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Lecture 1

Copenhagen interpretation: what we teach at QM courses

Quantum theory Heisenberg Classical physics
Microscopic physics cut Macroscopic objects
A k.a. the Quantum World

Experiments now probe the boundary between microscopic and macroscopic physics

No sign of any clearly defined boundary: maybe the Quantum World is the whole reality?
But then how does classical behaviour emerge?

Fundamentals of quantum theory
e States: vectors  |¥) in a Hilbert space H
e Observables: linear operators 0:H — H , hermitian ot =0
« Dynamics:  iho|¥(6)) = H|¥ (L))

Eigenstates and eigenvectors:

Ol = Ay (Wilw;) =6y

Spectral decomposition:

0= Zli [P (il

L

Some details:

» Multiplicities (degenerate eigenvalues): to each distinct eigenvalue
a
Ai d |l‘bl. L) a; = 1 dl.
d.

Pi= > WENUS PE=P RT=P and PP =0 i%)

O=Z;tipi ZPL:I
i

o Continuous spectrum: projector valued measure dP (1)

0= J::o AdP(A) f_;mdP(A) =1

2
PA) = f dP(u) :projector to subspace where value of observable is < 4

Special case of discrete spectrum



dP(}) = Z PS4 — A;)dA
i
Example: position operator

State of particle in 1D: wave function
Y(x): f dx ¥ (x)|* =1

Position operator: x - multiplication by x
P(A) = 8(A —x) - (multiplication operator by 8(4 — x))

dP(A) =6(A—x)dA
X =f AdP(A) =f A6(A —x)dA

Problem for the devoted: how to do the same for the momentum operator?
(hint: use Fourier decomposition!)

Connection to observations

Assume we perform a measurement of O at time ty

Measurement postulate:
the possible outcomes are the eigenvalues A; of the operator O with probabilities

pi = K¥(ty)|Y:)|? Born's rule

Note: (¥ (ta) [} = (P () i) (Wil ¥ (tan)) = (¥ (ta) [P P ()

In case with degeneracies:

pi = (Y (ta) [P | (tar))

For continuous spectrum: we can give probability that the value is in an interval [a, b]
b
Pa,b]) = | dP() = P(b) - P(@)
a

Plap) = (¥ () |P([a, bDI¥ (tn))
E.g. for position operator

P([a,b]) =68(b—x) — 6(a —x)

0 b
Plap] = J: dx ¥ (x, tM)*(G(b —x)—0(a- x))lP(x, ty) = f dx |W(x, ty)|?

a



Collapse postulate

After measurement with outcome A;, the state of the system abruptly changes to

P;|¥
|lp(tM))post = |y;) = | [ () [|P |t | = J(W(tM)lﬁTPill]J(tM))

1P (&)
Also known as wave-function reduction.
The second form also holds for degenerate and/or continuous spectrum:

if the outcome is described by projector P then the post-measurement state is given by

P¥(ty))

1% (ta) Ypose = NP1

Classical Hamiltonian dynamics

States: points (g, p) in phase space I

Observables: real functions F: " = R

e Dynamics:
(6) = oH () = oH
q = % p = E
e Observed values:
F(q(®),p(®)

Liouville theorem: phase space volume is conserved during Hamiltonian evolution.

S

0(ty) 0(ty) = {(Q(tz):p(tz))lfi'(tl) = qo,p(t1) = Do
where (qo,p0) € Q(¢1)}

f dpdq = f dpdq
Q(ty) Q(tz)

Time evolution map

R.(q,p) = (q(t),p(t)) where the trajectory has initial condition q(0) =g, p(0) = p

0(t;) = Re,—¢, (2(t)



Probabilistic formulation
Assume we do not know the exact trajectory of the system, which can be characterised by a
probability distribution I7(p, q) on the phase space I" satisfying

fdpdq (g,p) =1
r
Then the expectation value of observable F(q, p) at time t is given by

(F(O)) = f dpdq 11(q,p)F(a(0), p(®))
r

Classical Heisenberg picture: time evolution is carried by observable:

F(q(6),p(D): F, = FoR,

Classical Schrodinger picture: change integration variable to
(q',p") = (q(0),p(®)) = R.(q,p)

(F)y = J‘dp'dq’ﬂs(q',p’)F(q,p) m.(q',p") = N(R;*(q",p")) i.e. M, =IoR;?
r

It follows immediately that total probability is conserved in time (show it!):

fdpdq n,(q,p) =1
r

Classical probability theory on phase space

Event space: phase space I’
Elementary events: phase space points (q, p)
Composite events: (Borel) subsets of I’

Events form a Boolean algebra:
Impossible event: @  Certain event: I
Negation of event A: A

AND of twoevents Aand B: AN B OR of twoevents A and B: AUB

Probability of event A:
Prob(4) = | 1(q. p)dqdp

A
Events as projections

A: xa(q,p) characteristic function of set A
xa(q,p) =1 if (q,p) € A and zero otherwise.

x4(q,p)?* = x4(q,p)

Xane(@:P) = xa(q,0) x5(q,0) xi(q,p) = 1—x4(q,p)



Xaue(@,0) = xa(q,p) + x5(q,P) — Xanp(q, D)

Note that
Prob(4) = f 240 D)@, P)dadp = (ta)n
r

Classical collapse postulate
If we measure an event A at time ty, we then know for sure that the phase space point
corresponding to the system is inside the set A — we can update the probability distribution as

xa(q,p),,(q,p)
Jyxa(q, )¢, (g, p)dqdp

1, (q,p) - I;,,(q,0)post =

Quantum probability theory
Event: Hermitian projector P P:=p Pt=p
Note: it is an observable with possible values 0 or 1 just like its classical counterpart!!!

Take a self-adjoint operator

0= ZAP ZP-=I PP, =0 for i #j

Elementdry event: O takes some value A;

Composite events: O takes one value in a set {Ail, ...Aik}
P="P, ++P,

Negation: P =1 — P AND: PQ OR: P +Q - PQ

Born's rule: Prob(P) = (P)y = (¥|P|¥)
Example: particle in 1D
Take the event that the particle is found in interval x € [a, b]

Classically: corresponding projection is )([ab (x)=60(b—x)—6(a—x)
b

Prob(x € [a, b])—(x[ab f dx xap) O (x) = f dx I1(x)

a

Quantum: the projection operator is multiplication by x4 ) (x)

(Plap®) () = X[ap) ()P (x)

b
Prob(x € [a, b]) = (P[ab f dx ¥V (x) * X[ap) ()P (x) = f dx |¥(x)|?



Quantum-classical dictionary

Concept Classical Quantum
Event space Phase space I’ Hilbert space H
Elementary event Point (g, p) 1D subspace (projection |Z}¥|)
Event SubsetA c I Subspace A in H
Event projector xa(q,p) P,:P} =P, Pl =P, Im(P,) = A
Observable F(q,p) 0: 0t =0
Expectation value 0)y = (V|O|¥
b (F)n = fdpdq I1(q,p)F(q,p) (Ohy = (FIO1¥)
r
Probability of event Prob(A4) = (xa)n Prob(4) = (Py)y
Time evolution q(t) = 0,H p(t) = —9,H ihd | (t)) = H|¥(t))
(a@®),p®) = R(q(0),p(0)) ¥ (1) = e~ |¥(0))
Probability R, conserves phase space volume et is unitary
conservation
Collapse postulate xa(q,p)11,,(q,p) P|¥(ty))
., (q, = 1Y (Ea)dpost = 7o
o = SN O]

Is this all that quantum theory is about?
Simply replacing the phase space by Hilbert space?



Lecture 2

The qubit a.k.a. spin 1/2
Hilbert space: H = C?
General Hermitian operators:

0 = ayl + a;0;

=6 D) =G 9 w=C P «=G 2

O‘kd';_ = 6?{1‘.1 + iek;_mo'm
[0k, 01] = 2i€}mOm {ok, 01} = 261 Troyo, = 26y,

Spin operators:

S =

S

W a2 3
G §2=5.5=_w

Trivial basis:

w=() 1=0)

J3|Tz) =+1- |Tz) JBH’z) =-1-: H’z)
Basis aligned in direction w (W |= 1)
(W&)”w) =+1- |Tw) (W&)l‘]’w) =-1- H’w)

w = (sin 6 cos ¢ ,sin 8 sin ¢, cos 6)

¢ 0 @ 0 ¢ 0 @ 0
IT,) =e 2 coslez) +ez smzllz) )= —e 2 smlez) +e2 coszllz)

Spatial rotation around axis € by angle ¢ is represented by the unitary operator

i
R(pé) = e72%9¢° é

Note that

|Tw) = R(¢€3)R(9§2)|Tz) H'w) = R(Qbé’B)R(Gé’Z)l‘]’z)



Incompatible observables

We can measure the spin in any direction W:

8 6 6
cos? — e~ i¢ coszsmz
e~ cos igin > sin? 3 s
sin? 3 —e"® cos —sin—
ber:llw)(lwl: _ 0 0 0 =I—PMTF=P—TW
—e~i® cosisini cos? 3

Note that projectors to different orientations generally do not commute:
[RlL,P]=0=w=1+w

This is a consequence of the non-commutativity of different spin components:
[Sk, Si1] = ih€pimSm

Examples:

2260=0,¢4=0 |Tz)=(é) Nz):({;)
(o o) #=(o 1)

s 1 1
x0=7,¢=0 == (_

S+ 1) = ()
L) = 5 (=11 + 11D = ()

v-30Y) Aa

Does it make sense to talk about the spin pointing in direction x OR z?

il =

By the rules of event projectors
1 1/2
_ pl T _ pipt —
P(x\/z) =P +P — PP (0 1/2)

This is not a projector, not even a Hermitian operator - i.e. not an observable! In addition

P(z\/x) =P +P - PPl = (1}2 1{/)2) =P(x \/z)T



When do logical operations make sense?

AND: P (A/\B) = P,Pg

P(a /\B)T = BB} = PP, = P (A /\B) only when P, Py = P3P,
So, the projections must commute! Then we also have

P(AAB)? = P,PgP,Py = P4P,PgPz = P,P; = P(AAB)

and P(AAB) = P(BAA)

Homework: show similarly that operation OR

P(A\/B) =P, + Py — P,Py

is only sensible when the projectors commute.

Logical operations only make sense for commuting projectors, and for commuting
projectors all identities of logic (Boolean algebra) hold.

Quantum logic was proposed by Birkhoff and Neumann - has not proven to be a fruitful
direction.

There is a one-to-one map between projectors and subspaces of the Hilbert space:
Py o Hy

One can then attempt to define the following logical operations:

AND:Hypp = Hy N Hp

OR: H,yp = span(H,y U Hg)

NOT:H; = Hi

Problems:

« For a nontrivial event A, there are events which are neither in A nor its negation - law of
excluded middle does not work.

e Distributivity of logic: normal event logic satisfies

AV(BAC) = (AVB)A(AV C)
ANBVC) = (AAB)V(AAC)

But for quantum events

T)’ /\(Tx v Tz) =Ty



Ty, A TxJV(Ty A Tz) = 0 (impossible event)
Under these operations, quantum events do not obey the rules of logic! There is no way under
which the full "quantum logic" can be thought of as the logical structure of actual physical

events.

Quantum events (subspaces of Hilbert space) form a so-called orthomodular o-lattice, which
is not distributive!

Boolean lattices (event spaces) are orthomodular g-lattice which satisfy distributivity.
If one takes appropriate (algebraically complete) subsets of quantum events for which the

corresponding operators commute, then they obey the rules of logic.

Consequence: simultaneous measurements only make sense for commuting observables,
since we must be able to say that we obtained A; for 0; AND/OR another value for A, for 0,

Density operators
What is a state? It must assign probabilities to events in a sensible way.

Gleason's theorem
Assume that we have a map f from projectors on a Hilbert space with dimension > 3 to the
unit interval [0, 1] such that for any decomposition of the identity into orthogonal projectors

it sdtlsfles the sum rule of probabilities

Zf(P)—l

Then there exists a positive semidefinite operator p such that

f(P) =TrpP

which has a unit trace: Trp = 1

Remarks:
i.  Ais positive semidefinite if for any vector i in the Hilbert space (y, Ay) = 0.

ii.  Positive semidefinite operators are automatically Hermitian (more precisely self-
adjoint).

iii. If two positive semidefinite operators commute, then their product is positive
semidefinite.




iv.  The probability assignment fis required to be non-contextual: it does not matter what
is the experiment and what observable is measured, probability only depends on the
mathematical representation of the outcome (i.e. the projection operator).

For states corresponding to vectors in Hilbert space: p = [P X¥|
v.  Invariant under |¥) — ¢'®|@)
vii Trp=1= (¥|¥)=1

These states really correspond to rays (1D subspaces) of the Hilbert space:

{c|¥): c € C} with some fixed nonzero |¥)

Pure and mixed states, quantum and classical

Expectation value of an observable

0= Z A P2 (0), = Z A, Prob(P,) = Z A, Tr(pP;) = Tr (p Z A Pi) — Tr(p0)

Spectral decomposition of a density operator
p= Zpi | )i

i
Note

(0) =Tr(p0) = Y pi (1101
i
Ignorance interpretation: the system is in one of the states |¢;), we just don't know which.

Convex combination of states is a state:

P=ZCiPi 0<¢ Zci=
- .

L

Pure state: p is pure if

p=Zcipi 0<¢ Zci=1 - ¢; = 0 except for a single one.
i

i
Classical case
State: probability distribution IT(g, p) on phase space.

