MATH 21A Flux Integrals SPRING, 2009

//f(x,y,z) dS = //f(r(u,v)) lr, X r,| dudv,
S D

where f is a function defined on the parametric surface r(u,v).

A surface integral is

Evaluate the surface integral z

//S(l—irz) ds,

where S is that part of the plane x +y + 2z = 2 in the
first octant.

Suppose F is a continuous vector field on an oriented surface S with unit normal vector n. The surface

integral of F over S is
//F-dS://F-ndS://F-(ruxrv)dudv
s S D

for a parametrically defined surface.

Evaluate the surface integral ffs F - dS, where F = yi — xj 4+ zk and S is the part of the sphere
22 + y? + 2% = 4 in the first octant with inward orientation.



Evaluate the surface integral [[F -dS, where F = (z,y,2z) and S is the part of the paraboloid
S

z =4 — z? — y? that lies above the unit square [0,1] x [0, 1] with the downward orientation.

Evaluate the surface integral [[ F-dS, where F = zi+ yj + (22 + 2y)k and S is the part of the
S

paraboloid z = 4 — 2% — y? that lies above the unit disk (centered at the origin) with upward
orientation.

Evaluate the surface integral [[(F -dS, where F = (—z,z,y) and S is the full unit hemisphere
(including the base!) on and above the xy-plane (so 2 + y? + 22 = 1 plus a disk) with the
outward orientation.



Flux Integrals — Answers and Solutions

Here we use the parameterization r(z,y) = (z,y,1 — 32 — 1y). From this we find that

ij k
1 11
r$xry:1 0 -3 :<§7§,1>
01 —3

Therefore

ffoo s [l (b o

The region D in our parameter space (the xy-plane) need to cover our surface is the triangle
D={(z,y) : 220, y>0, s+y <2},

so we can write our limits as follows:

//1+z ) dS = // (2——33—%3/) dy da
:/02(ix2—2x+3> da

1 8
=—.22-92243.9=—
12 + 3

This is based on Problem 23 from Section 13.6 of the textbook.
One common parameterization of the sphere of radius a is simply using spherical coordinates
(with p = a):

r(¢,0) = {asin(¢) cos(d), asin(¢) cos(6), acos(¢)).
One could then compute ry X rg, but it is easier to just remember that we've done this before
and the answer is:

ry X g = a’sin(¢)( sin(¢) cos(d), sin(¢) cos(6), cos(¢) ).

(See, for example, page 869 of the text.) The coefficient in front is simply the coefficient p? sin(¢)
from the spherical volume element (with p = a) while the vector is simply the unit vector in the
direction (z,y, z) (the radial vector, which is perpendicular to the tangent plane to the sphere).

Notice that the orientation is specified to be the inward normal, so we actually want ry X ry =
—Ty X TIyp.

In any case, with this we proceed. In spherical coordinates (with p = a = 2 in this case), our
vector field is

F = (y,—z,z) = (2sin(¢) sin(#), —2 sin(¢p) cos(0), 2 cos(¢)) .



Thus
F- (1‘9 X I'¢)
= —4sin(¢)(2sin(¢) sin(9), —2sin(¢) cos(f), 2 cos(@) ) - { sin(@) cos(h), sin(p) cos(6), cos(¢))

= —8sin(¢) cos?(¢).
We integrate this over the domain {(¢,6) : 0 < ¢ <7/2, 0 <68 < 7/2}, so we have

/ / F.dS — /0 " /0 S sin(@) cos() db do
S

/2
- _477/ sin(¢) cos?(¢) d¢
0

w/2 Am

S— [—%0033(@]0 -7

Another approach is to use the parameterization by = and y

r(z,y) = <x, y,\/ 4 —x?— y2>

then integrating over the quarter circle in the xy-plane. Let’s see how this goes:

ij k
_0 1 ———\_/_ X _ Yy _
rerx_ 4—;32_y2 _< 4—;52—3/27 4—1‘2—3/2’ ]->
10 - \ \

(Notice we've used r, X r, to get the inward-pointing normal.) Thus

T Y
F.-(r,xr,) ={(y,—z,2) - ( — , — , —1
(, % 1) = {y >< —— >
z Yy
=(y,—x,\/4— 22— 2>- _— -1
(1= =7) s e 1)
=—\4—x2—y?
and so
2 pvV4—x2
//F~dS:/ —\4—2?—y?dyde
0o Jo
S

2Ty 4 — 2 y At
=— | |SVd-? -yt sin_l( )} dz
/0 |:2 Y 2 V4—l’2 0

as before.



