

SURFACE ANALYSIS

GÁBOR DOBOS

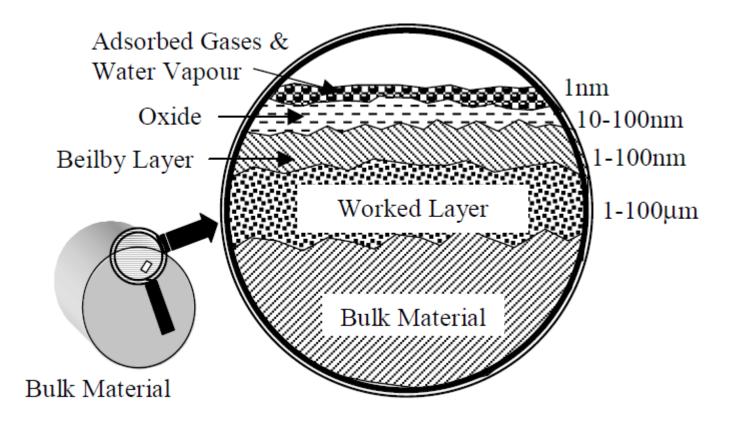
Outline

Introduction

- Why is it important?
- Surface sensitive analytical methods

Secondary Ion Mass Spectroscopy (SIMS)

- Principle of operation
- Properties
- SIMS spectra
- Depth profiles
- Auger Electron Spectroscopy (AES)
- X-ray Photoelectron Spectroscopy (XPS)
- Other methods (structure, morphology)



Literature

- M. Kiguchi et. al.:Compendium of Surface and Interface Analysis, Springer 2018
- S. Hofmann: Auger- and X-Ray Photoelectron Spectroscopy in Materials Science, Springer, 2012
- John C. Vickerman, Ian Gilmore, Surface Analysis: The Principal Techniques, Wiley, 2011
- D. Briggs, J.T. Grant: Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, IMPublications, 2003
- J.C. Vickerman, D. Briggs: ToF-SIMS: Surface Analysis by Mass Spectrometry, IMPublications, 2001
- D. Briggs, M.P. Seah: Practical Surface Analysis, Wiley, 1990
- <u>xpssimplified.com</u>
- www.nist.gov

What is the "surface"?

Source of image: http://webpages.dcu.ie/~stokesjt/ThermalSpraying/Book/Chapter1.pdf

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos) Slide 4 Introduction

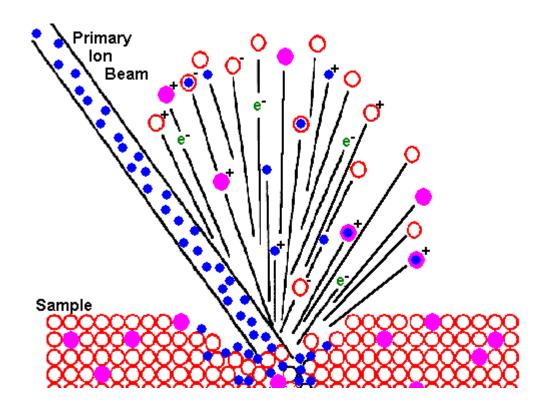
Why do we need surface analysis?

Example:

Determine the composition of the top 1 nm of a 1 cm² Si sample

Density: 2,3 g/cm³ Mass of the layer: 0,23 μ g Dissolved in 1 cm³ \rightarrow c_{Si} = 230 ppb

Concentration of contaminants in Si \sim ppm Concentration of contaminants in the solution << ppb \rightarrow Wet chemical methods won't work...

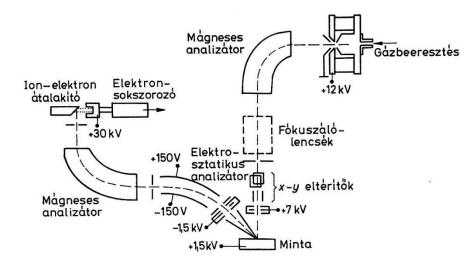


Surface analysis

- Surface sensitive methods are required
- Information depth should be comparable to atomic distances
- The mean free path of charged particles is very short in solids
- Grazing angle incidence
- Comparing measurements with different information depths

Secondary Ion Mass Spectroscopy (SIMS)

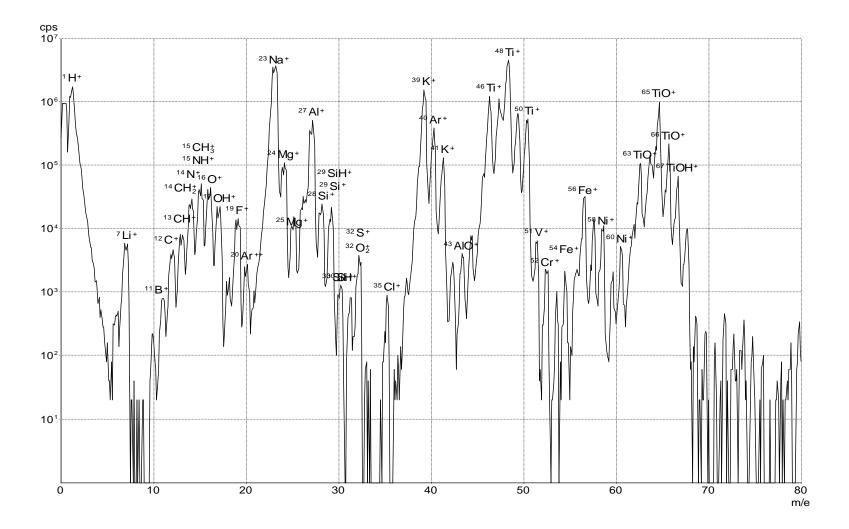
Source of image: http://pprco.tripod.com/SIMS/Theory.htm


Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 7 Secondary Ion Mass Spectroscopy (SIMS)

Principle of operation

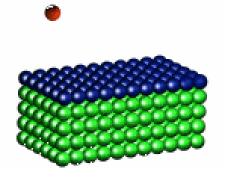
- The sample is irradiated by an ion beam
 - Primer ion: Ar⁺, Xe⁺, O⁻, O₂⁺, Cs⁺, Au_n⁺, Bi_n⁺, C₆₀⁺
 - Energy: 1-10 keV
- Secondary particles are emitted from the surface:
 - Electrons
 - Photons
 - Neutral Atoms
 - <u>Secondary ions</u>
- Collection of secondary ions
 - (Post ionization \rightarrow SNMS)
- Mass distribution

