φ3 (1)φ4 (2) |φ1 (2)φ2 (1)⟩

=
1√
2
⟨φ3 (1)φ4 (2) |φ1 (1)φ2 (2)⟩ −

1√
2
⟨φ3 (2)φ4 (1) |φ1 (1)φ2 (2)⟩

=
1√
2
⟨φ3 (1)φ4 (2)− φ3 (2)φ4 (1) |φ1 (1)φ2 (2)⟩ .
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from the second to the third row we used the interchange of the variables (1) ↔ (2), what we
can do because we integrate both of them over the whole space in the expectation value.

The expectation value of
∑

iH0 (i):

[H0 (1) +H0 (2)]Aφ1 (1)φ2 (2) =
1√
2
([H0 (1)φ1 (1)]φ2 (2)− φ1 (2) [H0 (1)φ2 (1)])

+
1√
2
(φ1 (1) [H0 (2)φ2 (2)]− [H0 (2)φ1 (2)]φ2 (1))

1√
2
A [H0 (1)φ1 (1)]φ2 (2) =

1

2
([H0 (1)φ1 (1)]φ2 (2)− [H0 (2)φ1 (2)]φ2 (1))

− 1√
2
Aφ1 (2) [H0 (1)φ2 (1)] =

1

2
(−φ1 (2) [H0 (1)φ2 (1)] + φ1 (1) [H0 (2)φ2 (2)])

1√
2
Aφ1 (1) [H0 (2)φ2 (2)] =

1

2
(φ1 (1) [H0 (2)φ2 (2)]− φ1 (2) [H0 (1)φ2 (1)])

− 1√
2
A [H0 (2)φ1 (2)]φ2 (1) =

1

2
(− [H0 (2)φ1 (2)]φ2 (1) + [H0 (1)φ1 (1)]φ2 (2))

A [H0 (1) +H0 (2)]Aφ1 (1)φ2 (2) = [H0 (1)φ1 (1)]φ2 (2)− [H0 (2)φ1 (2)]φ2 (1)

+φ1 (1) [H0 (2)φ2 (2)]− φ1 (2) [H0 (1)φ2 (1)]

⟨φ1 (1)φ2 (2) |A [H0 (1) +H0 (2)]Aφ1 (1)φ2 (2)⟩ = ⟨φ1 (1) |H0 (1)φ1 (1)⟩+⟨φ2 (2) |H0 (2)φ2 (2)⟩

Generalisation for arbitrary N :

⟨Aφi1 (1)φi2 (2) . . . φiN (N)|
N∑
i=1

H0 (i)A |φi1 (1)φi2 (2) . . . φiN (N)⟩ =
N∑
k=1

⟨φik (1) |H0 (1)φik (1)⟩

(463)

The expectation value of 1
2

∑
i ̸=j V (i, j)

V (1, 2)Aφ1 (1)φ2 (2) =
1√
2
(V (1, 2)φ1 (1)φ2 (2)− V (2, 1)φ1 (2)φ2 (1))

AV (1, 2)Aφ1 (1)φ2 (2) =
1

2
[V (1, 2)φ1 (1)φ2 (2)− V (2, 1)φ1 (2)φ2 (1)

− V (2, 1)φ1 (2)φ2 (1) + V (1, 2)φ1 (1)φ2 (2)]

=V (1, 2)φ1 (1)φ2 (2)− V (2, 1)φ1 (2)φ2 (1)

⟨φ1 (1)φ2 (2) |AV (1, 2)Aφ1 (1)φ2 (2)⟩ = ⟨φ1 (1)φ2 (2) |V (1, 2)φ1 (1)φ2 (2)⟩
− ⟨φ1 (1)φ2 (2) |V (2, 1)φ1 (2)φ2 (1)⟩

Generalisation for arbitrary N :

⟨Aφi1 (1)φi2 (2) . . . φiN (N)| 1
2

N∑
i,j=1
(i ̸=j)

V (i, j)A |φi1 (1)φi2 (2) . . . φiN (N)⟩

=
1

2

N∑
k,l=1

⟨φik (1)φil (2) |V (1, 2)φik (1)φil (2)⟩ −
1

2

N∑
k,l=1

⟨φik (1)φil (2) |V (1, 2)φik (2)φil (1)⟩

(464)
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Finally if we bring everything together, the expectation value of the Hamiltonian is:

⟨ψ |Hψ⟩ =
N∑
i=1

⟨φi (1) |H0 (1)φi (1)⟩+
1

2

N∑
i,j=1

⟨φi (1)φj (2) |V (1, 2)φi (1)φj (2)⟩

−1

2

N∑
i,j=1

⟨φi (1)φj (2) |V (1, 2)φj (2)φi (1)⟩ , (465)

where for simplicity we noted the one electron wavefunctions with i = 1, . . . , N , what can not
be confused with the electron index, because there is only one and two electron terms in the
expression. Note that, in the second and third term of the above equation the i = j terms are
eliminate each other leading to the following form of the F [{φi}] functional:

F [{φi}] =
N∑
i=1

⟨φi (1) |H0 (1)φi (1)⟩+
1

2

N∑
i,j=1
(i ̸=j)

⟨φi (1)φj (2) |V (1, 2)φi (1)φj (2)⟩

−1

2

N∑
i,j=1
(i ̸=j)

⟨φi (1)φj (2) |V (1, 2)φj (2)φi (1)⟩ −
∑
i,j

εij ⟨φi |φj⟩ . (466)

Let’s calculate the variation of this expression respect to ⟨φk|

δ(k)F [{φi}] = ⟨δφk |H0φk⟩+
N∑
i=1
(i ̸=k)

⟨δφk (1)φi (2) |V (1, 2)φk (1)φi (2)⟩

−
N∑
i=1
(i ̸=k)

⟨δφk (1)φi (2) |V (1, 2)φk (2)φi (1)⟩ −
N∑
i=1

εki ⟨δφk |φi⟩ , (467)

what can be written as:

δ(k)F [{φi}] = ⟨δφk

∣∣∣∣δF [{φi}]
δ⟨φk|

〉
, (468)

where δF [{φi}]
δ⟨φk|

is the functional derivative of F [{φi}]:

δF [{φi}]
δ ⟨φk|

= H0 |φk⟩+
N∑
i=1
(i ̸=k)

⟨φi (2) |V (1, 2)φi (2)⟩φk−
N∑
i=1
(i ̸=k)

⟨φi (2) |V (1, 2)φk (2)⟩φi−
N∑
i=1

εki |φi⟩ .

(469)
In the spirit of the variation principle we requere that the functional derivative of F [{φi}]
vanish. Obviously the Slater determinant is invariant under a unitary transformation. Choose
the transformation in such a way that, it diagonalize the symmetry εki matrix. If we note the
eigenvalues with εk and we act on the φi states with the matrix of the unitary transformation
we arrive at the canonical Hartree–Fock equations :

H0φk +
N∑
i=1
(i ̸=k)

⟨φi (2) |V (1, 2)φi (2)⟩φk −
N∑
i=1
(i ̸=k)

⟨φi (2) |V (1, 2)φk (2)⟩φi = εkφk . (470)
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If we consider the one electron wavefunctions as φi (1) = φi (r⃗)χmsi
and we utilize that

H0 (1) and V (1, 2) don’t contain any spin operator (don’t depend on the spin):

⟨φi (2) |V (1, 2)φi (2)⟩ =
∫

d3r2 φi (r⃗2)
∗ ke2

|r⃗1 − r⃗2|
φi (r⃗2) (471)

and

⟨φi (2) |V (1, 2)φk (2)⟩ = δmsimsk

∫
d3r′ φi (r⃗2)

∗ ke2

|r⃗1 − r⃗2|
φk (r⃗2) . (472)

(We note that, if msi ̸= msj, then φi (r⃗) = φj (r⃗) is allowed.)

If we introduce the so called Hartree potential :

V H (r⃗) =
N∑
i=1
(i ̸=k)

∫
d3r′φi (r⃗

′)
∗ ke2

|r⃗ − r⃗ ′|
φi (r⃗

′) (473)

and the non local exchange potential:

V x (r⃗, r⃗;′) = −
N∑
i=1
(i ̸=k)

δmsimsk
φi (r⃗

′)
∗ ke2

|r⃗ − r⃗ ′|
φk (r⃗) ,

then the Hartree–Fock equations in coordinate space can be written as:(
H0 (r⃗) + V H (r⃗)

)
φk (r⃗) +

∫
d3r′V x (r⃗, r⃗′)φk (r⃗

′) = εkφk (r⃗) (k = 1, 2, . . . , N) , (474)

what can be solved by selfconsistent iterations.

We have a look at the meaning of the εk Lagrange multiplicators. If we multiply the Hartree–
Fock equations with φk (r⃗)

∗ and we integrate it over r⃗, then we get:

εk =

∫
d3r φk (r⃗)

∗H0 (r⃗)φk (r⃗) +

∫
d3r φk (r⃗)

∗ V H (r⃗)φk (r⃗) (475)

+

∫
d3r

∫
d3r′φk (r⃗)

∗ V x
k (r⃗, r⃗′)φk (r⃗

′) ,

or

εk =

∫
d3r φk (r⃗)

∗H0 (r⃗)φk (r⃗) +
∑
i( ̸=k)

∫
d3r

∫
d3r′ φk (r⃗)

∗ φi (r⃗
′)
∗ ke2

|r⃗ − r⃗ ′|
φk (r⃗)φi (r⃗

′)

−
∑
i( ̸=k)

∫
d3r

∫
d3r′φk (r⃗)

∗ φi (r⃗
′)

ke2

|r⃗ − r⃗ ′|
φk (r⃗

′) φi (r⃗) ,

(476)

what is the sum of such terms from E = ⟨ψ |Hψ⟩, what contains the φk one electron state.
Thus if we remove from the N electron system the electron from the φk one electron state and
we don’t change the other one electron states, then the energy of the system decreas with εk,
so the ionization energy is −εk.

