MATH 255 Applied Honors Calculus 111 Winter 2011

Homework 11

Due: Monday, April 18, 2011

Section 17.7, pg. 1155: 5, 13, 19, 24.
Section 17.8, pg. 1161: 3, 7, 13, 17
Section 17.9, pg. 1168: 3, 7, 19, 25.

17.7 # 5
z=g(z,y) =1+ 2z + 3y.

/ /S 22ydS = [ [, 2%z /TT G T G2dA
= [0 [Z2%y(1 + 22 + 3y)V1 + 4 + 9dydx
= \/ﬂfo?’ foz(:):zy + 223y + 322y?)dydx
— \/ﬂfog(xzyQ/Q + 23y? + 32%y®) |2dx

= V14 [ (102 + 42%)dx
=171V/14
17.7 # 13
[ Js(@*z 4+ y?2)dS.

S is a hemisphere, so spherical coordinates seem reasonable. p =2, 0< ¢ <7/2, 0 <6 < 2m.
7(u,v) = (2sin ¢ cos ¢, 2sin ¢ sin 0, 2 cos ¢).
In spherical coordinates, | 7 X 7 |= p*sin ¢ = 4 sin ¢.

/ /S(:Bzz +y°2)dS = [ [,(4sin® ¢ cos® 62 cos ¢ + 4 sin® ¢ cos? 62 cos ¢)4 sin ¢pdpdh

=32 fozw OW/ ?sin3 ¢ cos pdodd

= 64 fow/ % sin3 ¢ cos pdg
1
= 327 [, udu
= 167

The substitution was u = sin ¢ so du = 2sin ¢ cos ¢.

17.7 # 19

S:z=4—2—y?over 0 <z <1and0<y<1. The paraboloid begins to suggest cylindrical
coordinates, but the domain does not have cylindrical symmetry. So we’ll keep rectangular

C_Qordinates.
F=(P,Q,R) = (xy,yz, zx).



f[.r-as — [ Jp(~P3 ~ Q3 + R)dA
S
= fJ fJ —(2y)(—22) — (y2)(~2y) + (22)] dady

= Jy Jo [=(ay)(=22) — y(4 — 2% — y?)(=2y) + (4 — 22 — y?)a] dwdy
= "4z — 23 + 22%y + 8y® — xy? — 202y? — 2y ddy
0 0
— 713/180

Section 17.7, #24 Fvaluate the surface integral ffs F-dS for the vector field

ﬁ(x,y, z) = xzi + 2] + yE and the oriented surface S given by the hemisphere

2?2 +y? + 22 =25, y > 0, oriented in the direction of the positive y-axis. In other words, find
the flux ofﬁ across S.

Solution. As in problem #13, we need to start by choosing a parametrization of S, and any
one will do. Given a parametrization 7= 7(u,v) of S, with (u,v) € D C R?, the formula is

//F q5 = j:// P 0) X 7 (u,v)] dAu, v),

where the sign is chosen so that 47, x 7, points in the direction of desired orientation.
One parametrization of the hemisphere is to take x = u, z = v, and y = V25 — u? — v2, where
the domain D is D = {(u, v) such that u? +v? < 25}. Then, 7(u,v) = (u, V25 — u2 — v%,v), so

T, v) X Ty (u, v) = <1, — Y ,O> X <O,— Y ,1>
V25 —u? —v? V25 —u? —v?

V25 — w2 =02 V25 —u2 =02/
It is clear by examination of the y-component that this normal vector to .S points in the
opposite direction desired; therefore we select the minus sign and obtain

FodS=—[| F#(u,v))-[Fu(u,v) x 7(u,v)] dA(u,v)
JFms==]],

= [| F(F(u,v))- 1, ————— ) dA(u,).
//D <\/25 U v V25 —u v>

Finally, using the parametrization of S we have
F(7(u,v)) = (uwv,u, V25 — u® — v?),

so evaluating the dot product, we arrive at the double integral formula

(05[] [ vued] anon

This double integral is going to turn out to be zero, basically because each term in the
integrand is an odd function of either u or v, and the region D is symmetrical with respect to
u — —u and v — —v. But to confirm this we should just evaluate the integral by iterated
integration as follows:

+5 V22 w2 45 V2502
//F ds = / / { }vdvdujt/ / wdudv =0,
V25—uZ 25—U2—02 V25—0?




since in each case, the inner integral is identically zero because the integrand is an odd

function of the integration variable while the interval of integration is symmetric about zero.
Alternatively, we might choose to parametrize S by spherical coordinates in which we take the
north-south axis to be the y-axis instead of the z-axis. Thus we have x = 5sin(v) cos(u),

y = bcos(v), and z = 5sin(v) sin(u), with longitude angle u € [0, 27] and latitude angle

v € [0,7/2], so the domain D in the (u,v)-plane is the rectangle D = [0, 2x] x [0, 7/2]. Then,

