Optical spectroscopy

Optical spectroscopy

Recommended literature:

Atkins: Molecular quantum mechanics

Kamarás: Bevezetés a modern optikába V. 11. fejezet (FI könyvtár)

Sólyom: A modern szilárdtest-fizika alapjai I. 13. fejezet (FI könyvtár)

Struve: Fundamentals of molecular spectroscopy

Tinkham: Group theory and quantum mechanics (FI könyvtár)

Dressel: Electrodynamics of solids (FI könyvtár)

Details will come in the spring semester:

Optikai spektroszkópia az anyagtudományban (BMETE11MF39) (Optical Spectroscopy in Materials Science)

Optical spectroscopy

Polarization/polarizability:

If the molecule has inversion symmetry, i.e. $[\hat{H}, i] = 0$, then the eigenfunctions of \hat{H} are either even or odd \rightarrow Vibrations are either Raman or IR active, respectively.

NIST Chemistry WebBook

Wavenumbers (cm-1)

N×3 dimensional displacement field: { x_1 , y_1 , z_1 , ..., x_N , y_N , z_N }

Classical

al:
$$m_{j} \frac{d^{2}u_{j}(t)}{dt^{2}} = -\frac{\partial E_{harm}}{\partial u_{j}} = -\sum_{k \neq j} D_{j,k} u_{k}(t) \qquad u_{j}(t) = u_{j} e^{i\omega t}$$
$$m_{j} \omega_{j}^{2} u_{j} = \sum_{k \neq j} D_{j,k} u_{k}$$

 ω_j eigenfrequencies and u_j eigenmodes \rightarrow diagonalise $D_{j,k}$

Quantum:
$$\widehat{H} = \sum_{j=1}^{3N} \frac{p_j^2}{2m_j} + \frac{1}{2} \sum_{j \neq k} u_j D_{j,k} u_k = \frac{1}{2} \sum_{j=1}^{3N} \left(\widetilde{p}_j^2 + \omega_j^2 \widetilde{u}_j^2 \right) = \left(\sum_{j=1}^{3N} \hbar \omega_j \left(\hat{a}_j^+ \hat{a}_j + \frac{1}{2} \right) \right)$$

 ω_j eigenfrequencies and u_j eigenmodes (polarization) \rightarrow diagonalise $D_{j,k}$

3N harmonic oscillators

N×3 dimensional displacement field: { x_1 , y_1 , z_1 , ..., x_N , y_N , z_N } 3N harmonic oscillators

- 3 translational modes: only the center of mass moves
- 3 rotational modes: rigid rotations around the center of mass, 2 in case of linear molecules, may be IR active, MHz - GHz
- 3N-3-3 vibrational modes, ω_i eigenfrequencies

$$\varepsilon(\omega) = \varepsilon_{\infty} + \sum_{j} \frac{e^{2}}{K_{j}} \frac{\omega_{j}^{2}}{\omega_{j}^{2} - \omega^{2} - 2i\gamma_{j}\omega}$$

- IR active modes: posses oscillating electric dipole moments (thus not all modes are IR active)
- Raman active modes: polarizability of the molecule changes
- Silent modes: neither IR nor Raman active modes

NAME	Pos	TIONS	OF IN	FRARE	BAN	DS -			_		FUNCTION	AL GROUP	REPRESENT			
Aliphatic Methyl	C-H _ 2960										Methyl					
Methylene	_ 2930	0-0									CH3-	Methylene	Alkene	Alkyne		
Alkenes	_ 3050	1640									Vinyl	- CH ₂ -	C=C	C≡C		
Vinyl Vinylidene	910 890	1640 1640									R1_C=C_H	Vinylidene	Cis	Trans		
Cis Trans Alkynes	700 965 3200	1640 1670	C≡C 2200							l	H´ H	R1 R2 C=C H	R1 HC=C H	R1 H C=C < H R2		
Aromatics Mono	_ 750			Ring 700								Mono	Ortho	Meta	Para	
Ortho Meta Para	750 782 817		_	700								()- R1	R1 R2	R1 O	# ()	
Oxygen Groups Ether					C-O 1100	0-H						L	Aldehyde	Ketone	R2 Ester	
Carbonyl Groups	2700				1100	3330	C=0						0 -C-H	0 C-C-C	0 C-0-C	
Ketone	_ 2700						1700						3	Ether	CarbAcid	Alcohol
Carboxylic Acid _					. 1200	3100	1720							C-0-C	С-он	C-0-H
Nitrogen Groups								N-H						Amide	Amine	Nitrile
Amide Amine Nitrile							_ 1640	3200 3300	C≡N 2250					0 C-N	C-N	C=N

https://www.thermofisher.com

- IR and Raman spectra of known molecules are accessible in databases → composition, concentration of a molecule can be determined from spectroscopy
- Units of the molecules (O-H, C=O, ...) have characteristic frequencies (group frequencies), which do not change much → spectroscopy can be used to determine the structure of new molecules
- In case of smaller molecules it is possible to calculate the structure and the vibrational modes from first principels

