Szemináriumok

Large-order summation of connected Feynman diagrams for strongly correlated fermions

Időpont: 
2024. 02. 16. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Felix Werner (Paris)
Felix Werner (Laboratoire Kastler Brossel, ENS & Collège de France):
Large-order summation of connected Feynman diagrams for strongly correlated fermions
    
A major long-standing goal is to develop generic unbiased methods for many-fermion problems. Conventional Quantum Monte Carlo methods (e.g. auxiliary-field QMC or lattice QCD) generically suffer from the "fermion sign problem": The computational time increases exponentially with the number of fermions. In contrast, expansions of intensive quantities in series of connected Feynman diagrams can be computed directly in the thermodynamic limit. Over the last decade, diagrammatic Monte Carlo algorithms made it possible to reach large expansion orders, and to obtain state-of-the-art results for various models of interacting fermions in 2 and 3 dimensions. The "Connected Determinant" algorithm allows to sum a factorial number of connected diagrams in an exponential time [1], leading to a computational time that increases only polynomially with the precision [2]. The range of applicability of the approach can be considerably enlarged by two ingredients: divergent-series summation methods, and modification of the expansion by changing the starting point and/or using dressed propagators/vertices. An important aspect is to understand the singularities of the function that stands behind the series. I will present illustrative results for the unitary Fermi gas in the normal phase [3,4] and the superconducting phase of the polarized attractive Hubbard model [5]. 
 
[1] Rossi, PRL 119, 045701 (2017)
[2] Rossi, Prokof’ev, Svistunov, Van Houcke, FW, EPL 118, 10004 (2017)
[3] Rossi, Ohgoe, Van Houcke, FW, PRL 121, 130405 (2018)
[4] Rossi, Ohgoe, Kozik, Prokof’ev, Svistunov, Van Houcke, FW, PRL 121, 130406 (2018)
[5] Spada, Rossi, Simkovic, Garioud, Ferrero, Van Houcke, FW, arXiv:2103.12038

Floquet-Anderson localization in the Thouless pump and how to avoid it

Időpont: 
2024. 02. 23. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
János Asbóth (BME/Wigner)
We investigated numerically how onsite disorder affects conduction in the periodically driven Rice-Mele model, a prototypical realization of the Thouless pump. Although the pump is robust against disorder in the fully adiabatic limit, much less is known about the case of finite period time T, which is relevant also in light of recent experimental realizations. We found [1] that at any fixed period time and nonzero disorder, increasing the system size L→∞ always leads to a breakdown of the pump, indicating Anderson localization of the Floquet states. Our numerics indicate, however, that in a properly defined thermodynamic limit, where L/T^θ is kept constant, Anderson localization can be avoided, and the charge pumped per cycle has a well-defined value – as long as the disorder is not too strong. The critical exponent θ is not universal, rather, its value depends on the disorder strength. Our findings are relevant for practical, experimental realizations of the Thouless pump, for studies investigating the nature of its current-carrying Floquet eigenstates, as well as the mechanism of the full breakdown of the pump, expected if the disorder exceeds a critical value.
 
[1] A Grabarits, A Takacs, IC Fulga, and JK Asboth,  arXiv:2309.12882

Schrödinger cats escape confinement

Időpont: 
2024. 03. 01. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Anna Krasznai (BME)
In this talk, I discuss local quenches from initial states generated by a single spin-flip in either the true or the false vacuum state of the confining quantum Ising spin chain in the ferromagnetic regime[1]. Contrary to global quenches, where the light-cone behaviour is strongly suppressed, after local quenches a significant light-cone signal propagating with a nonzero velocity emerges besides the expected localised oscillating component. Combining an analytic representation of the initial state with a numerical description of the relevant excitations using the two-fermion approximation, we can construct the spectrum of post-quench excitations and their overlaps with the initial state, identifying the underlying mechanism. For confining quenches built upon the true vacuum, the propagating signal consists of Schrödinger cats of left and right-moving mesons escaping confinement. In contrast, for anti-confining quenches built upon the false vacuum, it is composed of Schrödinger cats of left and right-moving bubbles which escape Wannier-Stark localisation. 
 