7(u,v) = (5sin(v) cos(u), 5 cos(v), 5sin(v) sin(u)), so

Tu(u,v) = (=5sin(v) sin(u), 0, 5sin(v) cos(u)) and 7,(u,v) = (5 cos(v) cos(u), —5 sin(v), 5 cos(v) sin(u)),

and therefore a normal vector to S is given by

7, v) X 7 (u, v) = 25(— sin?(v) cos(u), sin(v) cos(v) cos?(u) + sin(v) cos(v) sin®(u), sin?(v) sin(u))

= 25sin(v)(—sin(v) cos(u), cos(v), sin(v) sin(u)).

Since 0 < v < 7/2, we see that the y-component of this normal vector is nonnegative, so the
vector is pointing in the desired direction for the orientation of S. Therefore, for this
parametrization we need to take the plus sign in the formula:

J[Fedr= [[ Bt o) utu < w0 dag.o
=25 //D sin(v) F(7(u, v)) - (—sin(v) cos(u), cos(v), sin(v) sin(u)) dA(u, v).

Finally, we note that in this parametrization,
F(#(u,v)) = (25 sin®(v) sin(u) cos(u), 5 sin(v) cos(u), 5 cos(v)),
So computing the dot product in the integrand gives
//s Fdi =125 //D [—5sin*(v) sin(u) cos*(u) + sin®(v) cos(v) cos(u) + sin®(v) cos(v) sin(u)] dA(u, v)

w/2 2w
=125 /0 /0 [sin*(v) cos®(u)[— sin(u)] + sin®(v) cos(v) cos(u) + sin®*(v) cos(v) sin(u)]| du dv

/2 1 u=2m
=125 / {g sin®(v) cos® (u) + sin?(v) cos(v) sin(u) — sin?(v) cos(v) cos(u) dv
0 u=0
/2
= 125/ 0dv
0
= 0.

17.8 # 3

Using Stokes’s theorem means we want [, ¢ Fdr, F = (x%e¥*, y%e™, 22¢¥). S is the top
hemisphere of radius 2, so the boundary is the circle of radius 2 in the xy plane.

7(t) = (2cost, 2sint,0). 7 (t) = (—2sint,2cost,0).



//Smﬁ).dg [ Fdr

= [ZTF - 7(t)dt

=2 [27( V=0 gin t 4+ y(t)?
=38 f — cost?¢” sint + sin t?e” cos t)dt

e*®2() cos t)dt

=38 fozﬂ(— cost?sint + sin t? cos t)dt
= [cos®¢/3 + sin®¢/3] [3
=0

17.8 # 7
To use Stokes’s theorem, we identify the surface, which is the part of a plane in the 1st
octant. The plane goes through (1,0,0), but most importantly, has normal vector
i=1/V3 <1, 1, 1) This is clear, since the x-, y-, and z-directions are all equivalent.

The curl is V x F = —2(z, z,y).
/ﬁ-df* :ffsﬁxﬁ.dﬁ
08
= fo (1,1,1) dx dy
—fo 2z—2:):—2y) dx dy
—fo 1—x— )—2x—2y)dxdy
—fo 2) dx dy
:—2+1: 1

17.8 # 13
We want to confirm Stokes’s theorem for a paraboloid z = 2? + y?, 2 < 1 and F = (y? x, 2?).

a)[ [(VxF-dS

DU I A B A
VXF= a% 2 a% =1(0) — 7(0) + k(1 — 2y)
vt ox oz

V x F=1(0,01-2y) = (P,Q,R)



The surface is a graph of z = g(x,y) = z* + y?, so we can use the following approach:

-dS = [ [,(~g.P — g,Q + R)dA
= [ [(=9.0 — 9,0 +1—2y)dA
= [ [,(1—2y)dA
= 027r fol(l — 2rcosf)r dr df
= 027T fol (r — 272 cos §)dr d6
= [77(1/2 — 2/3 cos 0)dd
=2r/2=m

—

o
<
X
BTl

b) [ F-dF
The boundary of the surface is the curve around the open end. That is
7(t) = (1 -cost,1-sint,1),0 <60 <27 So 7 '(t) = (—sint, cost,0).