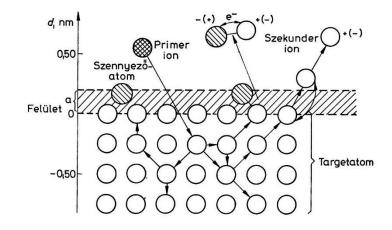


Source of image: Brümer et al.: Szilárd Testek Vizsgálata Elektronokkal, Ionokkal és röntgensugarakkal, Műszaki Könyvkiadó, 1984

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 8 Secondary Ion Mass Spectroscopy (SIMS)





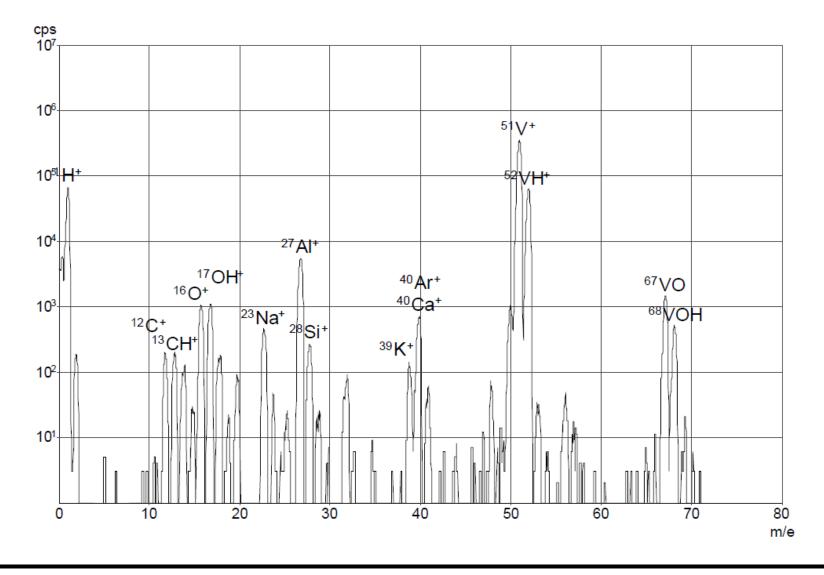
Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos) Slide 9 Secondary Ion Mass Spectroscopy (SIMS)

- Primer ion collides with the atoms of the sample
 - It breaks up bonds
 - Its momentum is transferred to the atoms
- Atoms from deeper layers can't escape
- Secondary ions are emitted from the top 2 atomic layers
- Information depth < 1 nm
- Note: Deeper layers are damaged...

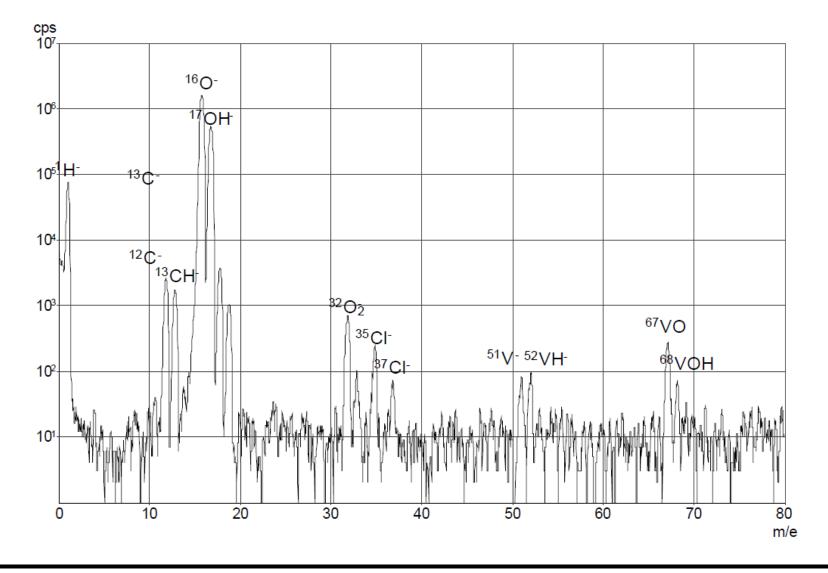
Brümer et al.: Szilárd Testek Vizsgálata Elektronokkal, lonokkal és röntgensugarakkal, Műszaki Könyvkiadó, 1984

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 10 Secondary Ion Mass Spectroscopy (SIMS)


Source of images: http://www.iontof.com/

Sensitivity


- Highest peaks: $10^6 10^7$ cps
- Background ~ 0 cps (dark noise?)
 - 1 cps detectable
- Very high dynamic range
 - Ratio of highest and lowest detectable peaks: 6-7 orders of magnitude
- Detection of trace elements

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos) Slide 12 Secondary Ion Mass Spectroscopy (SIMS)

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos) Slide 13 Secondary Ion Mass Spectroscopy (SIMS)

$$I_{s,Z,A/q}^{\pm} = I_p \cdot S \cdot \gamma_{Z,q}^{\pm} \cdot a_{Z,A} \cdot c_Z \cdot \eta_{A/q}$$

- I_p Primer ion current [A]
- *S* Sputtering yield [atom/ion]
- $\gamma_{Z,q}^{\pm}$ Ionization probability [ion/atom]

$$a_{Z,A}$$
 – Abundance (0-1)

 c_z – Surface concentration (0-1) [atomic%]

$$\eta_{A/q}$$
 – Transmission (0-1)

Main problem

Ionization probability depends on many parameters

- Element
- Matrix effect
 - Local chemical environment
- Measurement conditions
 - Primer ion
 - Energy of primer ions
 - Background pressure

\rightarrow No universal sensitivity factors

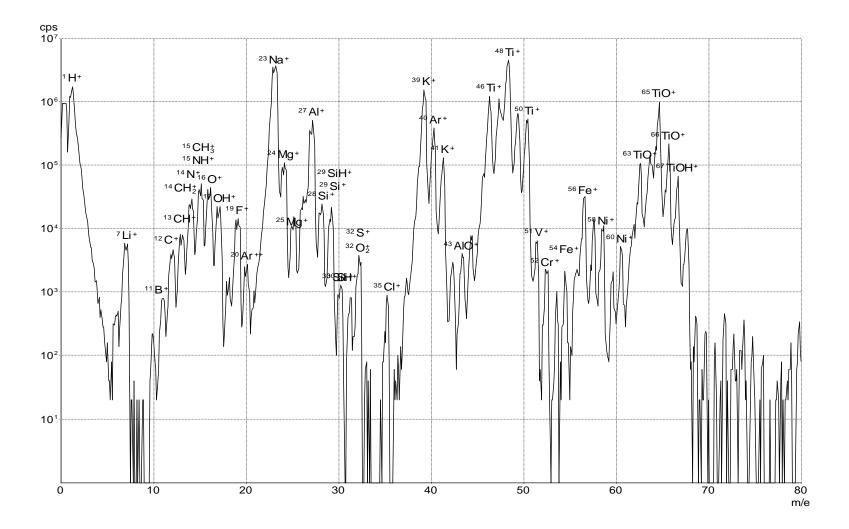
Influence of oxygen on the ionization yield

