BMETE11MF58

Course data
Course name: Nanotechnology and Materials Science
Neptun ID: BMETE11MF58
Responsible teacher: Szabolcs Csonka
Department: Department of Physics
Programme: Courses for Physicist MSc students
Course data sheet: BMETE11MF58
Requirements, Informations

Informations

This course gives an introduction to the main trends in nanotechnology and material science, covering fabrication and measurement techniques by giving examples from state-of-the-art research and development results.  

 

Lecturers: Dr. Szabolcs Csonka, Dr. Sándor Bordács (Dep. of Physics), Dr. Gábor Dobos (Dep. of Atomic Physics)
Requirements: 3/0/0/v/4
Language: English
Mark: based on oral exam
Consultation: based on private communication
TIme and place: Wednesday 9:30, F3M01 
 
 

Lecture Notes 2019

Lecture 0:   Richard P. Feynman: There’s plenty of room at the bottom (1959)

                       Later lecture (1984) Video
Lecture 1-3: Introduction to Nanotechnology
Lecture 4: Electron microscopy
Lecture 5: 2D Materials
Lecture 6: Scanning Probe Techniques (L. Tapasztó)
Lecture 7: Top-down approach and bottom up-approach
Lecture 8: Semiconductor technology, MEMS (P. Fürjes)
Lecture 9: Modern surface analytic techniques (G. Dobos)
Lecture 10: Novel directions in electronics: Spintronics, Quantum electronics, Memristors, Top down approach and bottom up approach
Lecture 11-12: Optical spectroscopy (S. Bordács)
 

 
 
 
 

Literature

Nano part:

Douglas Natelson: Nanostructures and Nanotechnology (Library of Inst. of Physics)

Stuart Lindsay: Introduction to Nanoscience (Library of Inst. of Physics)

Springer Handbook of Nanotechnology

Rainer Waser (Ed.): Nanoelectronics and Information Technology

Optics part:

Atkins: Molecular quantum mechanics

Struve: Fundamentals of molecular spectroscopy

Tinkham: Group theory and quantum mechanics (Library of Inst. of Physics)

Dressel: Electrodynamics of solids (Library of Inst. of Physics)

Sólyom: Fundamentals of teh Physics of Solids I. Chapter 13.  (Library of Inst. of Physics)

Kamarás: Bevezetés a modern optikába V. 11. fejezet

Surfacescience part:

S. Hofmann: Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, Springer, 2012

John C. Vickerman, Ian Gilmore, Surface Analysis: The Principal Techniques, Wiley, 2011

D. Briggs, J.T. Grant: Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, IMPublications, 2003

J.C. Vickerman, D. Briggs: ToF-SIMS: Surface Analysis by Mass Spectrometry, IMPublications, 2001

D. Briggs, M.P. Seah: Practical Surface Analysis, Wiley, 1990

 
 
 
 

 

Topics 2018

  1. Objects at nanoscale. Characteristic length scales in electronics
  2. Examples from bio-nanotechnology: virus, structure of cell wall, DNA origami, Phage display technique, electrodes from viruses, gecho tape
  3. Nanotechnology in chemistry: nanochatalysis, artifical photosynthesis, photochatalic decomposition of hydrocarbon, batteries, supercapacitors.
  4. Nanotechnology in solar cells (Schockley–Queisser limit, multijunction cells, carrier multiplication, dye cells).
  5. Scanning tunneling microscopy. Feedback loop, piezo crystal, constant current/height mode, isolation of mechanical noises, tunnel current, resolution, STS, ITS, manipulation of atoms.
  6. Atomic force microscopy 1. Basics of mechanics, different operational modes, surface forces, instabilities of cantilever, force- displacement curve, limitation of resolution.
  7. Atomic force microscopy 2. Operation modes: static/dynamic, contact/non-contact. Friction force microscopy, DFM's operational principle.  Force dependence of frequency shift, atomic resolution. Tapping mode principle.
  8. Kelvin probe microscopy,  Magnetic force microscopy: feed backing challenges, magnetic force induced by stray field. Magnetic resonance force microscopy.
  9. Scanning electron microscopy.  Parts of SEM, operational principle, resolution. Electron sources, optics, magnetic lenses, depth of field, detectors: SE, BSE, EDS, EBD.
  10. Transmission electron microscopy. Parts of TEM, operational principle, resolution.  Different operational modes (BF, DF, diffraction). High resolution TEM. Electron holography.  Electron energy loss spectroscopy, Lorentz TEM.  Near field optical microscope, operational principle. Resolution (NSOM).
  11.  Molecular vibrations; infrared and Raman active excitations; dielectric function, absorption and reflectivity for vibrational excitations; phonons in solids (longitudinal and transversal modes)
  12. Instrumentation of optical spectroscopy; schematics of a grating spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer
  13. Optical excitations in hydrogen-like atoms; X-ray spectroscopy; Ti:sapphire lasers; spectroscopy on a single molecule
  14. Optical response of metals (Drude model); interband excitations in semiconductors, insulators; excitons 
  15. New directions of electronics (spintronics, quantumelectronics, molecular electronics, memristors)
  16. Basics of silicon technology, Moore's law, planar and 3D tri-gate MOS transistors, lithography (optical,  e-beam, soft)
  17. MEMS systems, bulk and surface micromechanics, thin film deposition techniques, etching techniques (wet, dry, Bosch), examples from micromechanics (console, gyroscope, channels). NEMS examples. Microfluidic systems, low  Reynold number and consequences.
  18. SIMS and SNMS methods.  Principles, surface sensitivity, accessible information, limitation in quantitative results.
  19. XPS and AES methods.  Principles, surface sensitivity, accessible information, comparison.
 

Literature

Nano part:

Douglas Natelson: Nanostructures and Nanotechnology (Library of Inst. of Physics)

Stuart Lindsay: Introduction to Nanoscience (Library of Inst. of Physics)

Springer Handbook of Nanotechnology

Rainer Waser (Ed.): Nanoelectronics and Information Technology

Optics part:

Atkins: Molecular quantum mechanics

Struve: Fundamentals of molecular spectroscopy

Tinkham: Group theory and quantum mechanics (Library of Inst. of Physics)

Dressel: Electrodynamics of solids (Library of Inst. of Physics)

Sólyom: Fundamentals of teh Physics of Solids I. Chapter 13.  (Library of Inst. of Physics)

Kamarás: Bevezetés a modern optikába V. 11. fejezet

Surfacescience part:

S. Hofmann: Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, Springer, 2012

John C. Vickerman, Ian Gilmore, Surface Analysis: The Principal Techniques, Wiley, 2011

D. Briggs, J.T. Grant: Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, IMPublications, 2003

J.C. Vickerman, D. Briggs: ToF-SIMS: Surface Analysis by Mass Spectrometry, IMPublications, 2001

D. Briggs, M.P. Seah: Practical Surface Analysis, Wiley, 1990