/ﬁ - di = [P F(7(t)) - 7 (t)dt

= 02”<y(t)2,a:(t), z(t)?) - (—sint, cost, 0)dt

= f027r(sin2 t,cost, 1) - (—sint, cost,0)dt
— 2" —sin® t + cos? tdt
= — [-1/3(2 + sin®t) cos ] (2)7r +[t/2+ 1/48111215]3”
=04+7+0=m7

The two match, ffs(ﬁ x F)-dS = fﬁ -dr

17.8 # 17

The work around those edges is |, c F. dr’, where C is a closed curve. Clearly, given this F , We
can’t simply integrate. We use Stokes’s theorem.

The curl is V x F = (2y,2z,2x).

We can parameterize the surface as (6, ¢) = (2sin ¢ cos,2sin ¢ sind, 2 cos ¢).

This leads to: 7 x 7y = (4 cos @ sin? ¢, 4 sin @ sin? ¢, 4 sin ¢ cos ¢).



/ﬁ-df = [[;VxF-dS
oS

= [T [TV x F) - (7 % Fy)dA

0
= foﬂ/z /2 (2y,2z,2x) - (4 cos fsin® ¢, 4sin O sin” ¢, 4 sin ¢ cos ¢)d A

= foﬂp 7T/2<4$11r1gzﬁsur19 4 cos ¢, 4sin ¢ cos ) - (4 cos fsin® ¢, 4 sin 0 sin? ¢, 4 sin ¢ cos p)dA

= [ [7%(16 cos B sin B sin® ¢ + 16 cos ¢ sin® ¢ sin @ + 16 cos @ sin? ¢ cos ¢)dd de
— [ [T2(8sin 20 sin* ¢ + 32 cos ¢ sin® ¢ sin Hd6 Ao
= fo (8sin® ¢ + 32 cos psin? ¢ do
= [(8(—3/4cos ¢ + 1/12 cos 3¢) + 32(sin’ ¢/3)]

[(8(—3/4cos ¢+ 1/12cos 3¢) + 32(sin® ¢/3)]
=16

w/2

w/2

The table in the back of the book was used for integrating sin® ¢, and sin® ¢ cos ¢ is recognized
as the derivative of sin® ¢/3.

17.9 # 3

Calculate in both ways.

a) [ [ [V-FdV

V- F=3+1+2r=3+37

///Eﬁ'ﬁdv :folfolfol(3+3$) dy dz dx

= [/(3+ 3z) dx
—3+3/2=19/2

b) [ [on F - dS The boundary of the box is the union of the six surfaces. We need a normal
vector for each, but this is easy. E.g. top has 77 = k to point upwards.



//Mlﬁdg o FohdS+ [ [ Fo(—h)ds+ [ [, Fids
Sy Fo (=0)AS + [ [ B (=5)dS + [ [, F - §dS
/ /B Eﬁ -dS = [ Jiop202dS = [ [y 202dS + [ [;.., 32dS
—J Joaer 22dS — ffzeft rydS + ffm'ght rydsS
//{)Eﬁ.ds* = [ fyp 22 - 1dS = [ [, o 22 0dS + [ [, . 3-1dS
~J Joaer2°0dS = [ [,y -0dS+ [ [ @ -1dS

// F-dS =3+3/2=9/2
OF
The same!
179 # 7
The divergence is V - F' = e”siny — e”siny + 2yz = 2yz.
The flux is:

// F.d§ = [[[,% Fav

OF
= f02 fol fol 2yz dx dy dz
=2

17.9 # 19

The trick here is to note that the divergence theorem relates [ faE F.dS= [f fv V- FdV.

But, in this case, OF = Sy. We want ffsﬁ-dgz I /s, F-dS— I /s, F - dS. The second
term is easy to compute, but the first would be hard without the divergence theorem.
F={%2,1?/3 +tan z,2%2 + 3?). Thus V- F = 2% + 9% + 22,

// F.d§  =[[[ V. Fav
OF
= [ [ [, (Z*+y*+2*)dV

Given the hemisphere solid and the sum of square terms, spherical coordinates seem like a
good choice.

//fwﬁ'dg = [ [ Sy +y* +a?)av

21

= [ I3 3 (p)*? sin 6 dp d6 dg

= [T singdo [27d6 [} (p)*
=27 /5



Now for: [ [ s F - dS. The normal vector is clearly —k. Recall that z = 0 on S;.

// F-dS  =—[[; F-kdS
S1
:—ffslzc2z+y2d5

=—J fsl y*dS
=— fol 027T r? sin? OdOdr
= —7/4dr
J[F-dS=[ [, F-dS— [ [, F-dS=2r/5— (—m/4) = 137/20.

17.9 # 25
S is the boundary of V. That is S = 8V Thus S i s a closed surface.

J SV x Fy-aS = [ [, (Vx F)-aS=[ [ [, V(Y x F)av = [ [ [, 04V =0.
Using the identity V - (V x F) = 0.



