BMETE15AF52

Tantárgy adatok
Tárgy címe: Számítási módszerek a fizikában 2
Neptun kód: BMETE15AF52
Felelős oktató: Dr. Török János
Felelős tanszék: Elméleti Fizika Tanszék
Képzés: BSc fizikus
Tantárgy adatlapja: BMETE15AF52
Követelmények, Információk

Oktatók

Órarendi információk

  • előadás:
    • hétfő 09:15-11:00, F3213
    • kedd 14:15-16:00, F3213
  • gyakorlat:
    • csütörtök 12:15-14:00, F3M01 (Lévay Péter)
    • csütörtök 12:15-14:00, F3213 (Lévay Sára)

Jelenléti követelmények

  • Jelenléti oktatás esetén:
    • Részvétel a gyakorlatok 70%-án
    • Ellenőrzés: névsor minden gyakorlaton
  • Online oktatás esetén:
    • Nincs jelenléti követelmény

Számonkérések

  • Minden héten hétfőn az előadás elején egy rövid zárthelyi (7-15 perc), az előző héten kapott házi feladatok, vagy a gyakorlaton, előadáson elhangzott példák egyikéből. (A házi feladatokat egyébként nem kell beadni.)
  • Két nagy ZH a csütörtöki ZH időpontban (a 8. és 13. héten)
  • Két nagy zárthelyit egy másik időpontban lehet pótolni (10. és 14. héten)
  • Írásbeli vizsgák

Követelmények aláíráshoz

  • Kis zárthelyik összpontszáma > 50%
  • Nagy ZH-k egyenként >= 40%
  • Jelenléti követelmények teljesítése

Vizsga

  • A kis és nagyzárthelyik alapján a jobban teljesítő hallgatóknak megajánljuk a vizsgajegyet.
  • Írásbeli vizsga, 90 perces
  • Eredmény:
    1. Vagy a vizsgán elért eredmény
    2. Vagy minden típust egy egységnek feltételezve: NagyZH/4+(KisZH-1/2)/4+VizsgaZH/2
    3. Órai aktivitást pozitív irányba figyelembe veszünk
    4. Ponteloszlás a konkrét eredmények függvényében

Konzultáció

  • Megbeszélés szerint. Kérem e-mailben jelezzék igényüket

Eredmények

Gyakorló anyagok

Gyakorlatok anyaga

Házi feladatok

  1. HF
  2. HF

Előadások anyaga

  1. Közönségs differenciálegyenletek 1.
  2. Közönségs differenciálegyenletek 2.
  3. Dirac delta pdf
  4. Green függvény 1.
  5. Green függvény 2.
  6. Fourier transzformáció
  7. Görbe vonalú koordináta rendszerek
  8. Differenciál operátorok
  9. Differenciál operátorok görbe vonalú koordináta rendszerekben
  10. Vonal menti és többdimenziós integrálok
  11. Gradiens és Gauss-Osztogrdszkij tétel
  12. Stokes tétel

Korábbi évek előadás anyaga

  1. Fourier1
  2. Fourier2, Fourier3
  3. Fourier4(Heaviside)
  4. Green-függvény

Jegyzet

Utolsó módosítás: 2021. február 7.

Utolsó módosítás: 2018. január 24.