- IR and Raman spectra of known molecules are accessible in databases → composition, concentration of a molecule can be determined from spectroscopy
- Units of the molecules (O-H, C=O, ...) have characteristic frequencies (group frequencies), which do not change much → spectroscopy can be used to determine the structure of new molecules
- In case of smaller molecules it is possible to calculate the structure and the vibrational modes from first principels
- Solvent: frequency shift, different damping

C₆₀ fullerén:

Prize in Chemistry 1996 Robert F. Curl Jr., Sir Harold Kroto, Richard E. Smalley

The discovery of carbon atoms bound in the form of a ball is rewarded

Robert F. Curl, Richard E. Smalley: *Probing* C_{60} Science **242**, 1017 (1988)

vaporization

C₆₀ fullerén:

The Nobel Prize in Chemistry 1996 Robert F. Curl Jr., Sir Harold Kroto, Richard E. Smalley

The discovery of carbon atoms bound in the form of a ball is rewarded

Robert F. Curl, Richard E. Smalley: *Probing* C_{60} Science **242**, 1017 (1988)

Carbon atoms per cluster

Fig. 1. Mass spectra of carbon cluster distributions in a supersonic beam produced by laser vaporization

Fig. 2. Truncated icosahedral structure proposed for C_{60} .

Fig. 3. A possible fullerene structure for the cluster C_{72} .

Vibrations of C₆₀ fulleren

- Vibrational modes: N×3-6=174 harmonic oscillatros
- Icosahedral symmetry \rightarrow 46 normal modes: 4 IR active, 10 Raman active, 32 silent modes

A_{1g} Raman breathing mode

Vibrations of C₆₀ fulleren

- Icosahedral symmetry \rightarrow 46 normal modes: 4 IR active, 10 Raman active, 32 silent modes
- First principles calculations: C₆₀ icosahedral ground state, vibrational frequencies with ~1-2% error

Measurement in 1.4 mm thick films: B. Chase, N. Herron, E. Holler: J. Phys. Chem. 96, 4262 (1992)

The q=0 case is equivalent to a diatomic molecule, atoms move respect to the center of mass

Wave equation for Fourier components: $0 = \mathbf{q} \times (\mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega}) + \frac{\omega^2}{c^2} \varepsilon(\omega) \mathbf{E}_{\mathbf{q},\omega}$ Longitudinal solution: $0 = \mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega} \Leftrightarrow \varepsilon(\omega) = 0 \Rightarrow \omega^2 = \omega_{TO}^2 + \frac{\Omega_{pl}^2}{c} = \omega_{LO}^2$ $\omega_{TO} = \sqrt{2D \frac{m_u + m_v}{m_u m_v}}$ $\varepsilon(\omega) = \varepsilon_{\infty} + \frac{\Omega_{pl}^{2}}{\omega_{ro}^{2} - \omega^{2}} = \varepsilon_{\infty} \frac{\omega_{TO}^{2} + \frac{\Omega_{pl}^{2}}{\varepsilon_{\infty}} - \omega^{2}}{\omega_{ro}^{2} - \omega^{2}}, \quad 1 \to \varepsilon_{\infty} \text{ to take into account the high frequency electronic excitations, } \gamma = 0$ $\varepsilon(\omega) = \varepsilon_{\infty} \frac{\omega_{LO}^2 - \omega^2}{\omega_{TO}^2 - \omega^2}$ Longitudinal Transverse $\uparrow q << \frac{\pi}{-}$ a $\overleftarrow{E_{\omega}}$ E_{a}

Wave equation for Fourier components: $0 = \mathbf{q} \times (\mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega}) + \frac{\omega^2}{c^2} \varepsilon(\omega) \mathbf{E}_{\mathbf{q},\omega}$

Longitudinal solution:
$$0 = \mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega} \Leftrightarrow \varepsilon(\omega) = 0 \Rightarrow \omega^2 = \omega_{TO}^2 + \frac{\Omega_{pl}^2}{\varepsilon_{\infty}} \equiv \omega_{LO}^2 \qquad \qquad \omega_{TO} = \sqrt{2D \frac{m_u + m_v}{m_u m_v}}$$

