
Practical Course in Mechanics 2 Lecture 2 (2019.02.19.)

Problem 1

Consider the famous “twin-paradox”. Let’s call the twins Bobby and George. Bobby travels to one of
the exo-planets of the Alpha Centauri system, whose distance is 4.5lightyears from the Earth, and it is
almost in rest in the reference frame of the Earth. The maximal speed of the spacecraft is 0.75c, and
the accelaration and braking times are negligeble.

After reaching his destination, Bobby studies the exo-planet for 1year time and then he travels back
to Earth.

a.) Draw the world lines of Bobby and George in the Minkowski plane.

b.) How many years does George age, who stayed on Earth, until Bobby gets back to the Earth?

c.) How many years does Bobby age at the same time?

A (wrong) explanation of the twin paradox states, that the different aging is caused by the acceleration
of Bobby. Indeed, Bobby needs to have nonzero acceleration, if he wants to come home. However, using
the following thought experiment we can exclude that explanation.

Let’s suppose that Bobby and George both travel on the spacecraft, but at half distance George
decides to stop – using the spacecrafts rescure cabin – and takes a long holiday at a space-motel that
rests in the frame of Earth. When Bobby is traveling back, George accelerates his cabin to 0.75 c, joins
Bobby in the spacecraft, and they arrive together back to Earth. We can see, that in this case George
and Bobby can have exactly the same acceleration processes.

d.) Draw the modified world line of George in the figure!

e.) How much time does George spend in the motel?

f.) What is George’s total aging during the travel?

Problem 2

In the upper athmosphere µ particles or muons are produced by cosmic rays colliding with molecules,
and then these unstable particles are moving with almost constant velocity towards the Earth’s surface.
The half time of decay for resting µ is T1/2 = 2.2µs = 2.2 · 10−6s.

a.) Assuming Newtonian mechanics to be correct, what distance would a µ travel (with having velocity
Vµ ≈ c) until it is expected to decay?

b.) Assuming that muons are produced in an altitude of 10km, what fraction of them would reach the
Earth’s surface?

We know that Newtonian mechanics fails to describe the above questions. We want to measure the
velocity of µ, therefore we perform the following experiment. We have created two identical µ detectors.
One is attached to a wheather balloon and is lifted up to h = 3km altitude. The other one remains on
the surface of Earth. We measure nb = 700 counts at the balloon while only ns = 500 counts on the
surface in an hour.

c.) Assuming we know the Vµ velocity of the muons, what is the connection between nb and ns?

d.) According to the measured velues, determine the velocity of the µ particles.

Problem 3

At time t = 0 two spacecrafts depart from Earth in perpendicular directions with velocities 3/5c.

a.) Determine the position vectors r1(t) and r2(t) of the two spacecrafts as a function of time. (Use a
convenient coordinate-system in the reference frame of Earth.)

b.) Let’s sit in the reference frame of the spacraft “1”. Determine the position vector r′2(t′) of the
spacraft “2” in this reference frame.

c.) What is the velocity vector of the 2nd spacecraft in that reference frame? Determine also the
direction of this velocity vector.
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Problem 4

There are given two 4-vectors with their contravariant coordinates in some inertial system, aµ =
(a0 a1 a2 a3) and bµ = (b0 b1 b2 b3). The metric tensor of the Minkowskian spacetime is simply gµν .

a.) Using Einstein’s convention, and the metric tensor, express the Minkowski length square of aµ and
the Minkowskian scalar product of aµ and bµ.

b.) How we define the covariant coordinates of these 4-vectors? Determine the aµ = (a0 a1 a2 a3) and
bµ = (b0 b1 b2 b3) “lower index” coordinates. With the help of these covariant coordinates, express
again the Minkowski length square of aµ and the Minkowskian scalar product of aµ and bµ.

c.) As we see, the indices can be lowered by multiplication with the gµν tensor. The inverse of this
manipulation is the “raising” of indices. What tensor gµν can be used to raise the indices?

Problem 5

Consider the following transformation,

Λµ. ν =


5/3 0 −4/3 0
−4/3 0 5/3 0

0 −1 0 0
0 0 0 1


a.) Consider the 4-vector aµ = (1, 1, 0, 0). What is its Minkowski length square? Apply the above

transformation on this vector. Show that its Minkowski length square is invariant.

b.) Consider the 4-vector bµ = (6, 1, 3, 1), and show that its Minkowski lenght square is also invariant.

c.) Show in general, that the transformation Λµ. ν is a Lorentz transformation.

d.) Express the components bµ. Express also the transformed b′µ components.

e.) Determine the appropriate form of Λ that transforms the lower-index vectors, b′µ = Λ. νµ bν .

f.) Show that aµbµ remains invariant.

g.) Show directly that Λ. µρ Λρ. ν = δµ. ν , where δµ. ν stands for the Kronecker-delta.
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