Pure state: §-distribution



6‘10:?30 = 6((}‘ - QO)a(p - po)

For a continuous distribution I1(q, p)

1= f dpodqoll(qo, po) 84,p,

This the continuous version of a convex combination since

11(q0,p9) = 0 and fdpodqoﬂ(qo,po) =1

If the distribution of initial conditions is a §-distribution, then the phase space trajectory is
uniquely specified — all observables have a definite value without uncertainty.

Classically: pure states are dispersion-free states and vice versa!

Quantum case

Pure states: rank one density matrices corresponding to rays of the Hilbert space
p=|¥NY|

However, such states are not dispersion-free:

(0%) = (0)* = (P|02|w) — (¥|0|¥)* = [0|¥)2[|¥)]” - [P |0|¥)|?

By the Cauchy-Schwartz inequality this can only be zero if

JA € C: 0|¥) = A|¥)

So, it is only zero if the state is an eigenstate of the observable. Since there exist non-
commuting observables, this cannot be true for all of them.



Lecture 3

Hidden variables

Hidden variable theories are hypothetical deterministic (classical) descriptions of quantum
dynamics.

Hidden variables: unobservable hypothetical entities giving a complete description of
physical reality.

Quantum mechanics is assumed to be incomplete, and indeterminacy follows from ignorance
of the full physical configuration which can only be expressed in terms of the hidden

variables.

Argument for incompleteness of quantum mechanics: Einstein-Podolsky-Rosen paradox.

EPR paradox

ta @ QO
KB i

Alice Bob
i T |———

XA x=0 XB

Assume that a system decays into a pair of spin-1/2 particles with total angular momentum
zero, i.e. total spin state is a singlet:

1
VZ

Assume that Alice measures first

(sz)ll‘Lz)z - H'z)lsz)Z)

ty < tg

and gets spin up/down: then Bob always measures spin down/up. However, if the two
measurements are space-like separated i.e.

|3‘?B _)_C’Al > C|t3 - tAl

then Bob only has the information provided by quantum mechanics but cannot know about
Alice's result because of relativistic causality.

EPR argument: since Bob's result is already determined by Alice's measurement, there must
exist an element of reality corresponding to the already determined outcome of measuring the
second spin. But Bob cannot predict it on the basis of the quantum mechanical description,



therefore quantum mechanics there is an element of reality not described by quantum
mechanics.

EPR conclusion: quantum mechanics is not a complete description of physical reality.

Problem with relativity: if we assume the first electron communicated the result with the
second one to establish the outcome, then we have a spooky action at a distance.

Even deeper problem: for

|Xp — X4 > cltg — t4l
there always exists a Lorentz frame in which Bob's measurement comes first, i.e.

ty >ty

: t

t,A %’
. . . . .‘. -
X

Lorentz transformation of distances and intervals (1+1D case)



Ax — vAt At__cz
Ax' = = At = =
v v
1—C—2 1—C—2
Note: if

Xg — X4 = Ax < cAt = c(tg — ty)

then choosing

CZ

Ax /At

v >

we get At" < 0. This is possible since by our assumption

CZ

Ax/at ¢

So, we can find a system moving with an appropriate velocity v in which the order of events
is reversed.

We cannot decide which measurement happened earlier: problem with wave-function
collapse!

von Neumann hidden variable theorem and its critique

Theorem (von Neumann)

Take a quantum system with a Hilbert space of dimension larger than 2. Let's assume we can
assign an expectation value (O) to any Hermitian operator O satisfying

i (=1
ii. 0=20=>(0)=0
iii.  (ro) =r(0)
iv.  (0q+ 0;) =(01) +(03)

Then there is a positive semidefinite operator p such that
(0) =Tr pO

However: such a state is never dispersion free if there are non-commuting operators!
Linearity of the expectation value in the operator implies that it cannot be dispersion-free!

Neumann's argument against hidden parameters

Let's assume there are hidden variables with which we can extend the Hilbert space

:}{HV=:}{®L




so that the full state is
Yy = (I1¥), )
We assume that the state including the hidden parameters is dispersion free, i.e.
2
E(¥uy, 02) = (E(WHVJ O))
for all observables O.
Let us take B, = |[n)}{n| as our observable. We then have
2
(E(lPHV,Pn)) =E(Pu, 7)) = E(¥uv. By)
Asaresult: E(¥yy,B) =0,1

But we also require that this must reproduce the QM expectation value (lP'|Pn|lP) which is a
continuous function of n. So that means it is identically either O or 1, which implies that

(Y|P |¥) = k¥ Im)?
is identically O or 1 for all . This is impossible for a unit vector |¥) in a Hilbert space.

Taking the quantum state to be a density matrix p does not help either: repeating the same
argument leads to

(Mmlpln) =0or1vn
which implies either p = 0 or p = I, none of which are valid density operators.
Criticism of the von Neumann argument

Bohm: constructed pilot wave theory which is a hidden variable description of ordinary one-
particle quantum mechanics - counterexample!

Where does the argument go wrong? The quantum mechanical expectation value satisfies
(aA+ BBy = aA)y + B(B)y a,f ER

Le. for any given state there are always operators which are not dispersion free.

If an operator is dispersion-free in ¥, then its expectation value is one of its eigenvalues.

But if two operators 04, 0, do not commute, then the eigenvalues of 0; + 0, are not the sums
of the eigenvalues of 0,, 0,, so 04, 0, and 0, + O, cannot be dispersionless at the same time!

However: take a hidden variable theory the quantum average is reproduced via



Egy(#,0) = ) 0(Dvy(0,2)
pl
vy (0, A1): expectation value of O with A held fixed.

and linearity only holds after averaging over A, but not for the vy (0, 1) for fixed 4, i.e. it is
perfectly possible that

vy(aA + BB, A) # avy(A, 1) + fvy(B, 1)
so that vy (0, 4) can be dispersion less for any fixed A.

Even if vy (0,4) is dispersion-free for any fixed A, this does not imply that the quantum
mechanical results are dispersion-free, since

Epy(¥,0)? = Zzwu)wmvw(o v (0,2

Epy(¥,07) = Z wM)vy (0%,2)

These are clearly not the same even if vy (0, 1)? = vy (0%,1)!



De Broglie-Bohm pilot wave theory
Postulates for a single particle:

(i) There's an objective configuration of the system described by coordinates ¢ in the
configuration space Q = R2, which evolve according to the guiding equation
dq _

/ 2ot Yy — yypr = pry
&=, T pm(FT-wre) p=

(ii) The wave function evolves according to the Schrodinger equation
2

h
ihd,¥(q,t) = —%A‘P(q, t)+V(gQ¥(qt)

(iii) At initial time t, the initial position has a distribution |¥(q,t,)|* (called "quantum
equilibrium")

It can then be proven that at any later time the system evolving according to the above dynamics
leads to a distribution |¥ (g, t)|? of the position in the configuration space Q.

Bohmian trajectories for the

two-slit experiment
reproduce interference
pattern

My own criticism against Bohmian approaches is that they are parasitic upon, and reverse-
engineered from, ordinary quantum theory. They just add excess baggage without yielding any
deep insight or resolution of the puzzles we face.



Kochen-Specker theorem

Could there be a consistent value assignment to quantum mechanical observables at all?

Theorem (Kochen-Specker)

Take a Hilbert space of dimension > 3. Then there is a set M of observables containing n
elements, such that the following assumptions cannot be simultaneously satisfied:

KS1: All members of M simultaneously have vsalues i.e. there is a value assighment v: M — C
KS2: The map v satisfies

(a) If [A, B] = 0 then v(aA + bB) = av(A) + bv(B) forall a,b € C

(b) If [A, B] = 0 then v(AB) = v(A)v(B)

(¢) There is at least one observable X € M with v(X) # 0

Note:
e (a) is much weaker than for Neumann's where it is required to hold for non-commuting
observables.
« (b) implies that for any analytic function f, v(f(4)) = f(v(A)) holds.
e The value assignment v must depend on the quantum state of the system.

Common interpretation of the KS theorem: quantum theory fails to allow a non-
contextual hidden variable model. More precisely, it states that it is impossible for the
predictions of quantum mechanics to be in line with measurement outcomes which are
pre-determined in a non-contextual manner i.e. without reference to a measurement
arrangement.

Bohm-de Broglie theory escapes KS by stipulating that only position and functions of position
have definite value. This is known as partial value definiteness: there is a subset of
observables called "beables" that have simultaneous value assignments independent of
observations (J. S. Bell).

Critique of the Kochen-Specker argument against hidden variables

Still, one can question whether (b) is a reasonable assumption. Without it, the value assignment
does not reflect correlations between observables; however, it may be still too strong given that
it implies v(f(A)) = f(v(A)).

Assuming that a Hermitian operator can be expressed as O = f(A) = g(B) where A and B are
two non-commuting operators, there is no reason why f(A) and g(B) should represent the
same physical quantity, so one can escape the problem by declaring that the mapping between
Hermitian operators and physical observables is not one-to-one.

E.g. one can question that if the same projector P appears as a spectral projector in two non-
commuting Hermitian operators A and B, why should we think that it corresponds to the same
physical event, since measuring A and B can only happen under different physical
arrangements?

Final note: assuming Gleason's theorem i.e. that the valuation v is inherited from a density
matrix p, the KS theorem follows trivially. The novel thing it shows that it is impossible to find
a valuation even if we do not require it to derive from a density matrix.




Some more details on the Kochen-Specker theorem

There is a simple proof if we assume that the Hilbert space is at least 4 dimensional. We
consider 9 observables or “contexts”. Each of them has four outcomes corresponding to four

(unnormalized) orthogonal vectors ui(a)

>,i =1..4 witha = 1..9 indexing the contexts. We

consider the eigenstate projectors

u® )(ui(“)

() _ It
]

L

which satisfy

4
(@2 _ pla@), pla) _ VR (@) _
P =P ; P, —Oformtj,ZPi =1
i=1
These imply that for any fixed context a, exactly one of these can be assigned the value 1,
while the other three must be assigned zero. The nine sets are chosen so that each projector
occurs in exactly two contexts; the pairs are coloured with the same colour in the table below.
Each context is a different measurement arrangement, since they correspond to measuring

some observable of the form
4

— () p(a@)
i=1
where Ag“) are some real numbers giving the possible results of measuring 09 which we

assume be distinct for different values of i. The nine operators 0@ are all different, so the
nine contexts really correspond to physically different measurements.

Context 1 Context 2 Context 3 Context 4 Context 5 Context 6 Context 7 Context 8 Context 9

i)

0,0,0,1) ((0,0,0,1) pEESSISISSEN MIRSENSSGN (0,0,1,0) MESLSE) (1,1,-1,1) [(1,1,-1,1) [

{253

0,0,1,0) - (IL,=1,-1,1) | (ILL1,1) - 1,1,1,1) LS (-1,1,1,1) | (-1,1,1,1)

i3

221

1, 1,0,0)

(1,1,0,0) (1,0,-1,0) |[(1,0,0,1) [(1,0,0,-1) (1,0,0,1)

Finding a valuation now means that we must assign O or 1 to each cell of the table with the
following rules:

e cells with the same colour have equal value, and

e the value 1 occurs exactly once in each column.
This is impossible since the first condition implies that 1 occurs an even number of times, while
the second one implies that there can be exactly 9 occurrences of 1.

(1,0,-1,0) (0,0, 1, 1)

The criticism above can be formulated as follows: the first condition means that the valuation
should only depend on the projector. However, one may argue that this is too restrictive since
the different occurrences of the projectors correspond to measuring different observables, so
there is no reason why this should be considered the same events. The event — projector



correspondence is 1:1 in quantum theory, but since we are looking for hidden variables beyond
quantum theory, they may well distinguish between the same projector when it occurs in the
spectral decomposition of different observables. This is known as contextuality.

For any observable O if a projector P occurs in its spectral decomposition then there exists a
function f'such that P=f{O) (for finite dimensions, this is a simple theorem of matrices, where
f is eventually a polynomial function that can be constructed from the characteristic
polynomial). If the projector P occurs in two observables A and B then there exist functions f
and g such that P=f{A)=g(B). Relaxing the event — projector correspondence in the way above
exactly means that if we consider two observables A and B than even if for two functions f and
g we have f{A)=g(B) we still treat ffA) and g(B) as different physical quantities. This means
that we must give up the 1:1 correspondence between Hermitian operators and observers.

Therefore, the Kochen-Specker theorem only proves that any hidden variable is necessary
contextual. Compared to the von Neumann theorem, it relaxes linearity for non-commuting
operators, which is important since this assumption can never be directly checked as non-
commuting quantities cannot be measured simultaneously. However, it introduces a new
condition for the product of commuting operators, and still relies on the conceptual framework
of quantum theory which relates observables to Hermitian operators.

In the next lecture we discuss Bell’s inequalities, which only requires to consider the
probabilities of actual physical outcomes, without presupposing an underlying physical
formalism. Therefore, it can directly rule out (certain classes of) hidden variable theories as
descriptions of the real physical world directly based on experimental results.

Note that the existence of value assignments is only a prerequisite of a classical hidden variable
description. The eventual description of experimental observations must also include a
probabilistic aspect, which corresponds to the existence of multiple value assignments v,
corresponding to different internal states k of the system described by the hidden variables,
which occur with probabilities p,.



Lecture 4

Deeper into the EPR paradox: Bell's inequality

Note that the singlet state looks the same with respect to a general axis w:

1 1
|l‘UEPR) = _(sz)ll‘Lz)z - H'z)lsz)Z) = _(lTw)ll‘Lw)z - |‘Lw)1|Tw)2)
V2 V2
Therefore, it contains infinitely many correlations. However, one measurement can only
reveal one direction. However, one measurement can only reveal one direction and then the

correlation could have been encoded in the system prior to the measurements.

J.S. Bell: we can get around this problem by repeating the experiment multiple times and
measuring the relative frequencies of different outcomes.