Metal	Elemental state	Oxide
Mg	0,01	0,9
AI	0,007	0,7
Si	0,0084	0,58
Ti	0,0013	0,4
V	0,001	0,3
Cr	0,0012	1,2
Mn	0,0006	0,3
Fe	0,0015	0,35
Ni	0,0006	0,045
Cu	0,0003	0,007
Ge	0,0044	0,02
Sr	0,0002	0,16
Nb	0,0006	0,05
Мо	0,00065	0,4
Ва	0,0002	0,03
Та	0,00007	0,02
W	0,00009	0,035

Reactive SIMS

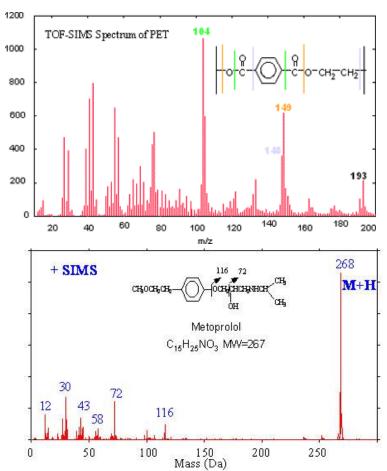
- Introduce oxygen gas to the vacuum system
- Sputtering with O⁻ or O₂⁺ ions
- Sputtering with Cs⁺ ions
- Increses secondary ion current
- Overrides matrix effect
- Quantitative measurements possible after calibration

SNMS


- Most of the atoms are not ionized
- Post ionization increases the number of detectable ions
- Matrix effect less important
- Quantitative after calibration
- Usual setup:
 - RF plasma above the sample
 - Atoms from the surface are ionized in the plasma
 - Measure the mass distribution of the ions in the plasma
 - Problems with insulator samples
 - No lateral resolution
 - No cluster ions or organic fragments
- SIMS instruments may have a post ionization upgrade (using an electron or laser beam)

Spectrum characteristics

- Elements may have multiple isotopes
 - Ratio of isotopes is constant
 - Deviation in isotope ratios indicate the presence of isobars
- Isobars
 - Multiple elements may have isotopes with the same mass
 - Modern spectrometers may be able to separate them
- Cluster ions
- Multiple ionization
- Surface contamination
 - Alkali metals
 - Oxygen, water
 - Organic fragments
 - Primer ions may get implanted in the sample
- Higher background on negative spectra due to electrons



Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos) Slide 20 Secondary Ion Mass Spectroscopy (SIMS)

Identification of organic molecules

- Organic molecules may get fragmented due to ion bombardment
- Each molecule has a set of characteristic fragments
- Fingerprint database
- Measurement conditions may influence the process
- Background pressure
- Energy and type of ion beam
- Proton transfer reaction
- Attachment of alkali ion

Mass spectrum of Metroprolol showing molecular and fragment peaks

Source of images:http://www.phi.com/surface-analysis-techniques/tof-sims.html

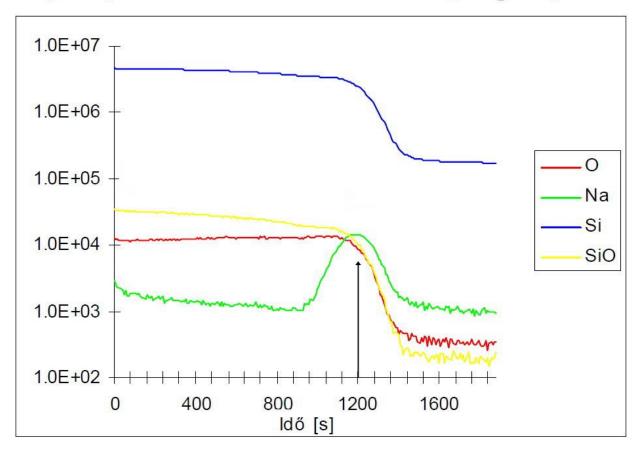
http://www.stinstruments.com/products/126/126-122-73-/surface-analysis-techniques-tof-sims

Slide 21 Secondary Ion Mass Spectroscopy (SIMS)

Depth profile

Secondary Ion 100 Continuous ion Concentration (%) Mass Spectrometry, 80 bombardment 60 SIMS 40 20 **Record peak intensities** 10 20 30 40 Depth as a function of time Sputtered Secondary lons, **Atoms and Molecules** 00) **Energetic Primary** Ion Beam O2+ or Cs+

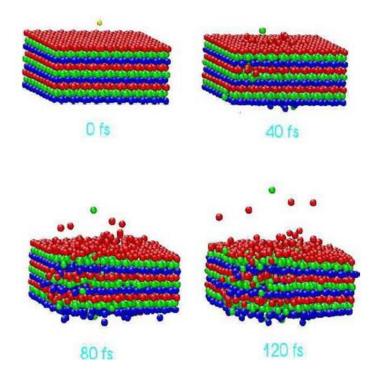
Source of image: http://www.almaden.ibm.com/st/scientific_services/materials_analysis/sims/


Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 22 Secondary Ion Mass Spectroscopy (SIMS)

Depth profile

Si egkristályon termikusan növesztett 50 nm vastag SiO₂ réteg

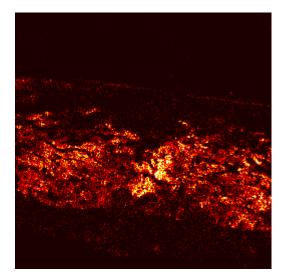


Depth profile

Problems:

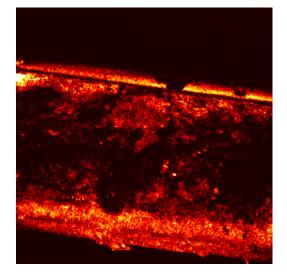
- Mixing due to ion bombardment
- Surface roughness increases
 - Mainly in case of policrystalline samples
 - Rotating the sample elviates the problem
- Bottom of the crater is not flat
- \rightarrow Resulction decreases
- Preferential sputtering
- Sputtering speed?
 - Depends of the material
 - Requires calibration