By summing up the one electron energies we end up with the following relation:

N∑
k=1

εk = ⟨ψ|Hψ⟩+ EH + Ex (477)
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where the electrostatec (Hartree) energy coming from the charge density is:

EH =
1

2

∑
k

∫
d3r φk (r⃗)

∗ V H (r⃗)φk (r⃗) (478)

=
1

2

∑
i,j

(i ̸=j)

∫ ∫
d3r′d3r φi (r⃗)

∗ φj (r⃗
′)
∗ ke2

|r⃗ − r⃗ ′|
φi (r⃗)φj (r⃗

′) ,

and the exchange energy is:

Ex =
1

2

∑
k

∫
d3r

∫
d3r′φk (r⃗)

∗ V x
k (r⃗, r⃗ ′)φk (r⃗

′)

= −1

2

∑
i,j

(i ̸=j)

∫
d3r

∫
d3r′φi (r⃗)

∗ φj (r⃗
′)
∗ ke2

|r⃗ − r⃗ ′|
φi (r⃗

′)φj (r⃗
′) . (479)

The energy of the interaction electron system can be calculate if we substract from the sum of
the one electron energies the interaction and exchange energies calculated from the selfconsistent
solutions (double-counting contributions). This result shows high similarity with the mean field
approximation used at the spin models, so we can call the Hartree–Fock approximation as the
mean field approximation of the interacting electron system.
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D Adiabatic time evolution

We are going to consider Hamiltonians depend on time via the R(t) function what is an
element of a multidimensional parameter space:

H (t) = H (R (t)) (480)

The parametric eigenstates and eigenenergies:

H (R)φm (R) = Em (R)φm (R) (481)

⟨φn (R) |φm (R)⟩ = δnm (482)

The parametric time dependence of the eigenstates:

φn (t) ≡ φn (R (t)) , (483)

φ̇n (t) = Ṙ (t) ∇Rφn (R) , (484)

where we used the chain rule. From the time derivative of Eq.(482) we get:

⟨φn (t) |φ̇m (t)⟩+ ⟨φ̇n (t) |φm (t)⟩ = ⟨φn (t) |φ̇m (t)⟩∗ + ⟨φm (t) |φ̇n (t)⟩∗ = 0 , (485)

if n = m
Re ⟨φn (t) |φ̇n (t)⟩ = 0 (486)

what means the ⟨φn (R) |∇Rφn (R)⟩ quantity is imaginary.

The time dependence of the wave function:

ıℏ∂tψ (t) = H (t)ψ (t) . (487)

If we expand the wavefunction on the parametric solutions:

ψ (t) =
∑
m

cm (t)φm (t) (488)

we get he following Schrödinger equation:

ıℏ
∑
m

(ċm (t)φm (t) + cm (t) φ̇m (t)) =
∑
m

Em (t) cm (t)φm (t) . (489)

After multipling from the left with ϕn(t) we get:

ċn (t) +
i

ℏ
En (t) cn (t) +

∑
m

cm (t) ⟨φn (t) |φ̇m (t)⟩ = 0 (490)

with the following initial condition:

ψ (t0) = φk (t0) =⇒ cn (t0) = δnk , (491)

what means we start from the kth eigenstate.

Adiabatic solution:
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There are no transition between eigenstates, or in other words during the time evolution the
system stays in a given eigenstate. In thermodynamics we call something adiabatic when we
evolve the system through equilibrium states, this is the quantum analog of this. So we are
going to investigate the time evolution of the eigenstates,

cadn (t) = δnk ck (t) , ck (t0) = 1 (492)

The time dependence of the expansion coefficients is

ċk (t) +
( ı
ℏ
Ek (t) + ⟨φk (t) |φ̇k (t)⟩

)
ck (t) = 0 , (493)

what is equal with the following differential equation

d

dt
ln ck (t) = − ı

ℏ
Ek (t)− ⟨φk (t) |φ̇k (t)⟩ , (494)

with the solution:
ck (t) = e−ıdk(t)eıγk(t) (495)

where dk (t) is the dynamic phase:

dk (t) =
1

ℏ

∫ t

t0

Ek (t
′) dt′ (496)

and γk (t) is the geometric phase:

γk (t) = ı

∫ t

t0

⟨φk (t
′) |φ̇k (t

′)⟩ dt′ . (497)

and the adiabatic solution in terms of the phases above:

ψad (t) = e−ıdk(t)eıγk(t)φk (t) , (498)

so the instantaneous wavefunction differs only in a phase factor from the initial one, called as
the quantum adiabatic theorem.