Note: it is also necessary to select measurement directions after the particles are emitted so
that the system cannot decide which correlation to encode into its state.

First experiment with measurement choices decided while particles already under way:

A. Aspect, P. Grangier and G. Roger: Experimental Tests of Realistic Local Theories via
Bell’s Theorem, Phys. Rev. Lett. 47 (1983) 460-463.

Measuring the two spins along different directions

Let us assume that the measurements made by Alice and Bob happen with directions
differing by angle 8:

Alice: e, = (0,0,1) Bob: e, = (sinf,0,cos8)

Then we can use the results

) 0 @ @ @
IT,) =¢e" 2cos—|T Y+ e'Zsin= Il ) Il,) = —e Zsin= IT Y+e'z cos—Il )
to write
0
|T,), = cos= IT )z—sm ,), [1,), =sin= IT )2+c05 ,),
1
Wapn) = <= (sing Ll + cos 1T ILyds = cos 3 ILhIT, e +sinZ bl

The probabilities of the four different outcomes are

F—)=—=cos?8

h o1, h o1
P(Slz=i§,5221=i§)=551n 9 P(Slz=i§;522’=+§) 2



Bell's "1st" inequality

Let's assume both Alice and Bob can choose between three directions @, b and ¢ to measure
the spin and also that the outcome of all these measurements is determined by some property
of the electron pair that exists before any measurement is made. Alice and Bob then each
have eight combinations of possible outcomes with probabilities

Alice Bob Probability

abc abc

T L 1
™ T Dy
T 1T D3
T ITT Da
17 T Ds
1T T P
T T D7
AR T Pg

We then have
P(Me M) =p3s+ps P(Ta,T) =p2+ s P(T.,Ty) =p3 + 57
(Simple version of) Bell's inequality

P(Ta: Tb) < P(Ta: Tc) + P(Tc: Tb)

This is violated by quantum probabilities! Take e.g.

% C

T ., . 3 1,1
P(Ta,Tb)=zsm 60 =3 P(Ta,TC)=P(TC,Tb)=§sm 30 =3

Conclusion: the quantum probabilities cannot be interpreted as relative frequencies of
properties of the measured system (i.e. of elements of reality)! Therefore there can be no
hidden variables depending only on the state of the measured system that determine the
outcome of the measurements.



Existence of Kolmogorovian representation

Question: given some probabilities for events, when can they be represented as probabilities
of classical events i.e. on a Kolmogorovian event space?

We only get nontrivial restrictions if we include also correlations i.e. probabilities for
conjunctions.

Pitowsky theorem

Assume we have some events A4, ..., 4, and a subset of pairs
Sc{pn:i<j;i,j=12,..n}

and we are given some probability assignments

p; = Prob(4;) =12 ..n
pij = Prob(4; A 4;) (iL,)HES

assembled as a vector p = (pl, D2 - Pns s Pijs )

Define the following 2™ elementary vectors:
€ € {0,1}" - u€ € R**S

€ __ £ €
u;=¢ i=12,..,n u

ij = €i€j

Classical correlation polytope

c(n,S)=[fER”+|5||f= Z Adi€; 1,2 0; Z AE=11

ee{0,1}1 ee{0,1}1

Theorem (Pitowsky 1989)
p has a Kolmogorov representation if and only if p € c(n,S).

Proof

(i) Assume there is a Kolmogorovian probability field (X, ) such that there exists
Xy, o, Xp with p; = u(X;) and p;; = u(X; A X;).
Denote
X(€) =X, AX,? A AX, " where X° = =X and X' =X
Note that these are mutually exclusive events that make up the certain event i.e.
X(e)AX(€") fore + €' and \/ X(e)=1
ee{0,1}*
and additionally satisfy
X; = \/ X(e) =1

eef{0,1}: g;=1



Defining A, = ,u(X(e)) > 0 it automatically holds that

le=1
eef{0,1}
pi = uX;) = Z u(x(e) = Z Ac€i
eef{0,1}: g;=1 ee{0,1}1
pij = #(Xi AX}') = Z ,u(X(e)) = Z A€ €
ee{0, 1} : g;=€j=1 eef{0,1}
SO
7 = Z A€ € c(n,S)
ee{0,1}*

(ii) Assume now p € c(n,S) so it can be written as
7 = Z A€ with 2, >0 and Z A =1

ee{0,1}1 ee{0,1}1
Let X be the Boolean lattice generated by the subsets of {0,1}" and
Xi={e€{0,1}" e =1}

We can define a probability measure as

wXer-ulX) =ZAE

€eEX
Then we have

RXD = ) A= ) Ae= ) A =p,

eef{0,1}1: ;=1 ee{0,1}1 eef{0,1}1
#(XL /\X}) = Z AE = Z AEEI'.E}' = Z AEHE = pU
€e{0,1]: g;=¢;=1 eef{0,1} ee{0,1}1

Q.e.d.
Pitowsky inequalities
n=2case: S={(1,2)} {0,1}? = {{0,0},{0,1},{1,0},{1,1}}

The classical correlation polytope is three dimensional and has four vertices
{0,0,0},{0,1,0},{1,0,0},{1,1,1}

Then we can write

P1 0 1 0 1
p= (pz) =1 —p1—p2 +P12) (0) + (p1 — P12) (0) + (P2 — P12) (1) + P12 (1)
P12 0 0 0 1

therefore p € c(n, S) is equivalent to the following system of inequalities



0spn<p1=1
0sp<p;=1
p1+pz—prz <1

These are just the obvious relations!

n = 3 case: S={(1,2),(1,3),(2,3)}

The classical correlation polytope is six dimensional and has eight vertices.
The inequalities are

O0<spij<spi<1 0<p;j<p;<1 p;+pj—p; <1 are the obvious ones
and, in addition

P1— P12~ P13+ P2320 P —pP12—P3+pP13=20 p3—p13z—P3+pi2=0
Pr+P2+ D3 — P12~ P13~ P23 <1

n = 4 case with S= {(1,3), (1,4), (2,3), (2,4)}

OSpUSplil OSpUSp}SI pl+p}—pUS1
1< P13+ PratPea—P3—P1—P+<0 —1<py3+pra+Pia—P1z—P2—Ps=0
—1<SpratPiz+ Pz —Pea—P1— P30 —1<pyy+pr3z+pPiz—Pra—pP2—pP3=0

Deriving these inequalities gets exponentially harder with increasing n.

EPR probabilities violate Pitowsky inequalities

Assume Alice and Bob can both measure in two directions @, , for Alice, 51, , for Bob, with
angles

L(&ll B’l) = _L(&ll Bz) = L(&z, Bz) = 1200 alld L(&z, Bl) = 0

Let A; , be the events that Alice gets that her spin points in direction d, , and B; , be the
events that Alice gets that his spin points in direction b, ,. Then we have

1 1
pz =p(By) = 7 ps =p(By) = 5

b =
D =

pp=p(4y) = p, =p(4y) =

w

3
P13 =pP(A1 ABy) =5 p1a=p(A;AB;) = 3 P23 =p(A2 AB;) =0

wo

P2s = P(A2 ABy) = <

co

The resulting vector
4_(11113303)
p_ 2)2)2)2)8)8) )8

violates the Pitowsky inequalities
3 3 3 1 1
P13t P1a T P2a — P23 —P1 — Pa =§+§+§_0_§_§=§$ ot



Conclusion (again): the quantum probabilities cannot be interpreted as relative
frequencies of properties of the measured system!

However: there is no problem in interpreting them as conditional probabilities,
conditioned on the choice of measurement direction, i.e.

1 1 1 1
p(4,la,) = 2 p(Azl|ay) = 2 p(Bylby) = 2 p(Bz|by) = 7

3
p(Ay A Bila; Aby) = 3 p(A; ABzla; Aby) =

o] wel w

p(Az ABilaz Aby) =0 p(Az ABzlaz Aby) =

"Quantum contextuality"”, again: they can be interpreted as probabilities of physical outcomes
of measurements, i.e., always in a given measurement "context".

Note that this is not really a very deep (conceptual) contextuality, as it is very natural that the

outcome of the measurement is determined not only by the system, but also the measurement

setup!

The convex set of quantum correlations

Definition: the correlation vector p has a quantum realisation if there exists a Hilbert space
with subspaces Ej, ..., E;, with projectors Py, ..., P, and a density operator p such that

pi =Tr pP; and p;; = Tr pP;;
where P;; is the projector on the subspace E; N E; (quantum AND operation).

Denote by q(n,S) the set of correlation vectors p which have quantum realisations.
Definition: a vector ¥ of the form

v;=0o0rl wv;=vv; orOfor(i,j) €S

is called a quantum vertex and denote their set by V,, s.

Note that classical vertices U€ are also quantum vertices.

Define the polytope of convex combination of quantum vertices as

I(n,S) = f € Rn*1SI| F = Z A s A5 >0 Z Ay =1

f?’EVnJS f?’EVnJS



Theorem (Pitowsky)

(i) c(n,S) cqn,S) cln,S)

(i) g(n,S) is convex, but not closed
(i) int(I(n,$)) € q(n, )

The last statement means that although not all vectors in [(n,S) can be realised by quantum
theory, any of them can be realised by arbitrary precision.

The proof is sketched in the book

L.E. Szabé: The Problem of Open Future - chance, causality, and determinism in physics
(in Hungarian, Section 7.2)

Where do the “quantum vertices” come from?

Let us consider a simple example of two events corresponding to projections P; = |3 )}{U|
and P, = |y, {P,| on normalised Hilbert space vectors ;) and [{,) which form an angle
a > 0i.e. (Y1 |P,) = cos a. Choose our quantum state as p = | {1 |. Then we have P,, =
0 and so

pp=TrpP;, =1 p,=TrpP, =cosa py; =TrpP;, =0

which can be arbitrarily close to the “quantum vertex” p; = p, = 1, p;, = 0 for small values
of a. However, it can never exactly agree with these values as for a = 0 all three projectors
coincide (P, = P, = P;3) and p; = p, = p,1 = 0, showing that the quantum vertices are not
part of the convex set of quantum correlations g(n, S).

Quantum correlations can be more general than what is classically allowed

The lesson is: quantum theory allows correlations that cannot have a classical
Kolmogorovian representation!

However: note that we did not assume that the projectors to which we assigned a quantum
AND should commute! In fact, to get quantum correlation that are not in the classical
correlation polytope c(n,S) it is necessary to include events with projectors that do not
commute. So, it is rather unclear whether the above theorem has any physical
consequences, since only commuting observables can be measured simultaneously.

The strength of the EPR-Bell setup is that it only involves outcomes of compatible
measurements, and still shows a violation of the Pitowsky inequalities!

Note that if the Pitowsky inequalities are violated by the measured relative frequencies, then
the outcomes cannot be attributed to pre-existent properties of the system ("elements of
reality") irrespective of the validity of quantum theory.

The EPR-Bell argument is strong because the experiment directly tells us something
about the nature of physical reality, without any assumption about whether it is described
by quantum theory.



Lecture 5

EPR experiment loopholes

Communication loophole: if Alice and Bob's choice of measurement
directions/measurements are not space-like separated.

Detection loophole: if we cannot detect all EPR pairs, our statistics may be biased and so does
not reflect the actual frequencies of the physical properties - since Bell's inequality is violated
by a finite amount, to avoid this we need to make sure that the detection efficiency is above a
lower bound (approx. 85%).
Loophole-free experiment
W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau and H. Weinfurter:

Event-Ready Bell Test Using Entangled Atoms Simultaneously Closing Detection and
Locality Loopholes, Phys. Rev. Lett. 119 (2017) 010402

The laboratory notebook argument

Cf. L.E. Szab6: The Problem of Open Future - chance, causality, and determinism in physics
(in Hungarian)

Suppose a labor assistant is making notes of outcomes A4, ..., A, happening in a measurement

Run A, A, .. A, A, AA,
1 1 0 .. 0 0
2 1 1 .. 0 1
N

Each row is some classical vertex 1U€; assume a row corresponding to € occurs N, times. Then
the measured relative frequencies form the correlation vector

f= Z&ﬁ’f € c(n,S)
N el
€
So, frequencies recorded in any such laboratory notebook always have a Kolmogorovian
representation.
How is it possible that EPR measurements violate the Pitowsky inequalities?
Solution: the outcomes are conditioned on the choices of measurement settings!

If in any given run we can fill in say the outcome T, for Alice, then the outcome of the
unperformed measurement in direction b is not known!



If the outcomes of measurements are determined by hidden variables (properties) inherent in
the system (the EPR pair), then the outcome of unperformed measurements would be well-
defined even the measurement is not performed, with relative frequencies that are measured in
the runs when the appropriate settings are selected. But then these relative frequencies would
satisfy the Pitowsky inequalities, which is not the case - neither using the predicted
probabilities of quantum theory, nor for the experimentally measured relative frequencies
(which happen to agree with the quantum predictions within experimental accuracy).

The real laboratory notebook can be formulated by recording the choices made by Alice and
Bob, i.e., we should add to each run their measurement settings:

Run a a .. a, by b, .. b, A B aAb aAb, .. a,ANb, AAB
1 1 0 .. 0 0 1 .. 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0

2 1 0 .. 0 1

where a,, ..., a, are the possible choices for Alice, by, ..., by, are the possible choices for Bob,
A is that Alice measures her spin in her chosen direction, while B is that Bob measures his spin
in his chosen direction.

The probabilities constructed from the above table obey Kolmogorovian statistics, but they
cannot be interpreted as relative frequencies for different states of the system as they also
include the choice of measurement settings.

