

THE LEGEND OF SCOTCH TAPE

2D Zoo: Van der Waals heterostructures veral similar 2D matrials:								
graphene family	graphene	hBN 'white graphene'			BCN	fluorograph	ene	graphene oxide
2D chalcogenides	MoS ₂ , WS ₂ ,	AoS ₂ , WS ₂ , MoSe ₂ , WSe ₂		emico chalco MoTe rS ₂ , Zi	nducting ogenides: ₂ , WTe ₂ , rSe ₂ , etc.	metallic dicha NbSe ₂ , NbS ₂ , TaS ₂ , layered semic GaSe, GaTe, InS		nalcogenides: ¹ ₂ , TiS ₂ , NiSe ₂ , etc. niconductors: nSe, Bi ₂ Se ₃ , etc.
2D oxides	micas, BSCCO	MoO ₃ , WO ₃		perovskite-type: LaNb ₂ O ₇ , (Ca,Sr) ₂ Nb ₃ O ₁ Bi ₄ Ti ₃ O ₁₂ , Ca ₂ Ta ₂ TiO ₁₀ , et		·type: r)aNbaOta	hydroxides: Ni(OH) ₂ , Eu(OH) ₂ , etc.	
	layered Cu oxides	TiO_2 , MnO_2 , V_2O_5 , TaO_3 , RuO_2 , etc.				₂ TiO ₁₀ , etc.	OTHERS	

Table 1. **Current 2D library.** In blue cells are monolayers proven to be stable under ambient conditions (room *T* in air); green – probably stable in air; pink – unstable in air but maybe stable in inert atmosphere. Grey cells indicate 3D compounds which have been successfully exfoliated down to monolayers as evidenced by, e.g., atomic force microscopy but with little further information. Summarized from refs 6-11,42,50. Note that, after intercalation and exfoliation, the oxides and hydroxides may exhibit stoichiometry different from their 3D parents (e.g., TiO₂ exfoliates into a stoichiometric monolayer of $Ti_{0.87}O_2$)⁸. Cell OTHERS indicates that many other 2D crystals including borides, carbides, nitrides, etc. have been⁷⁻¹¹ or can be isolated.

Geim et al., Nature 499, 419-425 (2013)