Dispersion relation:
$$q^2 = \frac{\omega^2}{c^2} \varepsilon(\omega) = \frac{\omega^2}{c^2} \varepsilon_{\infty} \frac{\omega_{LO}^2 - \omega^2}{\omega_{TO}^2 - \omega^2} \Longrightarrow \omega(q) = \frac{1}{2} \left(\frac{c^2 q^2}{\varepsilon_{\infty}} + \omega_{LO}^2 \pm \sqrt{\left(\frac{c^2 q^2}{\varepsilon_{\infty}} + \omega_{LO}^2 \right)^2 - 4 \frac{c^2 q^2}{\varepsilon_{\infty}}} \omega_{TO}^2 \right)^2$$

Wave equation for Fourier components: $0 = \mathbf{q} \times (\mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega}) + \frac{\omega^2}{c^2} \varepsilon(\omega) \mathbf{E}_{\mathbf{q},\omega}$

Longitudinal solution:
$$0 = \mathbf{q} \times \mathbf{E}_{\mathbf{q},\omega} \Leftrightarrow \varepsilon(\omega) = 0 \Rightarrow \omega^2 = \omega_{TO}^2 + \frac{\Omega_{pl}^2}{\varepsilon_{\infty}} \equiv \omega_{LO}^2 \qquad \qquad \omega_{TO} = \sqrt{2D \frac{m_u + m_v}{m_u m_v}}$$

Choudhury et al., Phys. Rev. B 77, 134111 (2008)

Symmetry lowering as seen by the vibrational modes

The Nobel Prize in Physics 1994 Bertram N. Brockhouse, Clifford G. Shull

The Nobel Prize in Physics 1994 was awarded *"for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter"*

- MnO FCC lattice with 2 atoms in the unit cell, NaCl structure
 - Antiferromagnetic order below T_N=118K (Nobel prize, magnetic neutron scattering)
 - The crystal symmetry changes from cubic to rhombic due to the magnetic order

Symmetry lowering as seen by the vibrational modes

The crystal symmetry of MnO changes from cubic to rhombic lower than rhombic due to the magnetic order!

As the temperature is lowered phonon modes become: • harder as the lattice shrinks

sharper as the phonon-phonon scattering freeze out

- 2 atoms in the unit cell: 3 acoustic + 3 optical branches
- T>T_N 3× degeneracy, cubic phase
- T<T_N no degeneracy, orthorhombic phase

Physical Review B 77, 024421 (2008)

Symmetry lowering as seen by the vibrational modes

Bordács et al., Phys. Rev. Lett. 103, 077205 (2009)

Grating spectrometer

Radiant flux:
$$\Phi = \iint \mathbf{S} d\mathbf{A}$$

Brightness: $B = \frac{A}{\partial \Omega \partial A \cos \theta}$
(Radiance)

Brightness is conserved in an ideal loss-less optical system

Etendue (throughput): $E=A^*\Omega$

f-number = F/D notation: f/# , e.g. f/2 = 100 mm / 50 mm = 2 Numerical aperture: NA = $nsin\theta=nsin(arctg(D/2F))$ small f-number or large NA is better

$$E_G \propto WH\left(\frac{D}{F}\right)^2 \propto \frac{H}{F}D^2 \frac{\Delta\lambda}{\lambda}$$

K-P. Mollmann and M. Vollmer Eur. J. Phys. 34 S123 (2013).

Fourier transform infrared (FT-IR) spectrometer

Discrete Fourieer Transform (DFT) finite sampling interval, Δx finite high frequency cut-off $\omega_M = \frac{\pi c}{2\Lambda x}$

multiplex advantage

throughput advantage

$$\xi = \left[\frac{2L}{\cos(\alpha)} - 2Ltg(\alpha)\sin(\alpha)\right] - 2L$$

path difference = [deflected beam] - centered beam when $\xi \sim \lambda$ cancellation on the detector, no point to further move the mirror

$$\frac{\lambda \approx L\alpha^2}{\frac{\Delta \lambda}{\lambda} \approx \alpha^2} \qquad E_{FT} \propto \left(\frac{D}{2}\right)^2 \pi \left(\frac{D}{F}\right)^2 \propto \alpha^2 D^2 = D^2 \frac{\Delta \lambda}{\lambda}$$

Molecular vibrations as seen by tunneling spectroscopy

Szimmetriák szerepe a rezgési módusok meghatározásában

Szimmetria kvantumos megfogalmazásban: $[\hat{H}, g] = 0 \quad \forall g \in G$ Þ \hat{H}, g közös sajátállapotok

 G_i -k a szimmetriacsoport invariáns alterei, H-nak ezen altereken belül a sajátértékei megegyeznek

- A molekula szimmetriáinak ismeretében megadható, hogy hány darab, hányszorosan degenerált rezgési módus van, D_{i,k} pontos alakjának ismerete nélkül!!!
- Megadható, hogy mely módusok infravörös ill. Raman aktvak ill. melyek csendes módusok

