Szemináriumok

Graphite: the mother of all semimetals or the father of spintronics?

Időpont: 
2023. 06. 02. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Ferenc Simon (BME)
Graphite has been known to mankind since ancient times and has been intensively studied for more than 80 years. It is also the archetype of semimetals (metals with a small Fermi surface) and the mother compound of graphene and other two-dimensional van der Waals heterostructures. Albeit we have a vast knowledge about graphite, it turns out that its spin-relaxation properties are poorly understood and a recent revision of the system [1] yielded the surprisingly long 100 ns spin-lifetime in this material. This is an order of magnitude longer than the world-record holding bilayer graphene. It turns out that previous spin-relaxation studies were in fact not interpreted with the correct description and also that graphite has a hitherto unexplored symmetry which inevitably leads to this long spin-relaxation time. We speculate that this enables bulk graphite to become a viable candidate for using the electron spins as information carrier units in future spintronics devices.
 
[1]: B. G. Márkus et al. "Ultralong 100 ns spin relaxation time in graphite at room temperature", Nat. Comm. 14, 2831 (2023)

Generative neural network for quantum correlations

Időpont: 
2023. 06. 09. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Tamás Kriváchy (TU Wien)
Quantum correlations, formalized in concepts such as entanglement or Bell nonlocality, are at the heart of modern quantum theory, and form the foundation of many of its applications. In certain cases their study becomes analytically difficult and we are forced to use numerical tools to aid us. In recent decades artificial neural networks have proven to have exceptional expressibility and trainability in a wide variety of scenarios. In this talk I aim to display several ways in which neural networks can help us in the study of foundations of quantum theory, with a focus on simple generative models. Such techniques can be helpful when it becomes difficult to work with quantum systems, e.g. when examining many particles or non-convex problems. While showing a few other illustrative use-cases, the primarily demonstrated case study of the use of neural networks will be Bell-nonlocal correlations in networks [1], with the hope of sparking ideas of how such numerics can be useful in assisting theoretical research in other fields.
 
[1]: T. Kriváchy et al, "A neural network oracle for quantum nonlocality problems in networks", npj Quant Inf 6, 70 (2020) 

Komplex mágnesség és magneto-szupravezetés első elvekből

Időpont: 
2023. 07. 07. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Nyári Bendegúz (BME)
BME Elméleti Fizika Szeminárium,
 
július 7. péntek 10h15,
 
1111 Budapest, Budafoki út 8., BME F III. magasföldszint 01.,
Elméleti Fizika Tanszék szemináriumi szoba
 
Nyári Bendegúz (BME Elméleti Fizika Tanszék):
Komplex mágnesség és magneto-szupravezetés első elvekből
- PhD házi védés -
 
Értekezésemben mágneses és szupravezető anyagok első elvű számolásait mutatom be. Többfajta tömbi mágnes esetében vizsgáltam a nemkollineáris mágneses alapállapot kialakulását spinmodelleken keresztül. A Mn3Z (Z=Sn, Ge, Ga) antiferromágneses ötvözetekben tanulmányoztam a gyenge ferromágneses állapot kialakulásának körülményeit. A gyenge ferromágneses állapotot önkonzisztens elektronszerkezet-számolásokkal is vizsgáltam.  Az Mn3Sn ötvözetben alacsony hőmérsékleten megfigyelhető a spinstruktúra helikális modulációja, ezt egy effektív egydimenziós modell keretében vizsgáltam a Mn mágneses momentumának és az atomi d-pályák lokalizációjának függvényében.  Az itineráns antiferromágnes CrB2 ötvözet esetében a nem kommenzurábilis spinspirál-alapállapotot tanulmányoztam különböző spinmodellekkel.
 
Megkíséreltem lezárni a tudományos közösségben kialakult vitát a nemkollineáris spinállapotokban számolt lokális mágneses kölcsönhatások értelmezéséről. Ugyanazon módszeren belül implementálva a lokális kölcsönhatások és a globális négyspin-kölcsönhatások számolását, numerikus eredményekkel támasztottam alá, hogy az irodalomban publikált lokális (nemrelativisztikus eredetű) Dzyaloshinskii-Moriya- és anizotrópia-kölcsönhatások a globális négyspin- (multispin-) kölcsönhatások származékai, de bevezetésük  félrevezető, mivel valódi fizikai jelentést csak az energia klasszikus spinváltozók szerinti transzverzális deriváltjai hordoznak.
 