What quantum mechanics predicts are the conditional probabilities

p(Alay), p(Blb), p(Ala;), p(B|b;)

and

Even deeper into the EPR-Bell experiment

Even if there is no description in terms of system properties, a more pertinent question to ask
is:

Can the outcome of EPR experiment be accommodated into a classical description?

Local Markovian determinism

Classical physics satisfies local determinism: data on a Cauchy surface S determine all events
A in its future dependence domain D™ (S)



It is also Markovian: earlier events B determine A only
via the data in S that they influence.

Classical physics is LDM: local, deterministic and
Markovian

Markovian: memories exist, but they are inscribed into the

variables describing the temporal evolution of the system. ‘ ,
Sometimes we use non-Markovian descriptions, but they g
are only effective models obtained by eliminating some B

degrees of freedom.

Let us assume that Alice and Bob can both make two measurement choices for the direction
they can measure the spin:

a,, a, for Alice and b4, b, for Bob

Let us consider the events that their detectors measure the spins pointing in the selected
directions

A4, A, for Alice and B;, B, for Bob

We assume that the selections of the directions and the measurements happen in a space-like
separated way:

and that there is an LDM description from a Cauchy surface S with initial datay U A U v. We
can then reproduce the event probabilities in the following way:

p(4) = Y uhi@DpAL)  p(B) = Y wPI@VIPAAY)
v,A

wA



pla) = ) u(up@nd)  p(by) = ) ubiAvIp@Av)

wA v,A
p(4iAB) = ) wh(u AuPi(, VIpu AAAY)
wv,A
plarnb) = Y u(u, Dubi(A,vIp(u AZAY)
wv,A

Here p(..) denotes the probability, while the function u is defined as u?(a) =
1 if outcome A occurs given the initial data « and 0 otherwise.

Assumption of separability:
puninv) =pwppv)

Does not look natural since there is generally a common past that can induce correlations in
the Cauchy data:

quasar 1 common past quasar 2

However, if we use this to avoid the conclusion, it leads to an infinite regression (in actual
cosmology: regression to the Big Bang)!

Problem can be avoided by taking a random signal to determine the choices of directions, e.g.
from distant quasars. Note: a recent experiment did just that!

D. Rauch, J. Handsteiner, A. Hochrainer, J. Gallicchio, A.S. Friedman, C Leung, B. Liu, L.
Bulla, S. Ecker, F. Steinlechner, R. Ursin, B. Hu, D. Leon, C. Benn, A. Ghedina, M. Cecconi,
A H. Guth, D.I. Kaiser, T. Scheidl and A. Zeilinger:

Cosmic Bell Test using Random Measurement Settings from High-Redshift Quasars,

Phys. Rev. Lett. 121 (2018) 080403.

This experiment excluded that the common past responsible for the observed correlations was
within 7.8 billion years in the past!



Note: Big Bang event is in the common past of the observable Universe - we cannot exclude
that quantum correlations were encoded there = superdeterminism. It can always avoid the
no-go theorems - but is it viable as an explanatory framework? Is it really a competitive
alternative to quantum theory?

Screening property

p(A; AB; Aa; Ab; A Q)
p(ai Abj A A)
Zm’ wi(u, Du(u, DuBi,VuliA,v)p(u AAAY)
B S 0%, DUPI A V)p(u A A AV)
Dy i, Duti(u, HuPi (4, v)uPi (4, v)p(Wp(Dp(v)
- Yo w4, D (4, p(wp(Dp(v)
X, i, Dp@pd) X, uBi (v, Hubi (v, Dp(v)p(d)

2 uti(u, Dp(p(A) ¥, u? (v, Dp(v)p(A)

ie.
Bell-Clauser-Horne theorem

Further assumption: choice of measurement direction is independent of the shared information
A:

ub(u, ) =uti@w) uPi@v) =ubi(v)
Motivation: if this is not true, then the “strange” EPR correlations originate from a

“conspiracy” between the system state and measurement choices, encoded in A (another form
of superdeterminism).

Then we get
A la) = plAina) _ Y Dui(u, Dp(uA2) _ Y, Hut(wp(w)p)
PRI =5 (@) Y2 w4, Dp( A A) 32w (p(p(A)
_ TaZu i Dui(Wpwp@) _ Z B GO
S, uGOp() R I IO I
= plaila; A1) p()
Similarly !

p(ila) = ) pAila A D) p(@2)
A

p(Bilb) = )" p(Bilb AD) p(A)
A

A



Theorem (Bell-Clauser-Horne)

Under the stated assumptions, the conditional probabilities p(Ai A Bj|ai A bj), p(4;la;) and
p(B;|b;) must satisfy the following inequalities
—1 < p(A1 A Bylay Aby) +p(Ay ABylay Aby) +p(A; A Byla; Aby)
—p(A; ABylay Aby) — p(Aqlay) — p(Bz|by) <0
—1 < p(A; ABylaz Aby) + p(A; A Byla; Aby) +p(Ay ABzlay Aby)
—p(A; ABqlay Aby) —p(Azlaz) — p(Bz|by) <0
—1 < p(A1 A Bzlay A by) + p(Ay A Bilay Aby) +p(A; A Byla; A by)
—p(4; A Bylay Aby) — p(Ailay) —p(Bylby) <0
—1 < p(A; A B;la; A by) + p(A; A Bylay A by) +p(Ay ABylay A by)
—p(A; ABzlay Aby) — p(Azlay) —p(Bylby) <0

Note: these look formally the same as the corresponding Pitowsky inequalities, but their
physical content is entirely different!

Proof

For any 0 < x4, x,,y4,y, < 1itis automatically satisfied that
101 + X1V, + XY —X2Y1 — X1 — Y2 <0

Therefore

—1 < p(A1lay AD)p(Bylby A2) + p(Arlay AD)p(Ba|by A A) + p(Azla; AD)p(Ba|by AA)
—p(Azla; A)p(By|by AX) —p(Aylay AA) —p(Balby AR) <0

Using the screening property
—p(A; AByla; Aby A )
—p(Aila; AA) —p(Bzlb, AX) <0

Multiplying by p(4) and summing over A gives the first inequality. The three others are
proven similarly.

Quantum probabilities violate the Clauser-Horne-Bell inequality

Assume Alice and Bob can both measure in two directions @, , for Alice, f_J’L , for Bob, with
angles

£(dy,b,) = 2(dy,b;) = £(d,,by) = 120° and £(dy,b;) =0

Let A; , be the events that Alice gets that her spin points in direction d, , and B; , be the
events that Bob gets that his spin points in direction b ,. Then we have



1 1 1 1
p(4,la,) = ) p(Azl|ay) = 2 p(By|by) = 2 p(Bz|b; ) = 2

3 3

p(Ay A Bila; Aby) = g p(A; ABzla; Aby) = 3
3

p(Az ABilaz Aby) =0 p(A; A Byla; Aby) = g

p(Ay A Bylay Aby) + p(A; A Bylag A by) ;‘ p(4; ngmz /f\le)l_ pfAz A Bila; A by)
—p(A4la;) — p(B,lby) = 5

+-+-—0—z—-=-1
8 8 8 2 2 8
So, quantum correlations cannot be embedded in a local deterministic Markovian description
which satisfies the screening property.

If we omit the screening property (or Bell’s additional assumption): the LDM variables can
"conspire” to determine both the state of the system and the measurement choices in a
correlated way — but this would lead us down the path of superdeterminism.

A few common misconceptions

1. Assumption of independence of measurements settings is not a ''free will'' assumption.

It is just the statement that measurement choices are statistically independent of the state of the
system. They can even be made by a random generator (even of cosmological origin) without
reference to any conscious observer.

Example: in Brownian motion the Brownian particle moves under fluctuating random force of
medium, whose probability distribution is independent of the particle's state of motion. At
microscopic level this is typically valid even if classical dynamics holds and full motion of
Brownian particle + molecules of medium is fully deterministic in terms of initial conditions +
Newtonian dynamics!

2. Superdeterminism is not just ordinary determinism.

Superdeterminism is much more than ordinary determinism: it involves very specific
correlations between measurement choices and system state variables to lead to the observed
finite violation of Bell's inequality.

Cosmological Bell's experiment pushes the origin of this "conspiracy" to at least 7.8 billion
years in the past - making any model using superdeterminism to explain EPR correlation very
contrived!

Caveat: the cosmological Bell's experiment did not close other loopholes, but any attempt using
these escape routes looks increasingly contrived.

3. In principle, superdeterminism is not the only way out!
It is possible to relax the property interpretation by a different way than giving up independence

of measurement settings. It is also possible that the hidden parameter determines whether the
property is measurable at all, and if yes, it also determines its value.



Proposal by A. Fine: the quantum probabilities are interpreted as
Tr pPy = P(a;|[A])

i.e., the conditional probability of measuring A gives the outcome a; provided the
measurement gives a result (registers a hit) at all, which is denoted by [A]. An explicit
realisation can be found in the book

L.E. Szabé: The Problem of Open Future - chance, causality, and determinism in physics

(in Hungarian)

However, reproducing the observed violation requires that the detection per emission rate is
bounded:

detection

V2

1
—— <3
emission 2
This is now excluded by event-ready Bell tests simultaneously closing the detection and
communication loopholes!!!
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Local and non-local realism

Local realism
Excluding LDM is interpreted as excluding local realism - where realism means existence of
elements of reality, i.e. classical variables.

Only remaining way out for local realism is superdeterminism but it comes with a heavy
price: the correlations inscribed into the state of the Universe billions of years ago must go
through the dynamics of enormous number of degrees of freedom "buffeting” the
corresponding variables until the eventual experiment - very hard to maintain in the face of 2nd
law of thermodynamics!

This is the same mechanism that ensures that even if molecules of the medium can be described
deterministically, the force exerted by them on the Brownian particle is an independent random
noise. Preserving any correlation breaking statistical independence between the state of motion
of the particle and the force exerted by the medium requires extreme fine-tuning!

A superdeterministic world could be classical, but at a very heavy price - it would not at all
resemble usual classical physics! The requirement of extreme fine-tuning also prevents such
a theory to be predictive. To reproduce quantum correlations, it would need to reverse engineer
them, making any such theory parasitic on quantum theory.

Non-local realism
However: non-local hidden variables are possible as demonstrated by Bohmian mechanics
= possibility of non-local realism.

Nevertheless, some forms of non-local realism can be excluded:
Leggett inequality (''crypto non-local theories'')

A.J. Leggett, Foundations of Physics 33 (2003) 1469-1493.
Violated by QM, also violated experimentally (2007,2010).

Leggett-Garg inequality (realism violated in time evolution)
A.J. Leggett and A. Garg, Physical Review Letters 54 (1985) 857-860.

The inequality follows from two assumptions, both of which are parts of a classical world view:
Macrorealism: "A macroscopic object, which has available to it two or more macroscopically
distinct states, is at any given time in a definite one of those states."

Noninvasive measurability: "It is possible in principle to determine which of these states the

system is in without any effect on the state itself, or on the subsequent system dynamics."

Violated by QM, also violated experimentally (some loopholes may remain).



Tensor products, separable states and entanglement
Suppose we have a composite system of two parts:

Part 1: described by states |1); in a Hilbert space H;
Part 2: described by states |¢), in a Hilbert space H,

Then the total state of the system can be given as a pair (|Y))4, |¢),)

(1)1, 19)2) = [Y); ® |@d),  -- such a state is called a dyad.

However: superposition principle allows states of the general form
> el @ ¢,
Lj

The space of such linear combinations is called the tensor product of H; and H, and is
denoted by H; @ H,. The operation & is assumed to be linear in both arguments, i.e.

@)y +BlY' 1) Q |), = alp); Q |p), + BlY') ® |d),
|¢’)1 X (“kb)z +ﬁ|¢')2) = ahb)l &® |¢)2 +ﬁ|¢’)1 &® |¢')2

Tensor product basis and scalar product

Take a complete orthonormal basis |e;); € H; and similarly | f})z € H,. Then any vector
|¥) € H; ® H, can be (uniquely) written as

)= pyled ®f),
Lj
Scalar product on H; @ H, is defined for simple dyads |¥) = |[Y); ® |¢p), and |¥P') =
[P ® |¢), as
(W) = (@' [Yv)Xe' | )

This has a uniquely defined linear extension to states which are linear combinations of multiple
dyads. It is then easy to prove

@y = > (i) vy
Lj
Operators on a tensor product

Given linear operators 0,: Hy; = H; and 0,: H, — H, , their tensor product is

0; ® 0: Hy @ Hy » Hy Q H, (01 ® 0,)(I)1 @ |$)2) = 01]9)1 ® 02]9),



Any linear operator 0: H; @ H, = H; ® H, can be written as linear combination of such
product operators. Operators acting on H; , can be embedded into the space of operators on
H, Q@ H,by0; ®1and 1 R 0,.

E.g. if the subsystems have Hamiltonians H; and H, then the composite Hamiltonian in the
absence of interactions is

H®1+1®H,

Interactions are describing by terms which act nontrivially in both factors.
Matrix elements of operators in a product basis |”if) = le;); ® |f1,)2
000 = (virr|0|viz)

If 0 = 0, ® 0, this results in

Oj,j,j,'j' = (01)u’(02)ﬁ’ (01)iir = (ei|04]eyr) (Oz)ﬁ’ = (f'}|02|ff’)

Partial trace

Tr0:H, > H, (Tr0); = Z 0ij,ij’

L
Tr,0 :Hy - Hy  (Trp0)y = Z O0ijij
J

This is a linear operation, which can be proven to be independent of the choice of basis, and
also

Tr1(01 ® 0,) = (Tr0,) 0,  Try(0; ® 0,) = (Tr0,) 0,
Separable states and entanglement
A pure state |¥) is separable if it can be written as

1¥) = 1Y) @ [¢)2

A mixed state p is called separable if it can be written as a convex combination
P=Zlkpf®,0§ Qe =0 Zlk=1
K K

Why this definition? Because then p is just a probability distribution over uncorrelated product
states.