The condition for the adiabatic aproximation (n ̸= k):

⟨φk (t)|H (t) |φn (t)⟩ = En (t) ⟨φk (t) |φn (t)⟩ = 0 (499)

d

dt
⟨φk (t)|H (t) |φn (t)⟩ = ⟨φ̇k (t)|H (t) |φn (t)⟩+ ⟨φk (t)| Ḣ (t) |φn (t)⟩+ ⟨φk (t)|H (t) |φ̇n (t)⟩

= En (t) ⟨φ̇k (t) |φn (t)⟩+ Ek (t) ⟨φk (t) |φ̇n (t)⟩+ ⟨φk (t)| Ḣ (t) |φn (t)⟩
= (Ek (t)− En (t)) ⟨φk (t) |φ̇n (t)⟩+ ⟨φk (t)| Ḣ (t) |φn (t)⟩ (500)

what gives the condition:

⟨φk (t) |φ̇n (t)⟩ =
⟨φk (t)| Ḣ (t) |φn (t)⟩
En (t)− Ek (t)

→ 0 . (501)

This quantity has frequency dimension, what have to be negligible respect to the characteristic
frequency of the k → n transition:∣∣∣∣∣⟨φk (t)| Ḣ (t) |φn (t)⟩

En (t)− Ek (t)

∣∣∣∣∣≪ |ωkn (t)| =
1

ℏ
|En (t)− Ek (t)| (502)
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i.e.
ℏ
∣∣∣⟨φk (t)| Ḣ (t) |φn (t)⟩

∣∣∣≪ (En (t)− Ek (t))
2 (503)

Let’s take a look at the geometric phase! From Eq.(486) it is obvious that γk (t) ∈ R.
Furthermore

⟨φk (t) |φ̇k (t)⟩ ≡ Ṙ (t) ⟨φk (R (t)) |∇Rφk (R (t))⟩ (504)

what implies:

γk (t) = ı

∫ t

t0

⟨φk (t
′) |φ̇k (t

′)⟩ dt′ =
∫ t

t0

⟨φk (R (t′)) |∇Rφk (R (t′))⟩ Ṙ (t′) dt′ (505)

= ı

∫ R(t)

R(t0)

⟨φk (R
′) |∇R′φk (R

′)⟩ dR′ , (506)

so the geometric phase can be expressed with the line integral of the Berry vector potential :

Ak (R) = ı ⟨φk (R) |∇Rφk (R)⟩ (507)

γk (t) =

∫ R(t)

R(t0)

Ak (R
′) dR′ . (508)

D.1 Gauge transformation

Let α(R) be a real function on the parameter space and we introduce the

φ̃k (R) = eıα(R)φk (R) (509)

gauge transformed basis funtions, what are still the eigenfunctions of the H (R) Hamiltonian.
The transfomation of Ak(R) is:

Ãk (R) = ı ⟨φ̃k (R) |∇Rφ̃k (R)⟩ = Ak (R)−∇Rα (R) , (510)

this give the analogy with the vector potential. The transformation of the geometric phase:

γ̃k (t) =

∫ R(t)

R(t0)

Ãk (R
′) dR′ = γk (t)− α (R (t)) + α (R (t0)) , (511)

and the tranformation of the adiabatic wave function form (498) is:

ψ̃ad (t) = e−ıdk(t)eıγ̃k(t)φ̃k (t) = e−ıdk(t)eıγk(t)e−ıα(R(t))eıα(R(t0))φ̃k (t)

= e−ıdk(t)eıγk(t)φk (t) = ψad (t) , (512)

so the adiabatic wave function is invariant under the gauge transformation of the basis functions.

We may think that, with
α (R (t)) = γk (t) (513)

the geometric phase can be transformed out:

γ̃k (t) ≡ 0 (514)

⇓
ψ̃ad (t) = e−idk(t)φ̃k (t) , (515)

so we don’t have to introduce it because it can gauged out (implication of Vladimir Fock).
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D.2 Cyclic motion

There is an obvious contradiction if we deal with parametric motion in the parameter phase
with period T :

R (t0 + T ) = R (t0) . (516)

In this case because the φ̃k (R) basis functions are single valued:

eıα(R(t0+T )) = eıα(R(t0)) , (517)

what implies:
α (R (t0 + T )) = α (R (t0)) + 2πk (k ∈ Z) (518)

and for the gauge transformation in (513):

γ̃k (t0 + T ) = γk (t0 + T )− α (R (t0 + T )) + α (R (t0)) = γk (t0 + T ) + 2πk . (519)

