Publikáció a Nature Communications-ben

Gali Ádám csoportjának legutóbbi kutatási eredménye – ami a Nature Communications-ben jelent meg – bizonyítja, hogy a hibakomplexumok kialakulásának reakciókinetikája nem garantálja, hogy ezek elérjék az egyensúlyi állapotot. Ez teljesen megváltoztathatja szimulációs stratégiáinkat, amelyekkel a hibagyártási folyamatainkat tervezzük a kvantumszámítógép-hardverek aktuális generációjának előállítása során. A Wigner Fizikai Kutatóközpontban és a BME Atomfizika Tanszékén működő kutatócsoportból a BME-s társszerzők Udvarhelyi Péter tudományos munkatárs és Gali Ádám egyetemi tanár. 
 
Peter Deák, Péter Udvarhelyi, Gergő Thiering, and Adam Gali

 
A szigetelőkben és félvezetőkben elhelyezkedő ponthibák tervezett gyártása kulcsszerepet játszik az elektronikai, fotovoltaikus és optikai eszközeink előállítása során. Jelenleg a kutatások élvonalához tartozik a megfelelő tulajdonságú ponthibák előállítása kvantumszámítógépek, kvantumkommunikációs berendezések és kvantumos mérőeszközök számára. Itt a létrehozott ponthibák helyének nagyon precíz kontrollja kifejezetten fontos kérdés [1]. A nanotechnológiai gyártási eljárások és az ionimplantáció fejlődését kihasználva a ponthibákat irányítottan tudjuk elhelyezni az anyagban – még azokat is, amelyek természetes módon nem is jönnek létre. Az új implantációs és besugárzásos technológiák fejlődése forradalmasította az anyagtudományt és a rá támaszkodó ipart. Mindazonáltal a besugárzásos technikák gyakran eredményeznek helyváltoztatásra is képes hibákat a kvantumhardverként létrehozott ponthiba mellett, és ezek aztán egymással is kombinálódva stabil hibakomplexumokat hoznak létre. Ha megértjük az atomi szintű folyamatokat, amelyek a célhiba és a parazitahibák létrejöttét, reakcióit, majd stabilitását szabályozzák, kitapossuk az utat a megbízható kvantumhardverelemek gyártása felé.
 
Mindemellett óriási az arra irányuló igény, hogy az új technológiák igényeihez új megoldásokat is találjunk – nemcsak új gyártási eljárásokat, hanem teljesen új ponthibákat a megfelelő funkciókhoz. Ezeknek a keresése az eddigieknél pontosabb, az új rendszerek tulajdonságait jobban előrejelző atomi szintű szimulációs megoldásokat igényel [2, 3]. Az algoritmusok legújabb fejlődési iránya és a rendelkezésre álló nagy számítási teljesítmény ezeknek a kutatásoknak az irányát is már eltolta a gépi tanulásos technológiák alkalmazása felé. A ponthibák nagy többsége komplexeket alkot, amelyek változatos konfigurációkban léteznek, és a gépi tanulásos eljárások képesek megtalálni ezek közül az energetikailag legstabilabbakat az adott alkalmazásra jellemző környezetben. Általában arra számítunk, hogy ezek a legstabilabb konfigurációk tényleg ki is alakulnak, azaz a gyártástechnológiában praktikusan elérhető célállapotot jelentenek.
 
Gali Ádám kutatócsoportja pontos atomi szimulációk révén mutatta meg, hogy az egyes stabil komplexek kialakulásához elvileg elvezető reakcióutak kinetikája megakadályozhatja az energetikailag kedvező végállapot elérését [4]. Sőt, ez az effektus egy kulcsfontosságú szilíciumbeli hibakomplexum esetében is megmutatkozott, miközben ez a hibakomplexum a jövőbeni kvantumkommunikációs és kvantumszámítástechnikai eszközök egyik ígéretes jelöltje. A stabil végállapotot kereső algoritmusok tehát nem mindig képesek az adott feltételeknek megfelelő rendszert megtalálni. Ez az eredmény ráirányítja a figyelmet arra, hogy mennyire fontos a félvezetőkben implantációval vagy besugárzással gyártott ponthibák reakciókinetikája a hibafizikában és a hibagyártásban.
 
Hivatkozások
 
[1] Quantum guidelines for solid-state spin defects
, Gary Wolfowicz, F. Joseph Heremans, Christopher P. Anderson, Shun Kanai, Hosung Seo, Adam Gali, Giulia Galli, David D. Awschalom
, Nature Reviews Materials 6, 906 (2021).
 
[2] Ab initio theory of the nitrogen-vacancy center in diamond
, Adam Gali
, Nanophotonics 8 1907 (2019).
 
[3] Recent advances in the ab initio theory of solid-state defect qubits, 
Ádám Gali
, Nanophotonics, on-line (2023).
 
[4] The kinetics of carbon pair formation in silicon prohibits reaching thermal equilibrium
, Peter Deák, Péter Udvarhelyi, Gergő Thiering, Adam Gali
, Nature Communications 14, 361 (2023).