Entanglement: a state is entangled if it is non-separable.

Note that classical probability distributions are always separable!



Classical systems: configuration (phase) spaces X and Y.

Composite system: configuration (phase) space X X Y (simple Cartesian product since no
superposition principle applies).

Pure states: delta distribution §, (x) centred on a point x, € X which satisfies
fdxﬁxo(x)f(x) =f(xy) Vf:X->R
X

All classical states are trivially separable

Pure states:
6(150,3’0) (x,y) = 6xo (x)aJ’O )

The same goes for a classical mixed state on X X Y given by a probability distribution (x, y):
o) = [ dxo [ dyy e 135,098, 0)
Note that this a (continuous) convex combination since
m(x0,¥0) =0  and J‘don‘d}'O m(xg,yo) = 1
X Y

Therefore, entanglement encodes quantum correlations that go beyond what is classically
possible!

All the above can be extended to a multiple tensor product H; @ H, ... & H,,. Definition of
separability for systems composed of n parts:

A pure state |¥) is separable if it can be written as

WJ) = |'~.b1)1 X |¢'z)z - |'1bn)n

A mixed state p is called separable if it can be written as a convex combination
P=Zlkpf®i)§---®9;§ Ae 20 Zlk=1
K K

Again, it is simple to see that states in classical composite systems are always separable.



Is there superluminal communication in EPR-Bell?

Assuming wave function reduction is some physical event, let's consider when it happens!

Spin projection eigenstates in direction W = (sin¢,0,cos ¢):

[T,) = cos— [T,) + sm

[{,,) = —sin—

IT)+

COoS =

Event projector to spin up in direction w

P(¢) =

|Tw)(Tw| =

2
l —
l = sin9
2
—sin—
2
cos—|!,) =
l = cos?
2
27 s T
cos > sin > cos >
sin —cos — sin? 9
2 2 2

2-spin event projector for Alice measuring spin 1 in direction w:

P (¢)

=P(P)®1=

¢
2
i 0
/ Ccos 5
¢
0 22
cos 2
Zcos— 0
sin 2 Ccos 2

sin —cos —
2 2

sin —cos —
2 2

2-spin event projector for Bob measuring spin 1 in direction w':

P(¢") =1Q P(¢)

si

\

cos? g sin gcosgﬁ
2 2 2
n?cos? sin? >
0 0
0 0

The joint probability of these events makes sense:

Pi()P,(¢") = P, (¢’

)P1(9)

r r

sin —cos —
2 2

sin —cos —
2 2

0

r

r

sin—cos —

2

2

2

r

sin“ —

2

/



(Alice and Bob can choose their detector settings independent of each other)

The probability that both of their detectors clicks (i.e. they both measure spin up)

(Vepr|P2 (") P (D) [Wepr) = —Sm ¢ 2‘1’
0
Wepn) = —=(Milds = ahilTa)n) = —|
EPR_\/i zi11¥*zf2 lez_ﬁ _1
0

Action of a projector is the same as reducing the wave function to the appropriate eigenstate
(up to a normalisation) but since the two vectors commute, the order does not matter.

Since this holds even if the two measurements are space-like separated, the results are
consistent with relativistic causality!

(Note: locality in Quantum Field Theory!)
No-signalling property

No-signalling property means that measurement choices made by Bob cannot influence the
outcome statistics measured by Alice and vice versa:

Y p(AABlanb)=pAla) ) p(AnBlaAb) = p(BIb)
B A

i.e. Bob cannot send a signal to Alice by manipulating the degrees of freedom locally available
to him (and vice versa).

Correlation vectors p having this property form the no-signalling polytope NS(n, S)
(S. Popescu and D. Rohrlich, Found. Phys. 24 (1994) 379-385).

Local (Bell) polytope: correlations come from shared randomness between the two sides

p(AABlaAb) = Z;ti pAlice(4|a)PEOP(Bb)  A; = 0 Z;ti —1
i i
Here i runs over the possible configurations of the shared (hidden) variables, A; are the

probabilities of the shared variables realising the configuration i. This gives exactly Pitowski's
classical polytope C(n, S), and also implies the no-signalling property

Zp(A/\BIa Ab) = ZA PA“C""(AIa)ZPB"b(BIb) ZA pAlice(4]a)

=p(Ala)  since Z PBoP(B|b) =1



Quantum convex set: correlation vectors realisable in quantum theory, q(n, S)

Central property: C(n,S) S q(n,S) S NS(n,S)

Quantum correlations go beyond classical ones: entanglement!

However, quantum correlations still satisfy no-signalling. But they are not the most general no-
signalling correlations possible!

The world could in principle be even more strongly correlated than in quantum theory
without violating no-signalling!

Literature for those wanting to learn more about correlation polytopes:

e N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani and S. Wehner, Rev. Mod. Phys. 86
(2014) 419-478, arXiv:1303.2849 [quant-ph].

e J. Bub, Int. J. Theor. Phys. 53 (2014) 3346-3369, arXiv:1210.6371 [quant-ph].

o Jeffrey Bub: Bananaworld: Quantum Mechanics for Primates, Oxford University Press,
2016, 273 pages.

Quantum correlations satisfy the no-signalling property:

No-communication theorem
(P.H. Eberhard, Il Nuovo Cimento 46 (1978) 392-419).

Since all observables measured by Alice and Bob commute, one can write the system's Hilbert
space as

H=H,Q Hg
Observables measured by Alice: 04 @ 15
Observables measured by Bob: 1, @ 0p

Assume Alice's measurements has (pairwise commuting) outcome projectors Py, @ 15, while
Bobs has 1, ® PBJ. such that

ZPA£=1A ZPBJ,-::[B
i J

Note: their measurement settings are encoded in the choice of their system of outcome
projectors.

Now suppose that the observed system is in a quantum state described by a density matrix p.
Then Alice and Bob can describe the state from their point of view by separate density matrices
p4 and pp uniquely defined by specifying all the expectation values under them:

Trye p(04 @ 15) = Try;, paOs VO,
Trye p(14 @ Op) = Try;, ppOp VOp



Note: existence of such p, and pg is guaranteed by von Neumann's theorem (cf. Lecture 3),
and also by Gleason's theorem.

The states of subsystems are given by the partial trace operation:

pa =Try,p  pp =Try,p

How to compute the partial trace? The density matrix can always be written (not uniquely) in
the form

p= Z ay S @ Ty
K
Then it is easy to see that

pa =Tryzp = Z ak(TrHBTk) Sk P =Try,p = Z “k(TI‘::{ASk) Ty
K K

Example: EPR state

1
p=5 Na @ M) = 1Na®IMp ) (T4 @ (s — (Ha & (Tp)

1 1 1
=5 Mala @ 15 = 51Da(Tla & M5tz = 51D altla @ [15(Tl5

1

+510a(ts @ [M5(T15
Using
Trac, [Dp(te =1 = Try |Ne(Tls  Try, [Ds(Tlz = 0 = Tra, [Ns(ls
we get

1 1
pa =5 MNa(Ma+5 14l
and similarly

1 1
pp =5 M(Tls + 5 sl

Note that the partial states are mixed, even though the full system state is pure!

Now

D 04 ABlanb) = > Try p (B, ® Py)) = Tryy p(Pa, ® 1) = Try, paPs, = p(Ail@)
j j



and similarly
> p(4; ABjlanb) = p(B;|b)
i

So, Alice cannot communicate to Bob by local manipulations on her side (choosing
measurement settings and performing measurements) and vice versa for Bob. Even quantum
entanglement does not allow superluminal signalling, i.e.

Q(n,S) € NS(n,S)
Communication is possible if Alice transfers her measurement outcomes to Bob over some

direct communication channel - then Bob can deduce Alice's measurement settings from the
correlations between his and Alice's measurement outcomes.

Indeed, this is how quantum communication and quantum cryptography work - they involve a
direct (classical) channel between the participants.

No-communication theorem implies the no-cloning theorem - there are no quantum operations
which allow the cloning of an arbitrary state on Alice's side to Bob's side.



Lecture /

Quantum histories

Wave function reduction is problematic
o Incompatibility with relativistic causality
o Our EPR-Bell analysis: it is not possible to identify a time when it happens - hard to
assign it to a real physical event!

Consistent histories: a reformulation of quantum theory

+ Independent of interpretation: it works as an extension of orthodox Copenhagen QM, or
can be accommodated into an Everett interpretation etc.

o Itis also a research program to interpret QM solely in its own terms.
o Description of closed quantum systems without outside observers (e.g. quantum
cosmology)
o Does not presuppose classical background in any sense
o Manifestly compatible with relativity

Good book to learn the details from:
R.B. Griffiths: Consistent Quantum Theory. Cambridge University Press, 2003.

Consistent histories in the orthodox (Copenhagen) interpretation:
R. Omnes: The Interpretation of Quantum Mechanics. Princeton University Press, 1994.
- with details
R. Omnes: Understanding Quantum Mechanics. Princeton University Press, 1999. -
simpler presentation

Quantum sample space

Set of mutually orthogonal projectors P; spanning all the Hilbert space

L

P?=P =P PP =0 ZPi:l
i
(resolution of identity)

Select time instants t; < -+ < t,, and a quantum sample space P;, () for each
(they can be different for each instant)

History operator

Xiy iy = Pi, (t3) .. P (t1)

Compatibility with relativity: time ordering is only absolute if projectors correspond to non-
spacelike separated events. However, whenever they are spacelike separated, their relative
order does not matter due to locality in relativistic quantum field theory.



The full set of history operators constructed this way form a resolution of identity

E Xiyin =1
i1, in

So, we can interpret these histories as mutually exclusive and forming a complete set of
possibilities.

We would like to assign probabilities to the system having the history y; ;. :
. =Try: . oyl .
p”l---"n r Xl.l...l.an],l vl

Consistency with usual quantum rules for probability

This recovers the usual rules of wave function reduction. If we have an initial state |¥'(0))
evolving as

¥ (1)) = e |¥(0))

and perform a measurement at time t; resulting in an outcome Pf) from a resolution of the
identity, the reduced wave function after t; is

1 .
¥ (t)s = FPf)e“”“I‘P(O))
iy

with probability p;, = (¥(0)|e*#1pM et |w(0))

Now perform a measurement at time t, resulting in an outcome Péz) from another resolution
of the identity

1 )
W (t2))s = ——=PPe M|y (t)),
\ Pisliq

with probability i, = 4(¥(ty)|e* 0 pPeHEmt) |y (t))),
We then get a two-step history with the probability

Piji, = Piyi,Pi, = ([P(O)|e+iH£1Pi§1)e+iH(£2—£1)Pi22)e—iH(tz—tljpigl)e—thl|[P(0))
= (PP (t)PP ()P (t) ¥ (0))
= (O] x5, PO xiyi, = PP DRI(t)

We can also compute the reduced state back at the initial time

. . 1 .
¥12(0) = eMe2|W(ty)), = s —=pPe Gt |p(r)),

v Pisliy



. 1 . 1 . 1
= elfit _—— p{Ple~iH(tmty) — pWe~t1 | (0)) = ——= PP ()P (1) ¥ (0))

NI Jri, VPisi,

1
= ——=Xi,i,|¥(0))

 Piyi,

Repeating this procedure for n consecutive measurements, we find the probability for specified
outcomes

Pirin = (POIx i X0, P(0))  with history operator i, = P (6,) . PO (t1)

and the reduced state

1
%1, 2(0)s = ——=x1, .1, ¥ (0))
\ Piy..in
For a density matrix initial state, we can simply write it in eigen basis
p =) A lP(ONPO)
K

and get

Pi,..i, = Zlk (q’k(o)bﬁz_..inhl i PR (0)) = Tr (xy, ...inPX;rl__,in)
3

with the reduced state moved back to t = 0 given by

1

XivinPXi i

Piy.iy =
Ly..lyy

Composite histories can be formed as sums of a finite number of elementary histories y; ;.
and are interpreted meaning that one of the alternatives included in the sum happened.

Let us consider two different histories y; and y, and their combination y; + Y, then the rules
of probability dictate that

Tr xapxa T+ Tr xop 22t = Tr G + x20p O + 221
=Tr x1px1" + Tr xopx2" + 2Re Tr yop T

Definition: a set of histories {,} is called consistent if Re Tr y,p Xp T =0 whenever a # f.
For a consistent set of histories, we can consider each member of the set as mutually
inequivalent alternatives for a temporal history of evolution of the quantum system, assigned

with the probability

Pa = Tr XaPXa'



Probabilities of composite histories are simply obtained by summing the probabilities of the
elementary histories involved.

Example: double-slit experiment

double-
slit

screen

Electrons
() e/ e\ T PP )
electron
beam gun /
interference
pattern

The wave function of the particle passing the slits (symmetric arrangement for simplicity's
sake)

1
NG (Ipa) + 1))

I‘l’)=J_

where |1,ba,b) are the wavefunctions obtained by passing slit a/b.

In coordinate representation, intensity in a patch X on the screen can be computed as

1 *
[ = 3 [ ax(at) + 9y (0) (Wat) + 95(0)
= 3 vl + 5 [ axlin O + Re [ dewCorpao

slita slith interference term

We can take the following sample spaces:

o Attime t,:
o P,(t1) = [P )W, (particle passed slit a)
o Py(ty) = Y X, | (particle passed slit b)

o Attime t,:
Py (t,) = Py: particle is in some patch X of the detector screen.