A simple parameterization of this surface is r(z,y) = (x,y,4 — * — y?). Thus

ij k
r, xr,=|1 0 —2z|=(22,2y,1).
01 —2y

(Note that this is not properly oriented. We're told to use the “downward orientation” but here
the k component is positive. Thus we should be using r, x r, = —r, x r, = (-2, -2y, —1).)

Thus
//F -dS = // (x,y,22) - (—2x,—2y,—1) dx dy
S D

= // (—2952 — 2% — 22) dx dy.
D

Now we notice that (according to our parameterization) z = 4 — 22 — y. The region D in our
parameter space is a unit square, so we get

//F-dsz/ol/o1 [—22° —2y* —2(4 — 2° — ¢?)) dz dy

S

_ /01 /01 (~8) dx dy = —8 Area(D) = —8.



One way to do this is to use the parameterization r(z,y) = (x,y,4—2*—y*), sor, = (1,0, —2x),
r, = (0,1, —2y), and so

i j k
r, xr,=|1 0 —2z| = (2z,2y,1).
01 —2y

Thus we can write

F-(r, x1,) = (7,y,22 + 2y) - (22, 2y, 1) = 22° + 2y* + 22 + 2y.

//F-dS:// (2x2+2y2+2x+2y) dx dy,
S D

where D is the unit disk. Thus we make the change to polar coordinates, where 222 + 2y? + 2z +
2y = 2r% + 2r (cos(0) + sin(0)) and dz dy = r dr df. We get

//SF -dS = /0% /01 [2r2 + 27 (cos(0) + sin(e))]r dr df

— /027T /01 [27”3 + 272 (cos(f) + sin(@))} dr df

Hence our flux is

_ /0 E—kg(COS(Q)—i—sin(Q))} d

_ Be N % (sin(6) — cos(&))] S

0

Another approach is to use polar coordinates to parameterize the surface from the very beginning.
That is, we could use the parameterization r(r,6) = (rcos(),rsin(6),4 — r?), in which case
r, = (cos(f),sin(f), —2r) and ry = (—rsin(f),r cos(#),0), so

i i K
r, xrg=| cos(d) sin(f) —2r| = (2r*cos(f),2r’sin(f),r).
—rsin(f) rcos(d) 0

In these coordinates our vector field is F = (r cos(0), rsin(@), 2r(cos(d) + sin(0))), and therefore
our flux is

/ /S F.dS = /0 K /0 1(rcos(@),7"Silf1(9),27“(cos(0) +sin(0))) - (2r2 cos(6), 2r sin(0), ) dr df

_ /0 - /0 1 2%+ 2% (cos(0) + sin(0)) | dr db,

which is identical to an integral computed above.



Here we need to compute two integrals:

é/F-dS:ZI/F-dS+4/F-dS,

where S; is the hemisphere (with outward-pointing normal) and S5 is the unit disk in the zy-plane
(with downward-pointing normal).

The integral over S; is very similar to the previous problem. We’ll use the first parameterization
of Problem 3, namely

r(¢,0) = (sin(¢) cos(d), sin(¢) sin(d), cos(¢)).

This gives us an outward-pointing normal

Iy X Ip= sin(gb)< sin(¢) cos(#), sin(¢) sin(h), cos(gb)>,

F‘-(r¢ X rg)
= ( — cos(¢), sin(¢) cos(6), sin(¢) sin()) - ( sin®(¢) cos(6), sin*(¢) sin(6), sin(¢) cos(¢) )
= —sin?(¢) cos(¢) cos(8) + sin®(¢) sin(6) cos(8) + sin®(¢) cos(¢) sin(6).

Thus

[/F-ds

w/2 2
- /0 /0 (_ sin?(¢) cos(¢) cos(f) + sin®(¢) sin(6) cos(f) + sin?(¢) cos(¢) sin(@)) do do

2

/2
/0 <— sin?(¢) cos(¢) sin(f) — sin®(¢) - %Sin2(9) — sin®(¢) cos(¢) COS(Q))

de

0=0

0.

The second integral is even simpler. Here S5 is the unit disk in the xy-plane, with the unit
normal n = —k (straight down). Thus

//F as = //<—zxy (0,0, 1) dA = // ydA,

where D is the unit disk in the zy-plane. We use polar coordinates to compute this integral:

1 2m
//F-dS://—ydA:// —rsin(f) - r df dr
0 Jo
S5 D

1 27
:/ r?cos(f)| dr=0.
0

0



Thus the full integral is

//F~dS://F‘dS—i—//F‘dS:O—l—O:O.
S S1 Sa

We’ll see a simpler way of computing this integral on Wednesday when we learn about the
Divergence Theorem.