Dolgozatom utolsó fejezetében mágneses atomi struktúrákat vizsgáltam szupravezető felületeken. Első elvű módszerünk verifikációjaként először Mn atomokra végeztem számolásokat Nb(110) felületen, jó egyezést kapva a legfrissebb kísérleti eredményekkel. Arannyal borított Nb felületre növesztett vasláncokban vizsgáltam a Yu-Shiba-Rusinov-állapotok hibridizációját, Majorana-végállapotokat keresve. Számolásaim a kísérleteket alátámasztva azt mutatták, hogy a ferromágneses láncban nincs topologikus tiltott sáv, azonban spinspirál-konfigurációban kialakulnak a Majorana-állapotok a rendszerben.
 
Témavezető: Szunyogh László, BME TTK Elm. Fiz. tanszék
házi bíráló: Rózsa Levente, Wigner FK SZFI / BME TTK Elm. Fiz. tanszék 
  
Dolgozat és tézisfüzet magyarul:
 
Minden érdeklődőt szeretettel várunk.
Asbóth János,
szemináriumi koordinátor

Weak vs. strong breaking of integrability in interacting scalar quantum field theories

Időpont: 
2023. 09. 08. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Bence Fitos (BME)
The recently proposed classification of integrability-breaking perturbations according to their strength is studied in the context of quantum field theories. Using random matrix methods to diagnose the resulting quantum chaotic behaviour, we investigate the $\phi^4$ and $\phi^6$ interactions of a massive scalar, by considering the crossover between Poissonian and Wigner-Dyson distributions in systems truncated to a finite-dimensional Hilbert space. We find that a naive extension of the scaling of crossover coupling with the volume observed in spin chains does not give satisfactory results for quantum field theory. Instead, we demonstrate that considering the scaling of the crossover coupling with the number of particles yields robust signatures, and is able to distinguish between the strengths of integrability breaking in the $\phi^4$ and $\phi^6$ quantum field theories.
 
[1]: B. Fitos and G. Takács: "Weak vs. strong breaking of integrability in interacting scalar quantum field theories", arXiv:2305.02666 (2023) 

Thermodynamics, transport, and fluctuations in the sine-Gordon model

Időpont: 
2023. 09. 15. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Márton Kormos (BME)
The sine-Gordon model is a paradigmatic quantum field theory that provides the low-energy effective description of many gapped 1D systems. Despite this fact, its complete thermodynamic description in all its regimes was lacking. In the talk, I will report the filling of this gap by deriving the Thermodynamic Bethe Ansatz framework that captures the thermodynamics of the model and serves as the basis of its hydrodynamic description. As a first application, I will present results on the Drude weight characterising the ballistic transport of the topological charge and demonstrate that its dependence on the value of the coupling features a fractal structure. I will also show recent results about the large-scale fluctuations of the topological charge and current.
 
Based on

Protocols to measure the non-Abelian Berry phase by pumping a spin qubit through a quantum-dot loop

Időpont: 
2023. 09. 22. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Baksa Kolok (BME)
A quantum system constrained to a degenerate energy eigenspace can undergo a nontrivial time evolution upon adiabatic driving, described by a non-Abelian Berry phase. This type of dynamics may provide logical gates in quantum computing that are robust against timing errors. A strong candidate to realize such holonomic quantum gates is an electron or hole spin qubit trapped in a spin-orbit-coupled semiconductor, whose twofold Kramers degeneracy is protected by time-reversal symmetry. In this talk, I propose and quantitatively analyze protocols to measure the non-Abelian Berry phase by pumping a spin qubit through a loop of quantum dots [1]. One of these protocols allows us to characterize the local internal Zeeman field directions in the dots of the loop. The near-term realisation of these protocols is expected, as all key elements have been already demonstrated in spin-qubit experiments. These experiments would be important to assess the potential of holonomic quantum gates for spin-based quantum information processing.
 
[1]: B. Kolok and A. Pályi: "Protocols to measure the non-Abelian Berry phase by pumping a spin qubit through a quantum-dot loop",  arXiv:2308.05455 (2023) 

Classification and magic magnetic-field directions for spin-orbit-coupled double quantum dots

Időpont: 
2023. 09. 29. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Aritra Sen (BME)
The spin of a single electron confined in a semiconductor quantum dot is a natural qubit candidate. Fundamental building blocks of spin-based quantum computing have been demonstrated in double quantum dots with significant spin-orbit coupling. Here [1], we show that spin-orbit-coupled double quantum dots can be categorised in six classes, according to a partitioning of the multi-dimensional space of their g-tensors. The class determines physical characteristics of the double dot, i.e., features in transport, spectroscopy and coherence measurements, as well as qubit control, shuttling, and readout experiments. In particular, we predict that the spin physics is highly simplified due to pseudospin conservation, whenever the external magnetic field is pointing to special directions (`magic directions'), where the number of special directions is determined by the class. We also analyze the existence and relevance of magic loops in the space of magnetic-field directions, corresponding to equal local Zeeman splittings. These results present an important step toward precise interpretation and efficient design of spin-based quantum computing experiments in materials with strong spin-orbit coupling.
 