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

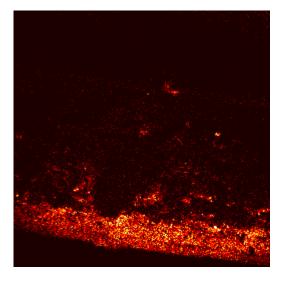


Ion-Surface Interaction 3 keV Ar +->NI(001)

Slide 24 Secondary Ion Mass Spectroscopy (SIMS)



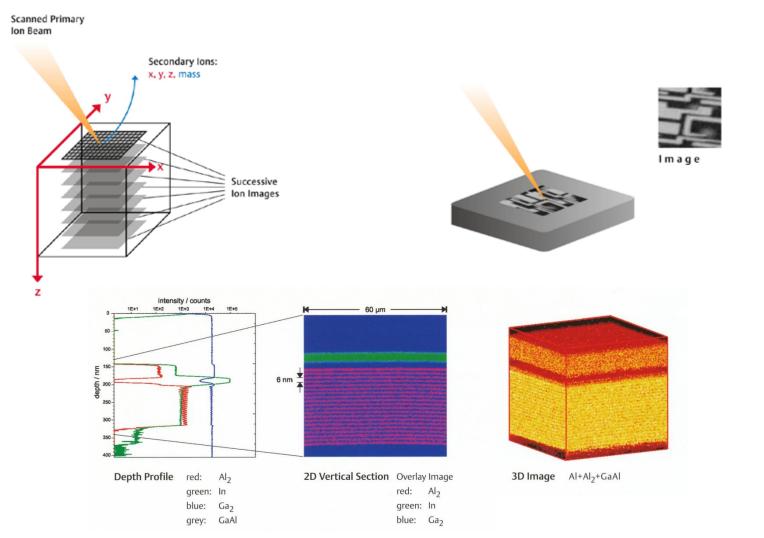
Lateral distribution mapping



C₃H₇O⁺

(Cellulose fragment)

Na⁺


Fe⁺

Source of images: http://www.phi.com/surface-analysis-techniques/tof-sims.html

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

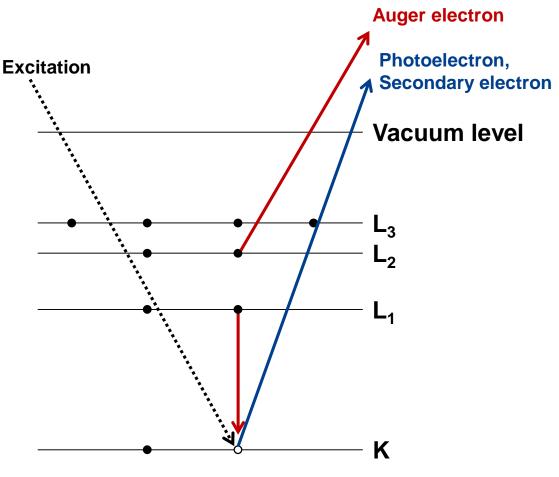
Slide 25 Secondary Ion Mass Spectroscopy (SIMS)

Source of images: http://www.iontof.com/

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 26 Secondary Ion Mass Spectroscopy (SIMS)

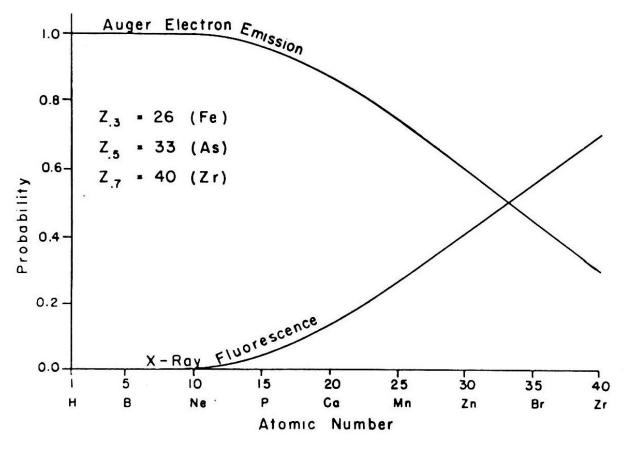
- Sputtering of the surface by an ion beam
- Collection of secondary ions
- Mass spectrum
- High dynamic range
- Trace element analysis
- Especially sensitive to alkali metals and halogens
- Matrix effect makes quantitative measurements difficult
- Reactive SIMS



- Advantages
 - Surace sensitive
 - Information depth: 1-2 atomic layers
 - Trace element analysis
 - Depth profiles, lateral distribution, 3D analysis
 - Organic molecule identification
 - Chemical information from claster ions and organic fragments
- Disadvantages
 - Usually not quantitative
 - Usually provides only elemental composition
 - Problems with insulators
 - FAB gun
 - Flood gun
 - Expensive

Auger Process

n		j	AES
1 (K)	0 (s)	1/2	Κ
2 (L)	0 (s)	1/2	L ₁
2 (L)	1 (p)	1/2	L ₂
2 (L)	1 (p)	3/2	L ₃
3 (M)	0 (s)	1/2	M ₁
3 (M)	1 (p)	1/2	M ₂
3 (M)	1 (p)	3/2	M ₃
3 (M)	2 (d)	3/2	M ₄
3 (M)	2 (d)	5/2	M ₅
•			



V: Valence electron

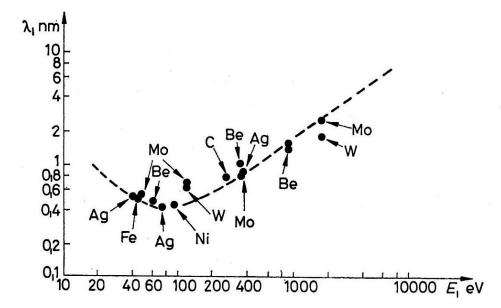
C: Core electron

Likelihood of the Auger process

Source of image: D. Briggs, et al.: Practical Surface Analysis, Vol. 2, Wiley, 1990

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

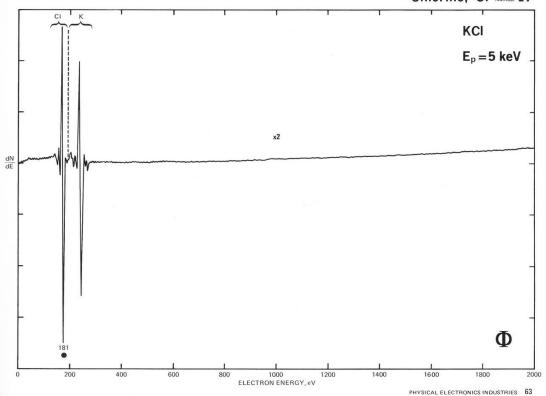
Slide 30 Auger Electron Spectroscopy (AES)