The gauge transformed adiabatic wavefunction:

ψ̃ad (t0 + T ) = e−ıdk(t0+T )eıγ̃k(t0+T )φ̃k (t0 + T ) = e−ıdk(t0+T )eıγk(t0+T )φ̃k (t0 + T )

= e−ıdk(t0+T )eıγk(t0+T )φ̃k (t0) = e−ıdk(t0+T )eıγk(t0+T ) ψ̃ad (t0) , (520)

the gauge transformation doesn’t eliminate the geometric phase. So on a closed curve C in
the parameter phase the wave function always pick up a geometric phase next to the dynamic
phase:

γk (C) =

∮
C

Ak (R) dR + 2πk , (521)

what we call as the Berry phase.

For simplicity in the following we consider a tree dimensional parameter space. Due to
Stoke’s theorem we can write the Berry phase as

γk (C) =

∫
S

B⃗k(R⃗)d
2S + 2πk (522)

where the surface integral goes for the surface bounded by the closed curve C, and the

B⃗k(R⃗) = ∇R⃗ × A⃗k(R⃗) (523)

quantity used to called as Berry curvature. Obviously B⃗k(R) is gauge invariant:

˜⃗
Bk(R⃗) = ∇R⃗ × ˜⃗Ak(R⃗) = ∇R⃗ × A⃗k(R⃗)−∇R⃗ ×∇R⃗α(R⃗)︸ ︷︷ ︸

=0

= B⃗k(R⃗) . (524)

Furthermore:

B⃗k(R⃗) = ı∇R⃗ ×
〈
φk(R⃗)

∣∣∣∇R⃗φk(R⃗)
〉
= ı
〈
∇R⃗φk(R⃗)

∣∣∣×∇R⃗φk(R⃗)
〉

(525)

or in index notation:

Bα
k (R⃗) = ıεαβγ

〈
∂βφk(R⃗)

∣∣∣∂γφk(R⃗)
〉
= εαβγF

βγ
k (R⃗) , (526)
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where
F βγ
k (R⃗) = − Im

〈
∂βφk(R⃗)

∣∣∣∂γφk(R⃗)
〉

(527)

is the Berry curvature, what has the following alternative form:

F βγ
k (R⃗) = − Im

∑
n( ̸=k)

〈
∂βφk(R⃗)

∣∣∣φn(R⃗)
〉〈

φn(R⃗)
∣∣∣∂γφk(R⃗)

〉
(528)

= − Im
∑
n(̸=k)

〈
φk(R⃗)

∣∣∣ ∂βH(R⃗)
∣∣∣φn(R⃗)

〉〈
φn(R⃗)

∣∣∣ ∂βH(R⃗)
∣∣∣φk(R⃗)

〉
(
En(R⃗)− Ek(R⃗)

)2 , (529)

where in the first row we inserted a complete set and for the second row we used the same idea
as in Eq.(500). This way we get a useful formula for the calculation of the Berry curvature:

B⃗k(R⃗) = − Im
∑
n(̸=k)

〈
φk(R⃗)

∣∣∣∇R⃗H(R⃗)
∣∣∣φn(R⃗)

〉
×
〈
φn(R⃗)

∣∣∣∇R⃗H(R⃗)
∣∣∣φk(R⃗)

〉
(
En(R⃗)− Ek(R⃗)

)2 . (530)

D.3 Dealing with degeneracies

Starting from the formula above in Eq.(530) we can evaluate the Berry phase in the vicinity
of a twofold degeneracy. Let

Em(R⃗
∗) = Ek(R⃗

∗) = E(R⃗∗) (531)

and choose R⃗ from the neighborhood of R⃗∗, where∣∣∣En(R⃗)− Ek(R⃗)
∣∣∣≫ ∣∣∣Em(R⃗)− Ek(R⃗)

∣∣∣ (n ̸= m, k) , (532)

namely in this region of the parameterspace the other eigenvalues of the Hamiltonian are far.
In this case we can use the following approximation:

B⃗k(R⃗) ≃ − Im

〈
φk(R⃗)

∣∣∣∇R⃗H(R⃗)
∣∣∣φm(R⃗)

〉
×
〈
φm(R⃗)

∣∣∣∇R⃗H(R⃗)
∣∣∣φk(R⃗)

〉
(
Em(R⃗)− Ek(R⃗)

)2 (533)

where we have only one term, because all the others are giving a negligible contribution due to
the condition above.

