Course details (201819 Fall Semester)
In charge of the course: Dr. Ferenc Simon
Department: BME Department of Physics
Code: BMETE11MF26
Type: An optional course of the BME TTK physics MSc studies
Requirements: 2/0/0/V/3
Language: English
Prerequisites: Fundamentals of solid state physics (BMETE11AF05)
Other expectations: A firm knowledge in electrodynamics, quantum mechanics, and solid state physics
Evaluation: oral exam (can be optionally in Hungarian)
Exam thematics:

Fundamentals of semiconductors, conductivity, structure, band structure, hybridization, basic notions (bands, gap, transitino, doping, etc.).

Charge carriers in intrinsic semiconductors, DOS, chemical potential, conductivity in intrinsic semiconductors, the Drude model and charge carrier mobility.

Charge carriers in extrinsic semiconductors, energy structure and occupation of donor levels. Degenerate semiconductors. Conductivity of doped semiconductors.

Band structure calculation methods in semiconductors. Distinguished points of the kspace, empty lattice, quasiclassical electron approximation, the tightbinding method, the k.p model, the envelope function aproximation.

Transport processes in semiconductors. Length scales, wavepacket, the semiclassical approximation. The Boltzmann equation and the relaxation time approximation.

Solution of the Boltzmann equation in a homogeneous electric field, correspondence to the Drude model. Mechanisms of the momentum relaxation, , Matthiesenrule, the Eliashbergfunction. The BlochGrünneisen formula and its limiting cases.

Magnetotranzport in semiconductors, the classical Hall effect, magnetoresistance. Thermoelectric effects, reciprocal relations and coefficients, the Onsager relations, the Seebeck and Peltier effects, the Kelvin expression. The thermoelectric (Peltier) cooler.

Diffusion effects in semiconductors, minority charge carriers, charge carrier concentration under nonequilibrium conditions and in inhomogeneous semiconductors. The charge carrier diffusion length. The pn junction in biased and nonbiased conditions.

Application of special diode types (avalanche breakdown, Zener effect, Esaki and Gunn diodes). Application of the Esaki and Gunn diodes. The bipolar transistor and its operation. Analogue electron tube systems.

Surface states, metalsemiconductor heterojunctions, the Schottky barrier. Operation of the Schottky diode. The inversion and accummulation layer. Fundamentals of JFET and MOSFET. CMOS based circuits, the NOT gate. Heterojunctions, the HEMT.

Optical properties of semiconductors, plasma oscillations and frequency dependent conductivity. Application of the Fresnel formula for semiconductors. Photoconductivity. Solar cells, equivaent circuits, the optimal power point. The LED and laser diode.