Auger Electron Spectroscopy

- Excitation of the sample by
 - Electrons
 - X-ray photons
 - Ions
- Auger electron energy is determined by the energy levels in the atom:
 - $E_{KLL} = E_{K} E_{L1}^{*} E_{L2}^{*}$
- Measurement of secondary electron energy distribution
- Peak positions \rightarrow Element identification
- Peak intensities \rightarrow Concentrations

Surface Sensitivity

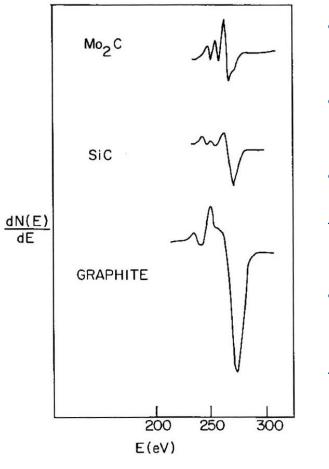


- Inelastic Mean Free Path (IMFP) of 50 2000eV electrons is very short
- Electrons from deeper layers loose energy
 - \rightarrow Background

Source of image: Brümer et al.: Szilárd Testek Vizsgálata Elektronokkal, Ionokkal és röntgensugarakkal, Műszaki Könyvkiadó, 1984

Chlorine, Cl Atomic 17

- Problem: small, flat peaks
- Solution: differential spectrum
 - Background disappears
 - Peaks are enhanced


Source of image: L. Davis et al.: Handbook of Auger Electron Spectroscopy, Physical Electronic Industries, 1976

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 33 Auger Electron Spectroscopy (AES)

Chemical State Identification

- Auger electron energies are determined by atomic energy levels
- The formation of chemical bonds, changes the electron structure of the atom
- Even the core levels shift
- → Auger peak positions and relative intensities change
- Visible peaks are often multiple peaks merged together
- \rightarrow Peak shapes may also change

Source of image: Brümer et al.: Szilárd Testek Vizsgálata Elektronokkal, Ionokkal és röntgensugarakkal, Műszaki Könyvkiadó, 1984

HANDBOOK OF AUGER ELECTRON SPECTROSCOP Silicon, Si Atomic 14 $E_p = 3 \text{ keV}$ x10 x20 x1 🗲 dN dE 1525 156 1601 С ↑ P 107 Ar 92 1619 Φ 200 300 500 1400 1600 100 400 1500 1700 600 0 ELECTRON ENERGY, eV PHYSICAL ELECTRONICS INDUSTRIES 49 Source of image: L. Davis et al.: Handbook of Auger Electron Spectroscopy, Physical Electronic Industries, 1976

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 35 Auger Electron Spectroscopy (AES)

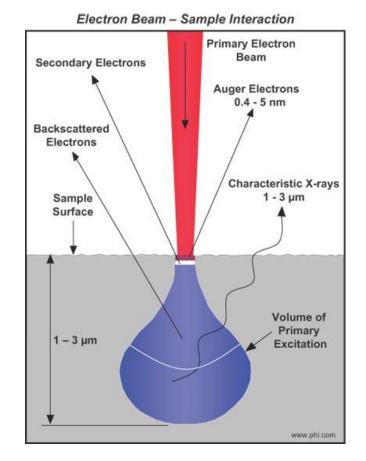
Silicon, Si Atomic 14 HANDBOOK OF AUGER ELECTRON SPECTROSCOPY SiO₂ $E_p = 3 \text{ keV}$ x4 x40 x8 dN dE 1562 1582 C 59 63 1606 76 Φ 100 200 300 400 1400 1500 1600 1700 0 500 1300 ELECTRON ENERGY, eV PHYSICAL ELECTRONICS INDUSTRIES 53 Source of image: L. Davis et al.: Handbook of Auger Electron Spectroscopy, Physical Electronic Industries, 1976

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 36 Auger Electron Spectroscopy (AES)

Problem

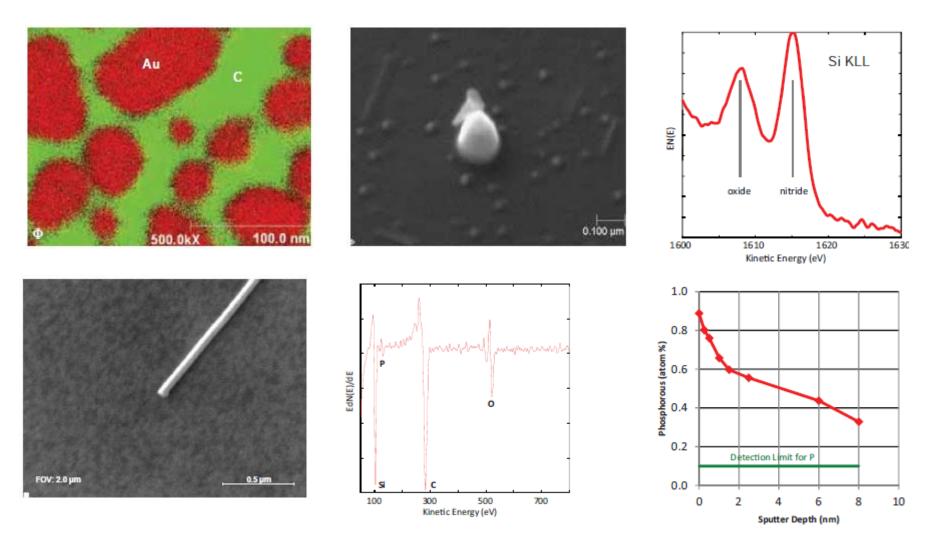
- Peak shapes change due to chemical state
- This affects the gradient of the curve
- \rightarrow It affects intensities on the differential spectrum
- \rightarrow Sensitivity factors are influenced by chemical states
 - In case of compounds, calibration may be required
 - Alloys are usually OK



Lateral Resolution

- Excitation by electrons
- Similar to SEM
- Beam diameter ~nm
- Auger electrons come frome the surface

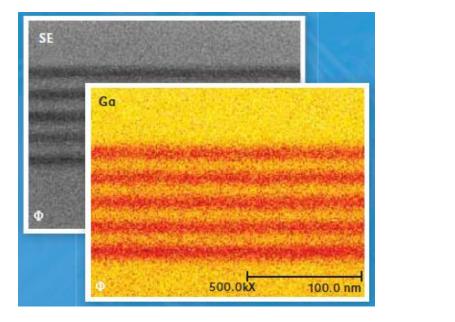
 \rightarrow Not affected by beam broadening in deeper layers