 
[1]: A Sen, Gy Frank, B Kolok, J Danon, A Pályi,  arXiv:2307.02958 (2023) 

Fast simultaneous 3D acousto-optical imaging and photostimulation for visual restoration

Időpont: 
2023. 10. 03. 14:30
Hely: 
BME building F, lecture hall 13, second floor
Előadó: 
Balázs Rózsa (Femtonics)
Next talk of BME's Szilárd Colloquium:
 
The understanding of brain computations requires methods that read out neural activity on different spatial and temporal scales. Following signal propagation and integration across a neuron and recording the concerted activity of hundreds of neurons pose distinct challenges, and the design of imaging systems has been mostly focused on tackling one of the two operations. We developed a high-resolution, acousto-optic two-photon microscope with continuous three-dimensional (3D) trajectory and random-access scanning modes that reaches near-cubic-millimeter scan range and can be adapted to imaging different spatial scales. We performed 3D calcium and voltage imaging of action potential backpropagation and dendritic spike forward propagation at sub-millisecond temporal resolution in behaving mice.
 
Neural circuits support rapid visual learning. However, due to technical roadblocks, it is not known how visual circuits represent multiple features or how behaviorally relevant representations are selected for long-term memory. Here we developed Moculus, a head-mounted virtual reality platform for mice that covers the entire visual field, and allows binocular depth perception and full immersion. This controllable environment, combined with fast acousto-optical imaging, affords rapid visual learning and the uncovering of novel circuit substrates: both the control and reinforcement-associated visual cue coding neuronal assemblies are extended transiently to a near-saturating level. They formed partially orthogonal and overlapping clusters centered around hub cells with higher and earlier ramp-like responses, as well as locally increased connectivity. This temporally maximizes computational capability and allows competition between assemblies that encode behaviorally relevant information by stochastic fluctuation from trial-to-trial. The coding competition is driven by reinforcement feedback at the level of individual neurons. 

Singularity theory of Weyl-point creation and annihilation

Időpont: 
2023. 10. 13. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
György Frank (BME)

Weyl points (WP) are robust spectral degeneracies, which can not be split by small perturbations, as they are protected by their non-zero topological charge. For larger perturbations, WPs can disappear via pairwise annihilation, where two oppositely charged WPs merge, and the resulting neutral degeneracy disappears. The neutral degeneracy is unstable, meaning that it requires the fine-tuning of the perturbation. Fine-tuning of more than one parameter can lead to more exotic WP mergers. In this work [1], we reveal and analyze a fundamental connection of the WP mergers and singularity theory: phase boundary points of Weyl phase diagrams, i.e., control parameter values where Weyl point mergers happen, can be classified according to singularity classes of maps between manifolds of equal dimension. We demonstrate this connection on a Weyl--Josephson circuit where the merger of 4 WPs draw a swallowtail singularity, and in a random BdG Hamiltonian which reveal a rich pattern of fold lines and cusp points. Our results predict universal geometrical features of Weyl phase diagrams, and generalize naturally to creation and annihilation of Weyl points in electronic (phononic, magnonic, photonic, etc) band-structure models, where Weyl phase transitions can be triggered by control parameters such as mechanical strain.

 
[1]: Gy. Frank, G. Pintér, and A. Pályi: "Singularity theory of Weyl-point creation and annihilation",  arXiv:2309.05506 (2023) 

Spintronics: its evolution and the case for low symmetry materials

Időpont: 
2023. 10. 17. 14:30
Hely: 
BME building F, lecture hall 13, second floor
Előadó: 
Luis Hueso Arroyo (NanoGUNE)

In this seminar I will revise some milestones in spintronics, the discipline which develops electronics with the use of the spin of the electron. I will highlight ultra-sensitive magnetic sensors and memory devices, whose commercial success have led to more advance proposals such as memory-in-logic. I will then present some current experiments in which we make use of low symmetry materials for unleashing unexpected spin phenomena.

Oldalak