With the usage of the R⃗ → R⃗− R⃗∗ translation on the parameter space:

Em(⃗0) = Ek (⃗0) = E (⃗0) (534)

the matrix of the Hamiltonian can be choosen on the two dimensional
{∣∣∣φk (⃗0)

〉
,
∣∣∣φm(⃗0)

〉}
subspace as:

H(R⃗) = σ⃗ ·CR⃗ , (535)

where C is a 3× 3 real matrix. Let’s change our basis as R⃗′ = 2CR⃗, this way we get:

H(R⃗′) =
1

2
σ⃗R⃗′ , (536)
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what has eigenvalues

E±(R⃗
′) = ±R

′

2
. (537)

The coordinate system can be choosed as R⃗′ = (0, 0, R′), pointing to the z direction. This way
we get the following simple eigenvectors:∣∣∣φ+(R⃗

′)
〉
=

(
1
0

)
,

∣∣∣φ−(R⃗
′)
〉
=

(
0
1

)
. (538)

Taking the derivative of the Hamiltonian: ∇R⃗′H(R⃗′) = 1
2
σ and then puting things together:〈

φ−(R⃗
′)
∣∣∣∇R⃗′H(R⃗′)

∣∣∣φ+(R⃗
′)
〉
=

1

2

〈
φ−(R⃗

′)
∣∣∣ σ⃗ ∣∣∣φ+(R⃗

′)
〉
=

1

2
(1, ı, 0) (539)〈

φ+(R⃗
′)
∣∣∣∇R⃗′H(R⃗′)

∣∣∣φ−(R⃗
′)
〉
=

1

2

〈
φ+(R⃗

′)
∣∣∣ σ⃗ ∣∣∣φ−(R⃗

′)
〉
=

1

2
(1,−ı, 0) (540)

and

B⃗+(R⃗
′) = − 1

4R′2 Im (1,−ı, 0)× (1, ı, 0) = − 1

2R′2 (0, 0, 1) = − e⃗′z
2R′2 . (541)

Then we rotate back the coordinate system in order to get the final result:

B⃗+(R⃗
′) = − R⃗′

2R′3 = −B⃗−(R⃗
′) , (542)

what is equal to the filed strength of a magnetic monopole with −1
2
charge on the parameter

space.

The Berry pahse for a cyclic motion around a degeneracy point on a closed curve C:

γ+ (C) = −
∫
S

R⃗′

2R′3d
2S ′ = −

∫
S

R⃗′

2R′3
R⃗′

R′R
′2dΩ = −1

2
Ω (C) , (543)

where C = ∂S and Ω (C) is the solid angle corresponding to the C curve from the degeneracy

point R⃗∗.

D.4 A single spin in magnetic field

Let the Hamiltonian be
H
(
R⃗ (t)

)
=
gµB

ℏ
S⃗ R⃗ (t) (544)

where R⃗ (t) is the time dependent magnetic induction, g is the giromagnetic factor, µB is the

Bohr magneton and S⃗ = (Sx, Sy, Sz) is a spin operator with angular momentum s. The energy
eigenvalues are

Em(R⃗) = gµBmR , (545)

where R = |R⃗|, m ∈ {−s,−s+ 1, . . . , s− 1, s}. The Berry curvature corresponding to the mth
eigenstate is:

B⃗m(R⃗) = − 1

ℏ2
Im

∑
n(̸=m)

⟨m| S⃗ |n⟩ × ⟨n| S⃗ |m⟩
R2 (n−m)2

. (546)

We get the eigenstates from the O ∈ O (3) orthogonal transformation, by rotating R⃗ to the z
direction:

S⃗R⃗ = (OS⃗)(OR⃗) = (OS⃗) (0, 0, R) , (547)
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where the rotation can be expressed on the spin space as:

OS⃗ = U−1S⃗U , (548)

where U ∈ SU (2). The Hamiltonian transformed into the new coordinate system is:

H(R⃗) = U−1H ′(R⃗)U , (549)

with
H ′(R⃗) =

gµB

ℏ
SzR . (550)

For the eigenstates |m′⟩ holds,

H ′(R⃗) |m′⟩ = Em (R) |m′⟩ (551)

S⃗2 |m′⟩ = ℏ2s (s+ 1) |m′⟩ (552)

Sz |m′⟩ = ℏm′ |m′⟩ (553)

S± |m′⟩ = ℏ
√
s (s+ 1)−m′ (m′ ± 1) |m′ ± 1⟩ . (554)

From that we get the eigenstates of the original Hamiltonian:

UH(R⃗)U−1 |m′⟩ = Em (R) |m′⟩ (555)

by multipling from the left with U−1 we get:

|m⟩ = U−1 |m′⟩ . (556)

This way

B⃗m(R⃗) = − 1

ℏ2
Im

∑
n( ̸=m)

⟨m| S⃗ |n⟩ × ⟨n| S⃗ |m⟩
R2 (n−m)2

(557)

= − 1

ℏ2
Im

∑
n( ̸=m)

⟨m′|US⃗U−1 |n′⟩ × ⟨n′|US⃗U−1 |m′⟩
R2 (n−m)2

(558)