Lateral resolution can be ~ 8nm

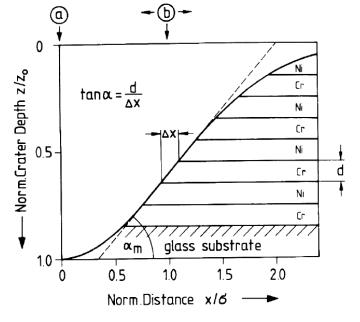
Source of image: http://www.phi.com/surface-analysis-techniques/aes.html

Slide 38 Auger Electron Spectroscopy (AES)

Source of images: http://www.phi.com/surface-analysis-techniques/aes.html


Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 39 Auger Electron Spectroscopy (AES)



Depth Profile

- By ion beam sputtering (just like in SIMS)
- Based on lateral distribution on a crossection cut or a crater

GaAs/AIAs layer structure Layer thickness =10 nm

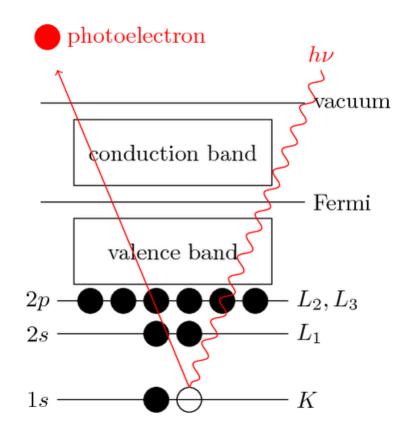
Source of images: http://www.phi.com/surface-analysis-techniques/aes.html

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 40 Auger Electron Spectroscopy (AES)

Summary

- Excitation by electrons, ions, X-rays
- Energy spectrum of secondary electrons
- Electrons from deeper layers loose energy
 - \rightarrow Information depth 0,5 5 nm
- Differential specrta
- Quantitative elemental compositions
 - Simple in case of alloys
 - Otherwise, calibration may be required
- Sensitivity ~ 1 atomic percent



- Chemical state identification based on peak position and peak shape
- Lateral resolution ~10nm
- Depth profile
 - By ion beam sputtering
 - From lateral distribution
- (Usually) Nondestructive
 - There may be damage due to local heating
 - Organic samples may degrade due to electron bombardment
- Problems with insulators

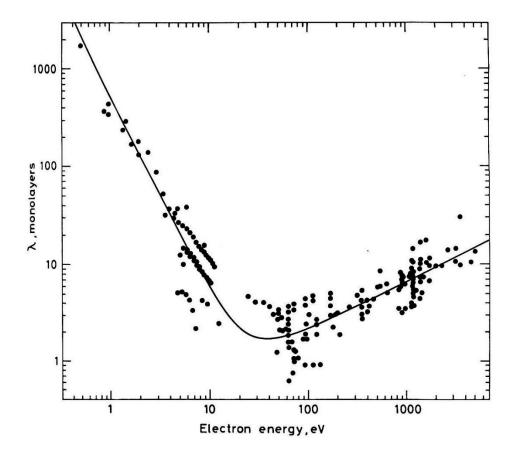
X-ray Photoelectron Spectroscopy (XPS)

- Excitation by photons
- If photon energy is high enough
 → Photoeffect
- $h\nu = E_{kin} + E_{binding,v}$
- UPS (Ultraviolet Photoelectron Spectroscopy)
 - Valence band
- XPS (X-ray Photoelectron Spectroscopy)
 - Core levels

Source of image: http://www.texample.net/tikz/examples/principle-of-x-ray-photoelectron-spectroscopy-xps/

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Titanium, Ti Atomic 22 870.1 L₃M₂₃M₂₃ Ti(LMM) 864.5 $Mg K\alpha$ $L_3M_{23}V$ 834.3 Ti(LMM) L_3VV 801.5 Ti 2p_{3/2} 820 920 870 770 N(E) E Ti 2p1/ Ti 2s Ті Зр Ti 3s Φ Ar 1000 900 800 700 600 500 400 300 200 100 **BINDING ENERGY, eV** PERKIN-ELMER 69


Source of image: C.D. Wagner, et al.: Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, 1978

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

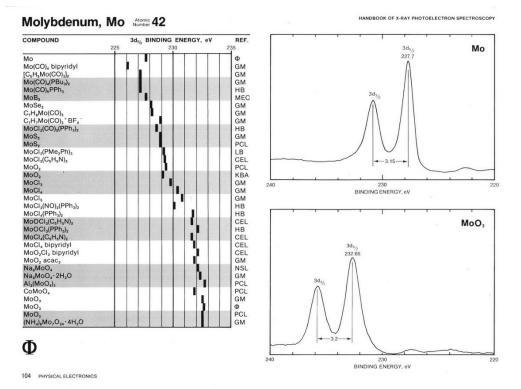
Slide 44 X-Ray Photoelectron Spectroscopy (XPS)

Surface sensitivity

Source of image: D. Briggs, et al.: Practical Surface Analysis, Vol. 2, Wiley, 1990

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

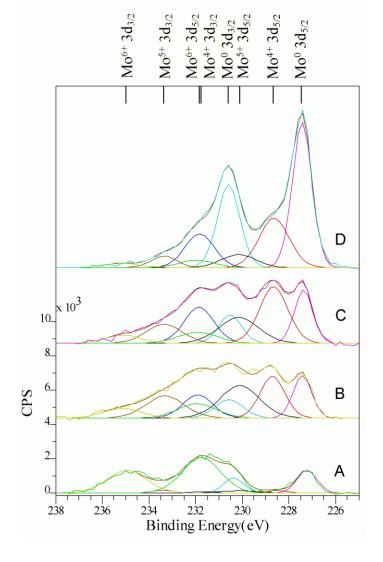
Slide 45 X-Ray Photoelectron Spectroscopy (XPS)

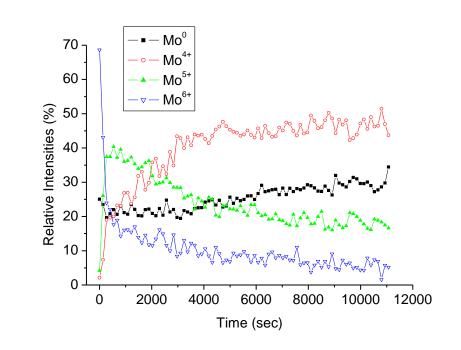

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY Titanium, Ti Atomic 22 870.1 L₃M₂₃M₂₃ Ti(LMM) 864.5 $Mg K\alpha$ $L_3M_{23}V$ 834.3 Ti(LMM) L_3VV 801.5 Ті 2р_{3/2} 820 920 870 770 N(E) E Ti 2p1/ Ti 2s Ті Зр Ti 3s Φ Ar 1000 900 800 700 600 500 400 300 200 100 **BINDING ENERGY, eV** PERKIN-ELMER 69