Compatibility condition for histories Py (t,) P, (t;) and Py (t,)P,(t1)



i.e. that particle landed at patch X and earlier passed through slit a/b

Re Tr (Px(tz)Pa(t1)|W)(W|Pb(t1)PX(tz)) = Re (W|P,PyPyF,|¥)
1 1
= 3 Re (alPeli) = 3Re [ doxipa (s @)
X

# 0 in general (this is the interference term!)

So: if we observe interference, it is not consistent to include in the history the which-slit
information!

Histories are consistent exactly when their interference vanishes.

Consistency of histories is a precise and general formulation of Niels Bohr's
complementarity principle.

Refinement, coarsening and frameworks
A consistent set of histories {Xil iy = Py (tn) - Py (tl)} can be refined in two ways:
1. Adding another time instant t" with a sample space P;/(t").
Assume that the added instant fits in as t,,; > t' > ty.
This gives a refinement of the original set if the extended histories
Xiyoigi ig#1i = Pin (1) o Py (g1 )Py (€ Py, (E) .. Py, (E1)

are still consistent. The original histories can be identified with the composites

E Xig it ig+1oin
if

2. Refining any of the sample spaces such that the new set of histories is still consistent.

A sample space S” ={P/;} is a refinement of the sample space S = {P;} if for any
projector Pi'; € S’ there is a projector P; € S such that Pi'; < P.

This implies that any element P; € S can be written as sum of elements of S’, so the
original histories can again be embedded into the refined set.

The original set of histories is then called a coarsening of the refined one.

Single framework rule: any physical situation must be described by using histories which
are contained in a single consistent family.

A framework can be viewed as a class of compatible families which have a common
refinement.



Two consistent sets of histories are called incompatible if there is no consistent set of histories
which is a refinement of both.

When two histories are incompatible (i.e. inconsistent) they cannot be members of a consistent
set and so cannot be part of a single framework.

Most (all?) paradoxes of quantum theory arise from comparing histories which are
incompatible, i.e. from violating the single framework rule.

Note: consistent histories do not presuppose wave function reduction - the history projectors
are not considered as actual measurements.

Therefore, using quantum histories we can talk about intermediate states (i.e. the history) of
the system and the probabilities of alternative histories without performing any actual
measurement during the evolution!

The price to pay is that this description depends on the choice of the consistent family
(single framework rule!) - which is nothing else but the already encountered
contextuality.



Lecture 8

Wheeler's delayed choice paradox

Mach-Zehnder interferometer with second beam splitter in (a) and out (b) of the way

[ e [ e

e e A
M{' £ _ ] Mf' £ j _ |
> > - > —
Bin / F / / F
Brm!
C A d C A Ad
. A
B, d My B, d My
(a) (b)

Time evolution for the two situations

The beam splitters are unitary time-evolution operators

1 _ 1
By:|0a) - |1a) = —(|1c) + |1d))  |0b) - |1b) = —=(—|1c) + |1d))

vt e
By: |1c) = |2¢) = E(IZeH 12)) 11d) - |2d) = 5(—I28) +12f)
(a) Second beam splitter in
00) = 118) = (116 + 1) = [2f) = [E)IF")

In this case only detector F registers hits. What B, does is to erase which-path information
by combining the two paths again, so we observe an interference pattern, with detector E as
the place of destructive and detector F as the place of constructive interference.

(b) Second beam splitter out

a —i _)i _)i o * * o
|0a) - |1ﬂ)—ﬁ(|16)+|1d)) ﬁ(|2f)+|2€)) ﬁﬂE ME™) + |EM)F°))

In this case either E and F registers hits (but never both), with equal probabilities.



The paradox seems to arise if we only decide whether to remove B, when the photon already

passed B; and almost arrived at B,. Then QM says we do not see interference (case (b)), but
the photon is already in the device so that we think we can say it had already "chosen" the arm

| f) which should lead to outcome according to case (a).

Consistent families of histories
Let us consider four times for the evolution

1. ty:photon in channel a, state is |0a)|E°)|F°)
2. ty:photonin channels c or d, state is |1a)|E°)|F°) = Tli(llc) + [1d)|E°)|F°)

3. t,:photon in channels e or f
1 - 1
Boye: stateis —(|2¢) + |2d))|E°)|F°) = —=(|2f) + |2e)) |E°)|F°
out ﬁ(l ) +|2d)) |E°)|F°) ﬁ(l f)+12e)|E°)F°)
Bi,: stateis |2f)|E°)|F°)

4. t3: photon detected

1
B, state is — (|E*)|F°) + |E°)|F*))
out \/j

B;,: stateis |E°)|F")

Notation: [Y] = [YNYP|

Family 1: convenient for case with second beam splitter out, made of two histories
xe = [E”][2e][1d][0a]  xr = [F*][2f][1c][0a]
These are consistent:
Tr xepxr = Tr [E7][2e][1d][0a][0a][0a][1c][2f][F"] = O
since [2e] and [2f] are orthogonal projectors (they commute with [E*] and [F*])
and both have probability 1/2:
Tr xepxp = Tr [E"][2e][1d][0a][0a][0a][1d][2€][E"] = Tr [E*][2e][1d][0a]
1
= (Tr [E"]D(Tr [2e][1d][0a]) = Tr |d){d]| (z(IC) + ldN el + (dl))
1 1

= (dI((le) + el + (@D)ld) = 5
and similarly, for the other case.
Note that in this case yg contains the projection [1d], so we can infer that whenever detector

E is triggered, the photon went along the arm d, while similarly we can infer that whenever
detector F is triggered, the photon went along arm c.



Family 2: convenient when 2nd beam splitter is in. We only need one history in this case

x = [F*][2f][1a][0a]

This has probability 1, so F is always triggered. However, we can only infer now the
intermediate state

I1a) = %um +11d))

Therefore, we cannot say which way the photon went!

Can we try to use a family which allows us to infer the which way information? We can attempt
to do that with

Family 3:

x1 = Si[2¢][1c][0a]l X, = S_[2€][1d][0a]

1
S,:projector on state E(IE*)IF“) + |E°)|F*))

1
S_:projector on state E(—lE*)IF“) + |E°)|F*))

This family is consistent, but it does not allow us to draw the conclusion since in this framework
the events that one or the other detector clicked make no sense (their state is a macroscopic
quantum superposition).

Conclusion: if we detect interference, we cannot infer the path! So the rules of quantum
mechanics (as reflected by quantum histories) simply do not allow for any paradox to arise
here.

Delayed choice with "quantum coin"

What if the position of the second beam splitter is decided by a "quantum coin toss"? We
assume that some time while the photon is between the two beam splitters, a quantum coin toss
occurs and the second beam splitter's state changes into a "Schrodinger's cat” state:

L
vz

Then the time evolution is

|BO) = (lBin) + |Bout))

1. ty:photon in channel a, state is |¥,) = |0a)|E°)|F°)|B,)
2. t;:photon in channel cord,

state is [1a)|E°)|F?) = j—i(llc) + |1d)|E°)F)Bo)

3. ty:photonin channel c ord,



1 1
state is |1a)|EO)|FO)E(|Bin) + |Bout)) = z(llc) + |1d))|EO)|FO)(|Bin) + |Bout))

4. tsz:photonin channel e or f
1 1
state is 7z |2fYE°)F°) Biy) + z(lzf) + 12e))|E°YF°)Boye)
5. t4: photon detected

1 1 1 _i *\| o ) *
\/—i(IBm)IE MF*) + |Boue)|ST)) where |S )—ﬁ(IE MFC) + [E°)F™))

state is
Statement of paradox
Suppose we measure the coin later than t,. Then whether we see interference or not seems to
be decided later than the eventual detection of the photon. Does the future influence the past?

Crucial observation
Until we do not measure the coin, we can only say that detector E fired in 25% of the cases
and detector F fired in 75% of the cases since the quantum state is

1 0 0 * 1 0 *
5 1Bou) (IE)NF) + |E°)F ))+\/_§|B“‘)|E NFT)

Outcome table and interpretation

Outcome Bin | Bow |E'&Boue | F'&Bgyu E*&B;, | F'&By,
Probability 1/2 12 1/4 1/4 0 1/2

We can be sure that firing of E corresponds with a certainty to "no interference" i.e. to the result
Bout for the coin toss. However, for the cases when F fired, we cannot say which one
corresponded to interference or not before we measured the coin toss. The outcome of the coin
toss then post-selects the F* events: 1/3 of them will be attributed to cases of "no interference”,
and 2/3 of them are selected to be cases with interference, but we cannot tell which is which
before we measured the quantum coin. It does not matter how far in the future the measurement
of the coin takes place, the correlation can be interpreted both ways: either as the coin toss
influencing the probabilities of firings, or vice versa, as the result of the firings influencing the
probability of the outcome of coin toss. The choice depends on the temporal order of the
detection of the photon vs. measurement of the coin toss.

This resolves the apparent paradox posed by the famous delayed choice quantum eraser
experiment and removes the need for any influence to propagate backwards in time.



Delayed choice quantum eraser

hx .
o N Simulated results
o Ch
:—
78 2 Do Ro1
‘ % é\ Bsb
5 PS & R
- H .
Laser beam
o | o
Lase\
&
Double- | Ros
Slit

N

BBO: Barium-borate crystal Ba(BOz)2 — spontaneous parametric down conversiony — yy

Upper photon: "signal photon" Red path: upper slit
Lower photon: "idler photon" Blue path: lower slit

Before detecting idler photons, we only have full statistics Dg = Ry1 + Rgz + Rgz3 + Ros

Detecting idler photon in
D, or D;,: no which-path information

- selected subset of signal photons show interference (Rg1/Rgz)
D3 or D,: which-path information provided

- selected subset of signal photons show no interference (Ryz/Rgs)

Temporal sequence: what happens is that position of the signal photon in D, determines the
probabilities of the idler photon to show up in the detectors Dy ;3 4.

No “retro-causal” influence of future on the past occurs at all!

Consistent families for delayed choice
Family 1

[F*]a[3f]13[Bin];[1al4
[F*]4[3¢]3[Bouc]2[1aly
[E*14[3¢]3[Boucl2[1aly

This only allows to draw conclusions about which-path info conditionally. The only
unconditional conclusion is that E* — interference and B,,;;.



Family 2

[F*]4[3f]s[Bin]2[1al,
[F*]4[3f15[Boucl2[1c]y
[E*]4[3e]3[Boucl2[1d]4

We can now infer from E™ that the photon came through arm d, but that can apply only for
the cases when we had B, since E” implies B,,,,. For B;, we cannot identify the arms at
all, as expected for a case with interference.

Family 3

[S*14[3¢]5[Bin]2[1cly

[F~], [3f_]3 [Bouel2[1c]y
[5714[3d], [Binlo[ 1],
[E*]4[3e]3[Boucl2[1d]4

This family cannot be used to construct a paradox, since for the cases with Bj,, the outgoing
state of the photon does not correspond to either E or F firing, which is the assumption we
start from (that we eventually detected the photon in either £ or F).

Conclusion: the paradox cannot even be stated consistently!



Lecture 9

Hardy's paradox: original formulation

Left/right MZ alone:

let) *%(Ivi) + lwt))
lw®) > |ut)

vt eéuci) £1d*y)

[ut) - %uci) —1dty)

resulting in

1
£y (Ipt +
le*) ﬁ(lv )+ w*))

1 ; ; et . 2 e
- —(lu™)+ |w*))

V2 .
- |c*)

So, if the interferometers are separated, then d* never fires.

However, when they are connected, we have annihilation in P:

lwH)w™) = [¥)y)

The full evolution is then

Ie+1)le‘)
- i(lv+)lv‘) + v wT) + lwHlvT) + [whHlw™))

1
- §(Iv+)lv') + O uT) + [uMHvT) + Inly)

1
= 2(Ae) +1a* N0 + 14D + (et + 1d)(Ie”) ~ 1d))
£ (%) = D) + 14D + 2N i)
=2 1eHe) + S 1eHdn) + = dH)em) =~ 1dHd-) + = ) ly)
—4Ic )IC)+4IC )M 2 c 2 5 Iy

Paradox:
o Naively speaking, d* can only fire if access to u was blocked by antiparticle
arriving via w.
» Butit is possible that d* fires simultaneously, with probability 1/16.



o How can this happen when this requires that both the electron and positron take
the w-arm of their side, so they should have annihilated, leaving no particle to be
detected?

o Indeed, note that the probability of annihilation is 1/4, as expected.

Hardy's paradox: photonic realisation

Assume that the source emits the GHZ (Greenberger-Horne-Zeilinger) state
#0) = —=(lcc) + |ed) + |de))

V3
The two beam splitters act as

Bilc) - %(Ie) I 1d) - %(—m FIF)
B:le) > (1) +1f)) |d) > =(=12) +1)

We can compute the state |¥) evolved until before detection

BB: ——((Iee)-+ 17e) + [ef) + 117)) + (~lee) = &) + |ef) + |7)
+ (~ledy + If&) — |ef) + 7))
1 _ _
|¥) = E(—Iee) +1fey+|ef) + 3|ff))

So, we have the following probabilities for detectors firing:

B L rh L R L opR S
12 12 " 12 T4



Paradox

1.

If we assume E fired (which has probability 1/6) then we can be sure particle b was in arm
d since

1, - 1 B
@) = \/_Eled) +\/T_2(|fe) +3|ff))

This is often called a weak or interaction-free measurement since by detecting a in E,
we obtain which-path information about b without ever interacting with it. Note that it only
works in 1/6 of cases - weak measurements are never 100% efficient! An interesting
application of weak measurement is the Elitzur—Vaidman bomb-tester.

If we assume E fired (which has probability 1/6) then we can be sure particle a was in arm

d since

@) = \/—_lde) +— (|eﬂ +3|ff))

This is another example of a weak measurement.