= − 1

ℏ2
Im

∑
n( ̸=m)

⟨m′|O−1S⃗ |n′⟩ × ⟨n′|O−1S⃗ |m′⟩
R2 (n−m)2

= O−1B⃗′
m (R) , (559)

where

B⃗′
m (R) = − 1

ℏ2
Im

∑
n′ (̸=m′)

⟨m′| S⃗ |n′⟩ × ⟨n′| S⃗ |m′⟩
R2 (n−m)2

. (560)

We have only offdiagonal matrix elements so the matrix elements of Sz doesn’t appear in
the expression, implying that

B⃗′
m (R) = (0, 0, B′z

m (R)) , (561)

where

B′z
m (R) = − 1

ℏ2R2
Im {⟨m′|Sx |m′ + 1⟩ ⟨m′ + 1|Sy |m′⟩ − ⟨m′|Sy |m′ + 1⟩ ⟨m′ + 1|Sx |m′⟩

+ ⟨m′|Sx |m′ − 1⟩ ⟨m′ − 1|Sy |m′⟩ − ⟨m′|Sy |m′ − 1⟩ ⟨m′ − 1|Sx |m′⟩}
(562)

= − 1

R2
Im

1

4ı
{2s (s+ 1)− 2m′ (m′ + 1)− 2s (s+ 1) + 2m′ (m′ − 1)} (563)

= −m
′

R2
(564)
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Finally if we rotate back with O−1, then we get the Berry curvature:

B⃗m(R⃗) = −m R⃗

R3
, (565)

and the Berry phase

γm (C) =

∮
B⃗m(R⃗)d

2S = −mΩ (C) , (566)

where Ω(C) is defined as before in the case of degeneracies.
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E Classical electrodynamics

E.1 Maxwell equations

The Lorentz force acting on a charged particle in electromagnetic fields:

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
, (567)

where E⃗ is the electric field and B⃗ is the magnetic field (B-field).

Electrodynamics in presence of matter

ρtot = ρf + ρb , ρb = −∇⃗P⃗ , (568)

j⃗tot = j⃗f + j⃗b , j⃗b = ∇⃗ × M⃗ + ∂tP⃗ , (569)

where ρtot, ρf, and ρb stand for the total, free and bound electric charge densities, while j⃗tot, j⃗f,
and j⃗b denote the total, free and bound electric current densities, respectively. In addition, P⃗ is
the electric polarization density and M⃗ is the magnetisation density. The electric displacement
field D⃗ is defined as

D⃗ = ε0E⃗ + P⃗ , (570)

where ε0 is the vacuum permittivity. The relationship between the magnetic H-field H⃗, B-field
B⃗ and the magnetisation density M⃗ reads as,

H⃗ =
B⃗

µ0

− M⃗ . (571)

Maxwell equations:

∇⃗E⃗ =
ρtot
ε0

=
1

ε0

(
ρf − ∇⃗P⃗

)
→ ∇⃗D⃗ = ρf , (572)

∇⃗ × E⃗ = −∂tB⃗ , (573)

∇⃗B⃗ = 0 , (574)

∇⃗ × B⃗ = µ0 j⃗tot = µ0

(⃗
j + ∇⃗ × M⃗ + ∂tP⃗ + ε0∂tE⃗

)
→ ∇⃗× H⃗ = j⃗f + ∂tD⃗ . (575)

In vacuum P⃗ = 0 and M⃗ = 0, thus, D⃗ = ε0E⃗ and H⃗ = B⃗
µ0
. The Maxwell equations are then

given as

∇⃗E⃗ =
ρ

ε0
, (576)

∇⃗ × E⃗ = −∂tB⃗ , (577)

∇⃗B⃗ = 0 , (578)

∇⃗ × B⃗ = µ0

(⃗
j + ε0∂tE⃗

)
. (579)

Based on the second and the third Maxwell equations, we can define a scalar and a vector
potential, ϕ (r⃗, t) and A⃗ (r⃗, t), respectively such that

B⃗ = ∇⃗ × A⃗ , (580)
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E⃗ = −∇⃗ϕ− ∂tA⃗ . (581)

The gauge transformation of the potentials for the Λ (r⃗, t) gauge field:

A⃗′ = A⃗+ ∇⃗Λ
ϕ′ = ϕ− ∂tΛ

}
=⇒ E⃗ ′ = E⃗

B⃗′ = B⃗
. (582)

E.2 Lagrangian formalism

We define the Lagrange function in presence of electric and magnetic fields as

L
(
r⃗, ˙⃗r
)
= −mc2

√
1−

˙⃗r 2

c2
+ qA⃗ (r⃗, t) ˙⃗r − qϕ (r⃗, t) . (583)

The conjugated canonical momentum is then given by

p⃗ =
∂L
(
r⃗, ˙⃗r
)