Source of image: C.D. Wagner, et al.: Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, 1978

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

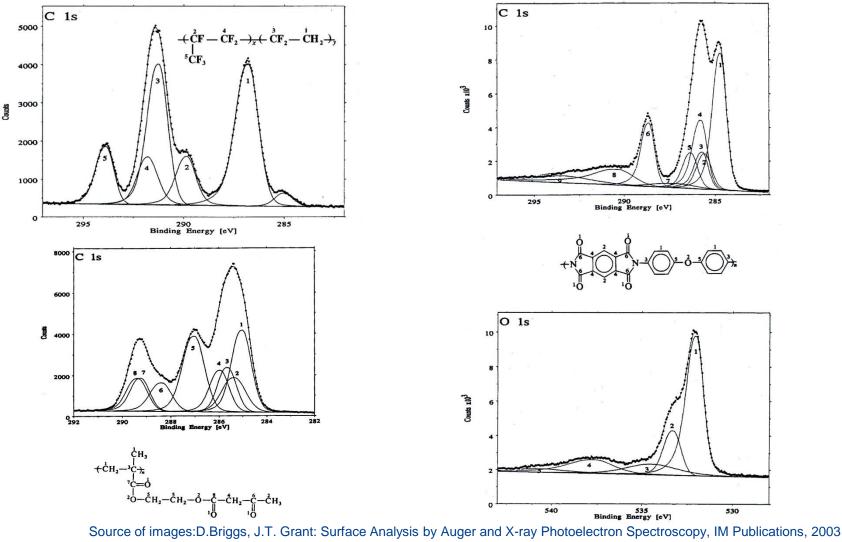
Slide 46 X-Ray Photoelectron Spectroscopy (XPS)




- Chemical bonds influence electron structure
- Core levels shift
- XPS peaks shift
- Higher oxidation state results in higher binding energy

Source of image: C.D. Wagner, et al.: Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer, 1978

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)



- XPS peaks may be decomposed to multiple synthetic components
- Ratio of atoms in different chemical states can be determined by peak fitting

D.Briggs: Surface Analysis of Polymers by XPS and Static SIMS, Cambridge University Press, 1998

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 49 X-Ray Photoelectron Spectroscopy (XPS)

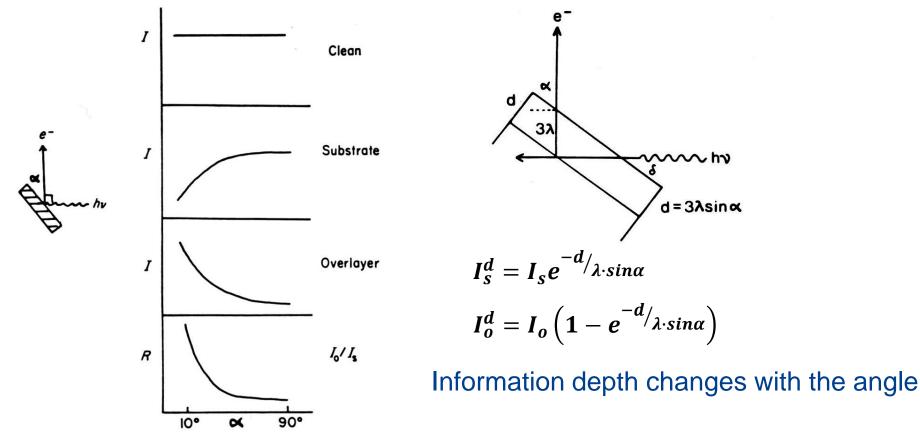
Functional group	Chemical shift			Number of
	Min.	Max.	Mean	examples
c-o-c	1.13	1.75	1.45	18
C-OH	1.47	1.73	1.55	5
*C-O-C ["]	1.12	1.98	1.64	21
¢ c—c	-	-	2.02	1
$C = O^{b}$	2.81	2.97	2.90	3
o-c-o	2.83	3.06	2.93	5
o−c− [*] c' ∥ 0	3.64	4.23	3.99	21
HO-C- O	4.18	4.33	4.26	2
0-c-0 0	4.30	4.34	4.32	2
-c-o-c-	4.36	4.46	4.41	3
-o-c-o- "	5.35	5.44	5.40	2

"Neglecting aromatic carboxylic esters, mean of 18 is 1.72, min. 1.48.

^bPEEK significantly lower: shift=2.10 (binding energy) referenced to aromatic

CH C1s=284.70eV).

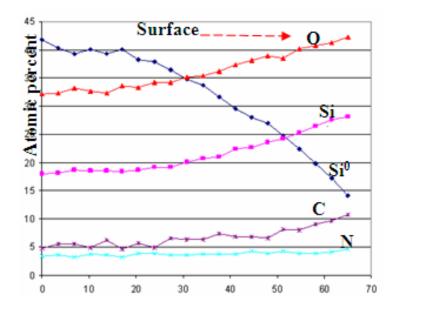
^cNeglecting aromatic carboxylic esters, mean of 18 is 4.05, min. 3.84.


Source of image: D.Briggs, Surface Analysis of Polymers by XPS and Static SIMS, Cambridge University Press, 1998

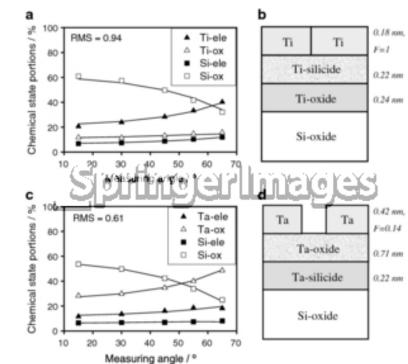
Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 50 X-Ray Photoelectron Spectroscopy (XPS)

Angle Resolved X-Ray Photoelectron Spectroscopy (ARXPS)