[1] A. Krasznai, G. Takács, arXiv:2401.04193 

Activation of metrologically useful genuine multipartite entanglement

Időpont: 
2024. 03. 08. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Róbert Trényi (Bilbao/Wigner)
Trényi Róbert  (UPV Bilbao/Wigner FK)
Activation of metrologically useful genuine multipartite entanglement
 
The metrological usefulness of a quantum state can be measured by the amount it outperforms the most useful fully separable state. It is known that maximal metrological usefulness necessitates genuine multipartite entanglement (GME). In contrast, however, not all GME states exhibit utility for metrology. In this work[1], to make non-useful entangled states useful we consider an activation scheme by employing multiple copies of the state. With this scheme, we identify a broad class of practically important GME states that can attain the maximal metrological performance in the limit of many copies, even though in the single copy case these states can be non-useful. Thus, we essentially activate quantum metrologically useful GME. Moreover, this maximal usefulness is reached exponentially fast with the number of copies and the necessary measurements are simple correlation observables. We also provide examples of states not living in the above mentioned class that improve their usefulness. Our scheme can also be used to protect certain quantum states against certain types of errors without the use of full-fledged quantum error correction techniques.
 
[1] R Trényi, Á Lukács, P Horodecki, R Horodecki, T Vértesi, G Tóth, New J. Phys. 26 023034 (2024) 

Flat bands in graphene based electron systems, topology and correlations

Időpont: 
2024. 03. 19. 14:30
Hely: 
BME building F, lecture hall 13, second floor
Előadó: 
Péter Nemes-Incze (CER)
Topological bands having a vanishing dispersion, commonly referred to as "flat bands," have beed a source of emergent electronic phenomena since the initial discovery of the quantum Hall effect in two-dimensional (2D) electron systems. Recently, flat bands have been identified in 2D van der Waals materials, including graphene-based electron systems. Among these "magic angle" twisted bilayers and rhombohedral graphite, represent particularly accessible and highly tunable platforms for investigating emergent, correlated phenomena, from superconductivity to magnetism. This presentation will provide an overview of the field, incorporating recent findings from my group, and offer a perspective on future research directions.

Fusion energetics - new horizons, new challenges

Időpont: 
2024. 03. 26. 14:30
Hely: 
BME building F, lecture hall 13, second floor
Előadó: 
Gábor Veres (BME)

"Fusion in thirty years" has been an unquestionable paradigm for the past seven decades. The progress, however, was persistent and with the recent appearance of private companies and private investors in the field, the fusion energy production sector is just about to be born. In the lecture we will overview the current state-of-play and analyse the new challenges and issues of the future.

Out-of-equilibrium dynamics in strongly correlated one-dimensional quantum many-body systems

Időpont: 
2024. 04. 05. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
Dávid Szász-Schagrin (BME)

Szász-Schagrin Dávid (BME TTK Elm. Fiz. tanszék):
Out-of-equilibrium dynamics in strongly correlated one-dimensional quantum many-body systems -- PhD házi védés

 

Disszertációmban erősen kölcsönható egydimenziós kvantum soktest rendszereket vizsgálok, különös figyelmet fordítva a nemegyensúlyi dinamikára és a dinamikát erősen befolyásoló integrálhatóságra mind spinláncokon, mind kvantumtérelméletekben. A nemegyensúlyi időfejlődés numerikus tanulmányozására kvantumkvencseket szimulálok különböző, csonkolt állapottér megközelítésen alapuló módszerek segítésével: a $\varphi^4$ modellben vizsgálom a hamis vákuum bomlást, precíz eredményt adva a bomlási állandóra, valamint a különböző szemi-klasszikus közelítések érvényességét kölcsönható kvantumtérelméletekben. A kifejlesztett miniszupertéren alapupó csonkolt állapottér módszer segítségével szimulálom egy csatolt egydimenziós bozonikus kvázikondenzátum pár nemegyensúlyi dinamikáját kísérletileg releváns szituációkban térelméleti közelítésben, amikor a kísérleti rendszer relatív fázisa a sine-Gordon modellel írható le. Vizsgálom továbbá a perturbált XXZ spinlánc gyenge típusú integrálhatóság sértését különböző nemintegrálható perturbációk összehasonlításával random mátrix elmélet segítségével.