3. But then if both E and E fired, @ must have been in arm d AND b must have been in arm

d.

4. However, this contradicts the fact that the initial state

1 -
|¥,) = E(lcc‘) + |cd) + IdE))

has no |dd) component!

Analysis of the paradox using consistent histories

We need to use a number of consistent families to describe the paradox.

Fy:{lelle), [£11c], [e][d], [£1[d]}

This family is consistent since the unitary dynamics of the two particles are totally independent
(tensor product), so

Tr XapXjy = (Pol XjXa |¥o) = 0
simply due to [e][f] = [f]le] =0 and [¢][d] =[d][c]=0

We can then compute that history [e][¢] has zero probability since

le][c]|¥o) = i[e](lcc‘) +|de)) = \/g[e]lfc) =0

V3

giving 1.



Similarly, the family

Fy:{[e]lc], [f]lel. [ellal, [F]Id]}
implies that history [€][c] has zero probability, giving 2.

The consistent family

Fy:{leell [fell, [ef L [ff]I}

implies the probabilities 1/12, 1/12, 1/12, 3/4 for the four outcomes.
Finally, the family

Fy:{[cclL, [dell, [cd]|1, [dd]1}

implies that [dd | has zero probability simply due to [dd]|¥,) = 0.

Now the problem is that the following pairs are incompatible as they have no common
refinement:

5. F,and F,
Any common refinement would include the histories

le]lc], [f]lcl, [elld], [f1ld]

and additionally

[eliel, [£11el, telfd], [f1[d]

But all these histories are internally inconsistent even individually - they can never be part
of any consistent family, since they combine interference and which-path information for
the same particle!

Similarly, the following pairs are also incompatible:

6. F, and F;
7. F,and F,
8. F,and F;
9. F,and F,
10. F; and F,

Remark: F; and F, can be substitued by the consistent family

Fs = {[e¢][dd], [e€](I — [dd]), [fé][dd], [fel(1 — [dd]), [ef][dd],
lef](1 = [ad]), [ff][ad], [fF](1 - [4d])}



which implies that the probability of [e€] is 1/12, while that of [dd] is 0.

This would be enough for the paradox, but: any combination of F;, F, and F; is incompatible!
Experimental realisation agrees with quantum mechanics, and confirms incompatibility:

J. S. Lundeen and A. M. Steinberg, Phys. Rev. Lett. 102: 020404, 2009.

Closing remarks

All these paradoxes play with putting together reasoning in incompatible frameworks. Why
does this count?

A step-by-step analysis

We know that experimental outcomes obey Kolmogorov axioms (laboratory notebook
argument) -- which is why we can call them “outcomes” (i.e. events) at all!

1. Therefore, in any experimental setup the histories containing only the actual measured
alternatives are always consistent.

2. Note that every measurement procedure consists of interactions — the measurement acts
are themselves part of the time evolution of the system, and therefore enter the
consistency conditions for the histories.

3. In the paradoxes we use the actual measured values to derive conclusions for
unmeasured alternatives. This is possible to combine into logical reasonings as far as
they can be incorporated into a single framework.

4. But we do not measure these properties! In fact, if we want to measure the properties
that are incompatible in the original measurement setup, we must alter the apparatus in
a way that changes the outcomes. This i1s often stated as the maxim “unmeasured
properties have no values™. In fact, this is not 100% true: they can be assigned values,
but one must choose a consistent framework for that, which is again the notorious
“contextuality” of quantum theory.

Basic example: the two-slit interference experiment

e When we observe interference, we cannot incorporate the which-path information in
the logical framework.

e We can change the setup to get which-path information, but that corresponds to another
experimental setup, and the interference disappears.

e So, there could be no logical contradictions, because the apparently contradictory states
of affairs constituting the paradox cannot be realised simultaneously, in a fixed
experimental setting.

Note that all the above paradoxes essentially were just more elaborate version of
interference/which-path complementarity — demonstrating Feynman’s statement that the two-
slit experiment already contains all the weirdness of quantum theory!!!



1. The interference picture in the two-slit experiment

For two narrow slits, the wave function is the sum of two
components from the slits acting as point sources

1
P(x) =—(¥;(x) + ¥,(x)
\/i( 1 2 )
so, the intensity on the screen takes the form
1
¥ (x)|? = §(|W1(x)|2 + ¥, (0)]* + 2 Re q"*l(x)lpz(x))

where the last term is the interference contribution.

In this case there is no consistent history that allows one to speak
about which-way information.

2. Detecting which-way information

TAVPSN

PP WAN

We can, however, decide to detect which-way information by placing a detector behind one of

the slits. Now the wave function is

1
Y(x) = ﬁ(qjl(x)ll) + ¥,(x)10))

where |0) and |1) are the states corresponding to the detector fired
or intact. If we assume that it has no further effect on the particle,
and that it allows perfect discrimination ((1|0) = 0), then the
detector states make the two components orthogonal. If the
detector state is not read out (corresponding to tracing out the
detector degrees of freedom), the intensity becomes

1
(V@1 +19,@)17)

We can also decide to read out the detector state, and
conditionalize the outcome on it, which results in the intensity
distributions |¥;(x)|? or |¥,(x)|?, depending on whether we
select outcomes where the detector did or did not fire,
respectively.

3. Partial which-way information

If the detector is not perfect: (1|/0) = pe'® with 0 < p < 1, then
the intensity is given by

1 .
PO = 2 (194012 + 1, (017 + 2p Re e %", ()W)

and the parameter p determines the visibility of the interference
fringes, while ¢ corresponds to an additional phase gained when
the particle passes through slit 1 that results in the shift of the
interference pattern. The case shown in the figure corresponds to
p=1/2and ¢ = 0.

|
1




The issue of macroscopic superpositions a.k.a. Schrédinger cats

However, one cannot deny that something strange is going on. In the Frauchiger-Renner
paradox (see Supplementary Material 1) in order to build a consistent picture, we must admit
so called “macroscopic superposition states” such as

1
E(IH)i ITH)

corresponding to the whole of laboratory 1 being in a superposition of two outcomes for the
result of the measurement of the coin, and

L
vz

corresponding to the whole of laboratory 2 being in a superposition of two outcomes for the
result of the measurement of the g-bit. Similarly, for the delayed choice paradox our reasoning
involved the macroscopic superposition states

(m £ 18)

N

These are "Schrodinger cat states”, in which whole macroscopic measurement devices are in a
superposition of two outcomes. Then the question is:

Why is it that we never see macroscopic bodies in such states, or equivalently, why do
measurements (apparently) have definite outcomes?



Supplementary Material 1. Frauchiger-Renner paradox

D. Frauchiger and R. Renner, arXiv:1604.07422 [quant-ph]
D. Frauchiger and R. Renner, Nat. Commun. 9, 3711 (2018)

Quantum theory cannot consistently describe the use of itself

Abstract: Quantum theory provides an extremely accurate description of fundamental
processes in physics. It thus seems likely that the theory is applicable beyond the, mostly
microscopic, domain in which it has been tested experimentally. Here, we propose a
Gedankenexperiment to investigate the question whether quantum theory can, in principle,
have universal validity. The idea is that, if the answer was yes, it must be possible to employ
quantum theory to model complex systems that include agents who are themselves using
quantum theory. Analysing the experiment under this presumption, we find that one agent,
upon observing a particular measurement outcome, must conclude that another agent has
predicted the opposite outcome with certainty. The agents’ conclusions, although all derived
within quantum theory, are thus inconsistent. This indicates that quantum theory cannot be
extrapolated to complex systems, at least not in a straightforward manner.

Setting: Hardy's paradox combined with Wigner's friend

| L] o -
C=hort X-= failx ofr Dkx
( ) .29 — (=)=
q
o Fy
J
II Lz )
Z=+¥or - Y = faily or oky
— == -~ — =T=
F2

J
4

Sequence of operations

I. Toss of a biased quantum coin: head with probability 1/3 and tail with probability 2/3

L 2
|p) = §| )+ §|t)



2. Fi prepares a qubit in the state |1) if the coin is measured in the state |h) and |-) =
(|7 + |1))/+/2 if |t): this means that the outside observer W1 describes the state of the
laboratory L, as

1h l ! T l
S+ [Z10aAD + 1)

3. F, sends the qubit to F,, who measures its observable S*. As a result, the system of
laboratories L; and L> get into the state

lP’—lHU 1Tﬂ U—lHU ZT
|¥) = §I MUY + §I (M +|U) = §I MUY + §I M=)

where

e |H) and |T) are eigenstates of an observable A, which W can measure on laboratory L,
e.g., by simply asking F, about the outcome and the result is H/T if the reply is h/t;

e |M) and |U) are eigenstates of an observable B, which W> can measure on laboratory L
e.g., by simply asking F, about the outcome and the result is 1/l if the reply is TA;

o [=2)=(M+[UN/N2
However, these are not the observables W, and W> choose to measure!

o Wi measures an observable X which has the eigenvectors

1) = — L am-
faily) = Z= (H) +17) lokx) = —=(IH) = IT))

e W, measures an observable Y which has the eigenvectors

1 1
ailyy = —=((M + [{ oky) = — (M —|U
|faily) ﬁ(l Y+ 14))  loky) ﬁ(l ) —14)
In terms of these states, it is easy to rewrite
1) = —— Jokyoky) — — loky)Ifaily) + ——|failloky) + |~ Ifaily)lfaily)
=—|o 0 ——o ai —|faily)|o —|fai ai
m X Y \/ﬁ X Y \/ﬁ X Y 4 X Y

This is the Hardy's paradox state! So, note that all this setup just prepared a Hardy's paradox.
Now they consider three assumptions:

(Q) Quantum theory applies universally to systems of any complexity, including labs and
observers. Moreover, if an agent knows that a given proposition is true whenever Born's rule

assigns probability 1 to it.

(C) Self-consistency i.e., different agent's predictions are not contradictory.



(S) Single world: from the point of view of an agent who carries out a particular measurement,
this measurement has one single outcome.

Statement of the paradox

(Q), (C) and (S) cannot be simultaneously valid so quantum theory cannot be self-
consistent when applied to describe the use of itself.

Argument

Consider the probability that F» obtains | in her S* measurement while W gets |oky) in her X
measurement. Rewriting

1 1 ) 2 .
\/_E \/—Elfalix)lﬂ)+\/;|falix)|ll)

this has zero possibility. So we conclude that if W, gets [oky) she can infer with certainty that
F> obtained T.

|¥) = ——=lokx)I) +

Similarly, using

1 1
|¥) = \/;IH)IU)+\/;IT)(ITT)+ 14)

So, if F> gets |T) she can infer with certaintly that F; obtained 7 in her measurement of the coin.
Now if F; obtained ¢ she can infer that W gets |faily).

Putting together these steps we see that if W, obtains |oky) she can be certain that W» gets
|faily), but this is a contradiction since it is possible to get the outcome |oky)|oky) with
probability 1/12.

Where is the catch? The problem is again that to construct the paradox it is necessary to put

together inconsistent frameworks. But then the logical deduction cannot be completed and so
the conclusion does not apply.

Interpretation using quantum histories
M. Losada, R. Laura and O. Lombardi, Phys. Rev. A100: 052114, 2019. arXiv:1907.10095
The relevant Hilbert space is very complicated: it is tensor product of the space of the coin, the

qubit, and the Hilbert spaces for L1, L2, Wi and W2. However, at each time the manipulations
only happen in a single factor, so we omit putting in the identity operators for the rest.

Temporal sequence
I. Initial state is prepared by time t:

|¥o) = |P)|q0) 110} 120) W10} IW20)



The last four factors are some starting (‘ready') states for the labs and for the outside
observers.

2. Time interval (t,, t;): Fi measures the coin which corresponds to a time evolution
Uo(IM) o)) = IMlip) = [H)  Uso(I)110)) = 1)Ly} = |T)
3. Time interval (t,, t,): Fi prepares the g-bit
Uz1(Ilin)lgo)) = i)Y Uz1(Iliedlqo)) = [Lze)1-)
4. Time interval (t,, t3): F2 observes the g-bit
Uz ([L20)14)) = 1LY Usa (10T = 1))
5. Time interval (t5, t,): W measures laboratory L;
Usz(lwio)lfaily)) = |W1fau)|faiix) Usz(Iwio)oky)) = lwyor)loky)
6. Time interval (t,, t5): W2 measures laboratory L»
Usa(lwao)faily)) = |W2fau)|faiiy) Usa(lwzo)|oky)) = |waor)loky)
Note: 5 can happen any time after t, and 6 can happen any time after ¢;.
Description with histories
Family 1: used to deduce that |w,,, ) implies |l,1). This needs to contain the following history:
Hwyoi ] [ I[P ]
which has zero probability as computed above.
Family 2: used to deduce that |l,1) implies |l,). This needs to contain the following history:

H[11][L1n][%]

which has zero probability as computed above.

Family 3: used to deduce that |l;,) implies |w2 fail)- This needs to contain the following
history:

WaorJH [L1¢][Wo]
which has zero probability as computed above.
However, these histories are all mutually incompatible!

Families 1&2: the projector [w; 4] when written out actually contains a projection on



L
vz

which is incompatible with [l;,] which contains a projection on |H). This is the same
incompatibility as in the basic two-slit experiment: interference is incompatible with which-
path information.

(IH) = 1T)

Families 2&3: the projector [l,7] when written out actually contains a projecton on |1), but
this is incompatible with [w,,;] which contains a projection on

1

—= (M —[4)

V2

Families 3&1: the projector [w,, ] when written out actually contains a projection on
! (m =18

V2

which is incompatible with [l,; ] which contains a projection on |U).