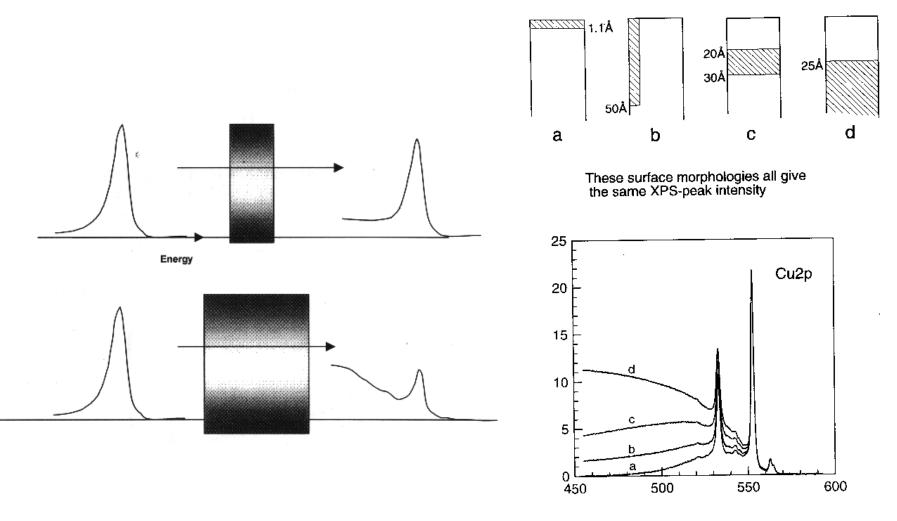


Source of images: D. Briggs, et al.: Practical Surface Analysis, Vol. 2, Wiley, 1990


Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos) Slide 51 X-Ray Photoelectron Spectroscopy (XPS)

ARXPS

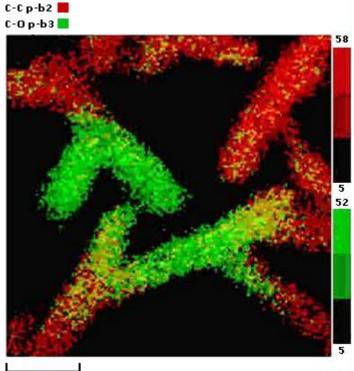
Tilt angle, Deg. 18A vastag SiON réteg Si hordozón


Layer thicknesses may be determined by fitting a model to the measurement data

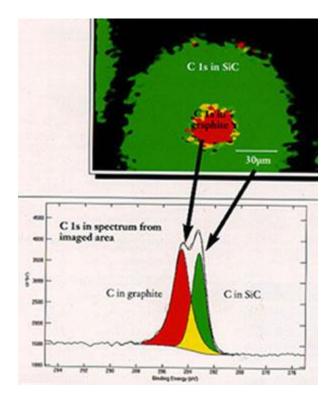
Source of images: <u>http://web.bgu.ac.il/Eng/Centers/nano/labs/XPS_AES.htm</u> http://www.springerimages.com/Images/Chemistry/1-10.1007_s00216-009-3282-y-4

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 52 X-Ray Photoelectron Spectroscopy (XPS)

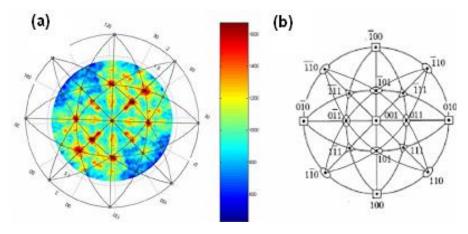


Source of images: http://www.quases.com/


Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

Slide 53 X-Ray Photoelectron Spectroscopy (XPS)

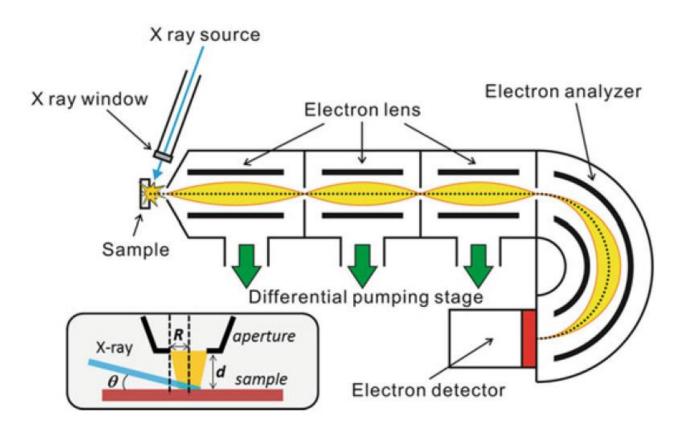
200 microns


Source of images: http://www.csma.ltd.uk/techniques/xps-imaging.htm http://www.udel.edu/chem/beebe/surface.htm

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

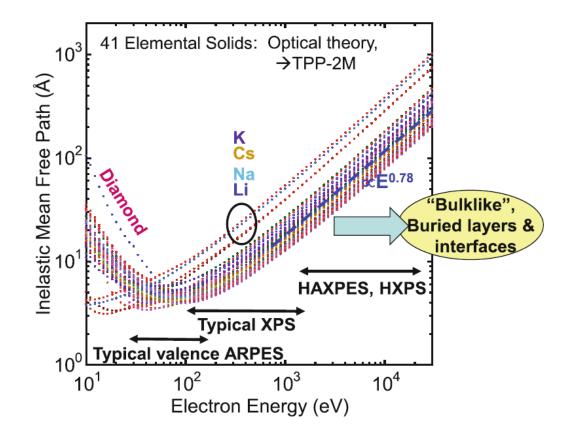
Slide 54 X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Diffraction (XPD)


Sr 3d5/2 XPD ábra SrTiO3 felületéről

- Photoelectrons are scattered on the atoms in the sample
- Photoelectron wavelengths are comparable to atomic distances
 → Diffraction
- AED: Similar with Auger electrons

Source of image:http://iramis.cea.fr/Phocea/Vie_des_labos/Ast/ast_visu.php?id_ast=1483


Ambient Pressure XPS

Source of image:M. Kiguchi et. al.: Compendium of Surface and Interface Analysis, Springer 2018

Hard X-Ray Photoelectron Spectroscopy

Source of image: J.C. Woicik: Hard X-ray Photoelectron Spectroscopy (HAXPES), Springer, 2016

Nanotechnology and Materials Science 2018/2019 Fall semester – Surface Analysis (Gábor Dobos)

XPS Characteristics

- Accurate elemental composition (~0.1 atomic percent)
- Chemical state identification
- Information depth: 3-5 nm
- Lateral resolution ~30µm
- Depth profile
 - By ion by sputtering
 - ARXPS
 - (From the background)
- XPD, AED \rightarrow Atomic structure

- SIMS
 - Trace element analysis (~ppm)
 - Organic compound identification
 - Information depth < 1nm</p>
 - Usually not quantitative
- AES
 - Excellent lateral resolution (~10 nm)
 - Elemental composition
 - Chemical state identification
 - Low sensitivity
- XPS
 - Precise elemental composition (~0.1 atomic percent)
 - Chemical state identification
 - Low lateral resolution