∂ ˙⃗r
= −

mc2

(
−2

˙⃗r

c2

)

2

√
1−

˙⃗r2

c2

+ qA⃗ (r⃗, t) =

=
m ˙⃗r√
1−

˙⃗r2

c2

+ qA⃗ (r⃗, t) = K⃗ + qA⃗ (r⃗, t) , (584)

where K⃗ is the so called kinetic momentum:

K⃗ =
m ˙⃗r√
1− ⃗̇r2

c2

= p⃗− qA⃗ . (585)

Euler-Lagrange equation of motion:

∂L
(
r⃗, ˙⃗r
)

∂r⃗
− d

dt

∂L
(
r⃗, ˙⃗r
)

∂ ˙⃗r
= 0 (586)

⇓

dp⃗

dt
=
∂L
(
r⃗, ˙⃗r
)

∂r⃗
= q(∇⃗ ◦ A⃗) ˙⃗r − q ∇⃗ϕ , (587)

where
(∇⃗ ◦ A⃗)ij = ∂iAj . (588)

Using the vector identity,
(⃗a ◦ b⃗)c⃗ = c⃗× (⃗a× b⃗) + (c⃗ a⃗) b⃗ , (589)

we can proceed as

(∇⃗ ◦ A⃗) ˙⃗r = ˙⃗r × (∇⃗ × A⃗) + ( ˙⃗r · ∇⃗)A⃗ = ˙⃗r × B⃗ + ( ˙⃗r ∇⃗) A⃗ , (590)

yielding
dp⃗

dt
= q( ˙⃗r ∇⃗) A⃗− q ∇⃗ϕ+ q( ˙⃗r × B⃗) . (591)
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The substantial derivative of the vector potential is defined as

dA⃗

dt
=
∂A⃗

∂t
+ ( ˙⃗r ∇⃗) A⃗ , (592)

by which we obtain
dp⃗

dt
= q

dA⃗

dt
− q

∂A⃗

∂t
− q ∇⃗ϕ+ q( ˙⃗r × B⃗) . (593)

Now we can express the time derivative of the kinetic momentum,

dK⃗

dt
= −q∂A⃗

∂t
− q ∇⃗ϕ+ q( ˙⃗r × B⃗) = qE⃗ + q( ˙⃗r × B⃗) , (594)

which is identical with the Lorentz force as required.

E.3 Hamiltonian formalism

The Hamilton function is related to the Lagrange function as

H = ˙⃗r p⃗− L
(
r⃗, ˙⃗r
)

= ˙⃗r K⃗ + qA⃗ ˙⃗r +mc2

√
1−

˙⃗r2

c2
− qA⃗ ˙⃗r + qϕ

=
m ˙⃗r2√
1− ˙⃗r2

c2

+mc2

√
1−

˙⃗r2

c2
+ qϕ =

mc2√
1− ˙⃗r2

c2

+ qϕ . (595)

From the relationships,

m2c4

1− ˙⃗r2

c2

= m2c2

(
c2 +

˙⃗r2

1− ˙⃗r2

c2

)
= (596)

= m2c4 + c2K⃗2 = m2c4 + c2
(
p⃗− qA⃗

)2
, (597)

we obtain the well-known expression for the Hamilton function,

H (r⃗, p⃗) =

√
(mc2)2 + c2(p⃗− qA⃗)2 + qϕ . (598)

In the non-relativistic limit,
(p⃗− qA⃗)2

mc2
≪ 1 , (599)

therefore,

H (r⃗, p⃗) ≃ mc2 +
(p⃗− qA⃗)2

2m
+ qϕ , (600)

so within a non-relativistic framework,

H (r⃗, p⃗) =
(p⃗− qA⃗)2

2m
+ qϕ . (601)
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The equations of motion:

dr⃗

dt
= v⃗ =

∂H (r⃗, p⃗)

∂p⃗
=
p⃗− qA⃗

m
=
K⃗

m
(602)

and

dp⃗

dt
= −∂H (r⃗, p⃗)

∂r⃗
= q(∇⃗ ◦ A⃗) p⃗− qA⃗

m
− q ∇⃗ϕ

= q(∇⃗ ◦ A⃗) ˙⃗r − q ∇⃗ϕ = q( ˙⃗r × B⃗) + q( ˙⃗r ∇⃗) A⃗− q ∇⃗ϕ

= q( ˙⃗r × B⃗) + q
dA⃗

dt
− q

∂A⃗

∂t
− q ∇⃗ϕ . (603)

From this we again get the Lorentz force as the substantial derivative of kinetic momentum,

dK⃗

dt
= m

d2r⃗

dt2
= q(−∇⃗ϕ− ∂A⃗

∂t
) + q( ˙⃗r × B⃗)

= qE⃗ + q( ˙⃗r × B⃗) . (604)
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