Nanotechnológia és anyagtudomány: optikai spektroszkópia blokk

Vízmolekula: (N-2)×3=3 vibrációs módus

• Molekula pontcsoportja: a molekula összes szimmetriája az alapállapotában,

B₁

 B_2

-1

-1

• Pontcsoport generátorai: a minimális számú szimmetria, melynek szorzataként a többi előáll,

-1

1

x, R_y

y, R_x

Pontcsoport karaktertáblája:

\geq	a csoport	invariáns	alterei
	(polár- és	axiálvekte	or)

Nanotechnológia és anyagtudomány: optikai spektroszkópia blokk

1

-1

Nanotechnológia és anyagtudomány: optikai spektroszkópia blokk

http://www.chemtube3d.com/vibrationsH2O.htm

- Alacsony frekvenciákon rotációs módusok
- Környezet hatása, H-H kötések, ...
- Látható–közeli-infravörös ablak: szövetek átlátszósága
- Ultraibolya tartomány: elektronikus gerjesztések

Nanotechnológia és anyagtudomány: optikai spektroszkópia blokk

Szimmetriaváltozás megnyilvánulása rezgési módusokban

- MnO FCC rács 2 atomos bázissal, NaCl struktúra
 - Antiferromágneses rendeződés T_N=118K-en (Nobel-díj, neutron szórás)
 - Kristályrács szimmetriája köbösről trigonálisra csökken a mágneses rendeződés miatt
 - Fm3m Þ <u>https://en.wikipedia.org/wiki/Space_group</u> Þ m3m v. O_h

linear, $E | 8C_3 | 6C_2 | 6C_4 | 3C_2 = (C_4)^2 | i | 6S_4 | 8S_6 | 3\sigma_h | 6\sigma_d$ quadratic rotations $x^{2}+v^{2}+z^{2}$ A_{1g} 1 1 1 1 1 1 1 1 1 1 $\mathbf{A_{2g}}$ -1 -1 1 1 -1 1 -1 1 1 Eg -1 $(2z^2-x^2-y^2, x^2-y^2)$ 2 -1 0 2 2 0 2 0 0 T_{1g} (R_x, R_v, R_z) 3 -1 -1 0 -1 1 -1 3 1 0 T_{2g} 3 0 -1 0 -1 1 -1 3 -1 1 (xz, yz, xy)A_{1u} -1 1 1 1 1 -1 -1 -1 -1 A_{2u} -1 -1 1 -1 -1 1 1 -1 1 Eu 2 0 -2 -1 0 2 -2 0 0 1 $T_{1u} | 3$ 0 -1 -1 1 -3 -1 0 1 1 (x, y, z) $T_{2u}|_{3}$ 0 1 -1 -1 -3 0 1 -1 1 MnO 6 -2 -2 2 -2 -6 -2 2 2 2

Character table for O_h point group

Összes módus: $\Gamma_{MnO} = 2T_{1u}$

Vibrációs módus: $\Gamma_{MnO}^{vibr} = T_{1u}$

Nanotechnológia és anyagtudomány: optikai spektroszkópia blokk

Szimmetriaváltozás megnyilvánulása rezgési módusokban

MnO szimmetriája trigonálisra trigonálisnál alacsonyabbra csökken a mágneses rend miatt!!!

							041	
	E	2C ₃	3C'2	i	2S ₆	3σ _d	linear, rotations	quadratic
A _{1g}	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
$\mathbf{A}_{2\mathbf{g}}$	1	1	-1	1	1	-1	Rz	
Eg	2	-1	0	2	-1	0	(R_x, R_y)	$(x^2-y^2, xy) (xz, yz)$
A _{1u}	1	1	1	-1	-1	-1		
A _{2u}	1	1	-1	-1	-1	1	Z	
Eu	2	-1	0	-2	1	0	(x, y)	
T _{1u}	3	0	-1	-3	0	1		

Character table for D_{3d} point group

Subgroups of D_{3d} point group: (C_s, C_i, C₂, C₃, D₃, C_{3v}, S₆

Character table for C_i point group

	E	i	linear, rotations	quadratic
Ag	1	1	R_x, R_y, R_z	$x^2, y^2, z^2, xy, xz, yz$
Au	1	-1	x, y, z	

Character table for C_s point group

	E	σ _h	linear, rotations	quadratic
A'	1	1	x, y, R _z	x^2, y^2, z^2, xy
A''	1	-1	z, R_x, R_y	yz, xz

Character table for C₂ point group

	E	C ₂	linear, rotations	quadratic
Α	1	1	z, R _z	x^2, y^2, z^2, xy
B	1	-1	$\mathbf{x}, \mathbf{y}, \mathbf{R}_{\mathbf{x}}, \mathbf{R}_{\mathbf{y}}$	yz, xz

Nanotechnológia és anyagtudomány: optikai spektroszkópia blokk