 

Témavezető: Takács Gábor, BME TTK Elm. Fiz. Tsz
Házi bíráló: Lencsés Máté, Wigner FK SZFI

The role of angular momentum in ultrafast spintronics

Időpont: 
2024. 04. 09. 14:30
Hely: 
BME building F, lecture hall 13, second floor
Előadó: 
Ulrich Nowak (Konstanz)
Starting with the famous discovery of Einstein and De Haas, it has been common knowledge that magnetic moment and angular momentum are physical properties which are fundamentally connected. As a consequence, electrodynamics is coupled to quantum mechanics and the transfer and control of angular momentum is a key aspect for the understanding of magnetic materials and the development of future spintronic applications. As a further consequence, precession dominates magnetization dynamics in analogy to the mechanical motion of a spinning top.
 
When a ferromagnetic film is excited by strong, ultrashort laser pulses, it can lose its magnetic order almost completely on femtosecond time scales. Only recently we could demonstrate that, on the same time scale, the spin angular momentum is transferred to the lattice via the ultrafast creation of chiral phonons that absorb the angular momentum of the spin system. In this talk I will focus on the dynamics of spin angular momentum and on the development of a framework for the simulation of coupled spin-lattice dynamics. Furthermore, I will show how magnetic inertia can separate the dynamics of the magnetization from its angular momentum, an effect that in mechanics is known as nutation.

Topological band formation in magnetic chains on superconductors

Időpont: 
2024. 04. 12. 10:15
Hely: 
BME building F, seminar room of the Dept. of Theoretical Physics
Előadó: 
András Lászlóffy (Wigner FK)
In magnetic chains on superconductors, so-called Shiba bands are formed within the superconducting gap of the host. Inside the Shiba bands, a minigap can be induced around zero energy by forming a magnetic spin spiral state or by a large spin-orbit coupling in the system. In the spirit of the bulk-edge correspondence principle, if the band structure is topological, zero energy bound states (Majorana states) can be found at both ends of finite chains. To have a quantitative and realistic description of these systems, we solve the Kohn—Sham—Dirac Bogoliubov-de Gennes equations within the Korringa—Kohn—Rostoker multiple scattering theory [1,2]. With examples, we show that physical quantities that are antisymmetric with respect to the Fermi energy, e.g., the singlet order parameter, can be used to prove band inversion of the system. Moreover, through the manipulation of the magnitude of the magnetic moments, we explore the conditions for the formation of topological phases in the chains and compare this to the change of Shiba state energies in single adatoms. Finally, by adding a non-magnetic overlayer between the superconductor and the chain, we explore the topological properties of a large variety of systems in terms of changing the crystallographic direction of the chain and the magnetic configuration.
 
[1] B. Nyári, A. Lászlóffy, G. Csire, L. Szunyogh, B. Ujfalussy, Topological superconductivity from first principles. I. Shiba band structure and topological edge states of artificial spin chains, Physical Review B 108, 134512 (2023)
[2] A. Lászlóffy, B. Nyári, G. Csire, L. Szunyogh, B. Ujfalussy, Topological superconductivity from first principles. II. Effects from manipulation of spin spirals: Topological fragmentation, braiding, and quasi-Majorana bound states, Physical Review B 108, 134513 (2023)

Oldalak