So, the rules of quantum mechanics forbid all but one step of the argument. One can find a
framework for one of the steps, but then it is impossible to deduce the other two implications.

Some prevalent misunderstandings
e Originally (1* version of the manuscript) the authors claimed that the paradox can only
be resolved by using the Many-World Interpretation i.e. dropping (S). Since we showed
that consistent histories resolve the paradox, it is effectively resolved by any consistent
interpretation of quantum theory.

o By the same token, the argument shows no inconsistency whatsoever with quantum
theory. It just shows like all similar arguments do that quantum theory is incompatible
with naively applied (classical) realism.

(My) conclusion

Question: is it true that “quantum theory cannot describe the use of itself”?

Answer: no, quantum theory is consistent. Instead, it is the argument leading to the
paradox which fails in applying quantum theory consistently!

Quantum theory simply does not permit the reasoning described by the authors. The problem
is that the conjunction of the three assumptions (Q, C, S) as construed by the authors contradicts
quantum theory, but that does not mean that quantum theory is not consistent or that it “cannot
describe the use of itself”.

However, just as the other paradoxes, this one is also useful in elucidating the counter-intuitive
features of quantum theory.



Lecture 10

Three related problems

The problem of outcomes a.k.a. the measurement problem

Assume we have a system S for which an observable O is measured by a device D
Eigenstates of 0: 0|¢;) = A;|¢;) i = 1,2, ...

State of system: |¥)

States of device: [1,) starting state, [1);) outcome states

Measurement: time evolution

ldd o) = 1))

Assuming

)= > Cilg) = 1$I¥) > D Cilgolw)

The endistate is a superposition - im definite outcome.

Observer (e.g. Wigner) comes and looks at device.

States of observer: | y,) starting state, | y;) state of having observed outcome i

(Z Ci |¢i)|¢’i)) |x0) = Z Ci o i) x:)

Friend comes and asks Wigner about outcome

States of friend: |&,) starting state, |¢;) state of having been told outcome i

(Z Ci |¢i)|¢’i)|)(i)) 1£0) = Z Ci lp Wil xid )

Note that there is no point at which a definite outcome is selected. The system gets entangled
with more and more degrees of freedom, but there is no point where a selection of outcomes

happens. This is a feature of unitary time evolution (U), which is also reversible.

One can postulate that there is some point where another sort of process happens: (R)
(reduction). It is usually thought to happen right after the entanglement with the device i.e.

Z Ci o) y;) = Z:|Ci|2 [P i M b; [



This is a transition from a pure state (the superposition) to a mixed state which can be
interpreted as definite outcomes with probabilities |C;|?. Written fully in terms of density
matrices

(R): DG G 1ol ] = ) 1GI1 19)illwo

(R) is not unitary and it is also irreversible (phase information is lost).
Possibilities:

1. (R) is a physical process. Quantum theory is not universally valid: there are some
processes that collapse the wave functions of macroscopic objects.

= collapse theories (spontaneous/gravitational etc.)

2. (R)is "in the eye of the beholder": the wave function is not reality, just a tool to predict
probabilities. The wave function represents the observer's knowledge about the state of
the system. (R) is the prescription for updating the wave function when a given
measurement was performed and the observer gained knowledge about the system.

= e.g., quantum Bayesianism (qubism).

3. (R)is not areal physical process. The wave function is ontological - it describes reality.
There is some process during the measurement that leads to apparent collapse.

= Everett type interpretations (e.g., "many-world").
(Note that I ignored lots of subtle distinctions above and only mentioned few interpretations.

Many interpretations do not fit neatly in the above scheme. Nevertheless, the above options
illustrate the sort of choice one faces here.

Preferred basis/framework problem

It is easy to state something like "there are no macroscopic superpositions". However, any
quantum state is a superposition in most of the possible basis sets.

Which is the preferred set of basis vectors in which the ''no macroscopic superposition"
principle should be applied?

Closely related problems:

e Given a device D, which are the states |;) corresponding to the outcomes, in which the
reduction (R) happens? Clearly these must be states whose superposition is not stable.

e In the consistent histories approach, which is the framework in which we can interpret the
history of the Universe, i.e. in which we can draw the conclusions about the past that we



all agree upon? (E.g., that given our current historical records, we can infer that Napoleon
lost the battle of Waterloo).

This is a real problem since it can be shown that choosing different frameworks one can
arrive at contradictory inferences about the past.

(c.f. A. Kent, Phys. Rev. Lett. 78 (1997) 2874-2877.)

This can be remedied by considering stronger consistency conditions, e.g. by replacing
Re Tr xqpxpt = 0 whenever @ # B with Tr y,pxpt = 0V p and whenever a # f8
(global consistency, c.f. M. Losada, Physica A 503 (2018) 379-389).

However: what motivates such a replacement apart from the mere wish that the Universe
had a unique past?

What we need is that at least the "macroscopic past” of the Universe can be uniquely
"retrodicted". Is it possible that this can be obtained some way from quantum theory?

o Emergence of classical behaviour

Why do macroscopic objects behave classically and are never seen in superposition -
especially in superpositions of different locations in space?

Leaving aside the option that quantum theory is not valid for macroscopic objects
(objective collapse theories), is there a way this can be understood from quantum theory?

Environmental decoherence

Measurement outcomes
Assume we have a system S for which an observable O is measured by a device D.

System interacting with the apparatus
Hine = ) In)(nl @ 4y
n

|n): measured states of S discriminated by D A,,: operators acting on states of the apparatus D

[n)|@g) = e~ Hint|n)|@g) = [n)e™"n|By) = |n)|@, (L))

(Z Cn In)) |Do) = Z Cn I 2, (D))

p= (Z CaCn |n><m|) [Po)@ol = )" CaCir (mYmD(PHONP(OD



The state of the system is

ps =Trpp = D CaCin (I)mI)(@p(8)](0))

The apparatus discriminates the "target" states if after some time ¢,
(D, (DD, (t)) = Sy t >ty |D,(t)): pointer states

Then we have

ps ~ Zlcnlz In)(n| 1!
n

Remarks:

+ Improper mixture: system + detector still in superposition.

¢ Leads to apparent collapse.

o Nevertheless, if the detector state is not observed in detail, then we cannot distinguish

between apparent and real collapse - this is sufficient FAPP (for all practical purposes).
* We shall see that t is an extremely short time scale whenever D is macroscopic.

Mechanism:

« Provided by entanglement: system is entangled with detector, but this entanglement
quickly delocalises between the many degrees of freedom of D.

e Irreversibility - related to 2nd law of thermodynamics.

Localisation by scattering

Consider some macroscopic object, with position eigenstates |x), subject to a random

environment of particles (air molecules, photons). Let us consider the scattering of a single

particle with initial state and assume that the recoil of the macroscopic object can be neglected:

|x)|x) = [x)Selx) Sy:scattering operator SxS;f = S;Sx =1

For an object in a general delocalised state
[ @xpeomin - [ @xpelnsdo
Density matrix of the object after the scattering in position basis:

p= f dx f d*x p(x x) x|
p(x,x") = PO (x)(xISTSelx)



Translationally invariant interaction: position dependence of scattering matrix in momentum
space can be written as

(K'|S, k) = S, (k, k') = S(k, k')e~ilk-k')x

Writing
) = f &l c (k) k)

Wwe can compute

ST Selx) = f 2k (IS ) kIS x)
= J‘ d3k"d3k'd3*k c* (k') c (K ){K" |S:; |k)(k|S,|Kk")

= f k" A3k d3k c* (k') (k')S*(k", k)et (K" ~k)x g(! ) e~i(k' k)«
From QM scattering theory we know that
S(k',k) =8®(k' — k) + Z;[—kf(k’, k)6(k' — k) f(kg, k):scattering amplitude

Ineffective single scattering: typical wavelength of particle is much longer than |x — x'| i.e.
kolx — x'| < 1. In a cube of length L we can then replace the wave function of the particle by
a plane wave
1 1\*?
me”‘o'x = c(k) = (E) 5P (k — ko)
xlx) = fd3kf d3k' c(k)*c(k")(k|k') = fd3kf A3k c(k) c(k)(2m)386®) (k — k')
= J‘d3k(2T[)3|C(k)|2 =1

1 3
since | keGP = (7) [ @*1es@0)8 k= ko) = s

d3 . 2
5 (k — k) = f #eltk-ko)-x > (6P —ky)) = 508k — ko)
L 3
= (57) 990e= ko)

Also note that
1
d3k = k*dkdQ = 6(3)(k' —k)= Fa(k' —-k)yo2' —n)

Let's recall how the cross-section is defined. First, the energy of a particle is



E=+Vk?+m? = dE k =v

dk E
T T
S(k'—k)=v6(E'—E)= §(k' = k) =v?—6(E'—E)=v—6(k' = k)
2T 2T

where T is the time-window of the single particle scattering process. We assume that the
particles are dilute, so one scattering is completely finished by the time the next particle arrives.

Assume that (6, ¢) give the angular direction of k' relative to k, and also for simplicity that
the scattering interaction is isotropic. The probability of scattering is then

4P = s () v — 50k ~ )

The integration over the final state is
fd3k' 2m)3|c(k)|? = L‘3(2n)3f k'?dk'dQ
We can do the integral over dk’ to get the probability per solid angle
. vl
= |f(8)] dQL—3 where = is the flux factor

Dividing by the flux factor finally gives the well-known expression

d
ZZF @)

Now we consider
(1S5 Selx) = f d3k“d3k'd3kc*(k“)c(k')e+i(k”-k)-x’e-i(k’-k)-x
(6(3)(1(.' k) + o f(k' k)s(k' — k)) (5(3) k" — k)
i rr rr
— 5/ 8 —k))
= f d3k |c(k)|? + f d3k'd3kc*(k)c(k’)e-i(k’-k)-xZL fFK, k)S(k' — k)
f d3k"d3k c* (k') c (k) e ik —k): s f (k" 8k — k)
+ f d3k"d3K d3k c* (k") c (ke ik -")'x e~ i(k'~k)x

1
X Wf(k’, kK)S§(k'—k)f*(k", k)6(k" — k)

Note that due to the unitarity of scattering we have



(xISIsel) = (xlshseln) =1
SO
(HISpSdi) =1+ f d*k"d*k'd*kc*(K")c (k') (e“("”-k)-x'e'i(k’—k)'x —(x=x' term))

1
X Wf(k', K)ok —k)f*(k", k)6(k" — k)

1 N [l 2
=1t [ @l (e RO ) — 1)1 RO (5K — K))
1 o, T

where v, is the velocity of the incoming particle. We can now expand the exponential as
+i(ko—k)-(x' —x) . ' 1 ' 2
(e+itko —1) =i(kog—k) - (x —x)—z((kg—k)-(x —x))

Assuming that the particles have random direction kg, and taking into account that f(kg, k)
depends only on the relative angle 8 between kg and k, averaging over kg in the first term
gives zero.

Therefore, we are left with

P 1 k§ - - 2 T
t — 0 '
LS =13 [ g (o = B) - & = 00) If ko 12005

Now note that the integral

. . 2
[ a0 (o -B)- & = ) If ko O

when averaged over the random directions of the incoming particles, cannot depend on the
direction of x — x'. So, finally we get
kélx — x'|?v,T

8772 13 Ocf f

(XISLSelx)y =1 -

where

1 —
Ot = Ef d0y (ko — k)" (cosa — cos a’)?|f (ko, k)|?

a,a': angle of x resp. x' to EO — k. Note that while Oeff looks complicated, in practice its
magnitude can be estimated by the total cross-section of the scattering.

For a full evaluation cf. E. Joos and H.D. Zeh, Zeitschrift fiir Physik B59, 223-243 (1985)

Therefore, the scattering of a single particle changes the density matrix as



) ) ) k§lx — x'|? v, T
p(x,x") > p(x,x') (IS} Sulx) = p(x, x') exp (— ° 82 Eg Ocff

If the particles have a density n = N /V, then after the passage of a time t we have

_ k§oepmug

] ! ’ ! _At - |7 A
p(x,x') = p(x,x') exp(—At|x — x'|*) 812

More precisely, it is necessary to take the statistical average (kg Ocff (ko)nvo).

Typical values:

Table 1. Localisation rate A in cm™%s~! for three sizes of “dust particles” and
various types of scattering processes (from Joos and Zeh 1985). This quantity mea-
sures how fast interference between different positions disappears as a function of
distance in the course of time, see (13).

a=10"%cm a=10"%cm a= 10"%m

dust particle dust particle large molecule

Cosmic background radiation| 10° 10°° 10~
300 K photons 10" 10"2 10°
Sunlight (on earth) 10** 107 10*°
Air molecules 10%¢ 1032 10%°
Laboratory vacuum 10%3 10" 10'7

(10° particles/cm®)

Note: peak wavelength of

e CMB is about .9 mm =0.2 cm

e 300 K photons is about 17 yum = 1.7 - 10~* cm
o sunlight is about 635 nm = 6.35 - 10~> cm
 air molecule at 300 Kis 0.03nm =3 -10"° cm

Cross section « a? for kga > 1, i.e. when size of object is much larger than wave-length of
incoming particle.

For CMB we have dipole scattering on a dielectric sphere with cross section « a®. For sunlight
and thermal photons dependence is more complex.

Decoherence of position of macroscopic objects is an extremely fast process. Take for
example a dust particle of size 107> cm. Then a superposition of spatial distance of 10™* cm =
1 um decoheres in 10™? seconds by sunlight, 10~ seconds in a laboratory vacuum and 10~%*
seconds by air molecules!

Decoherence time scale:



1
td = —F
AAx?
Larger objects, such as tennis balls, cats, people's brains etc. decohere even faster. In particular,
neural processes are entirely classical - decoherence is many orders of magnitudes faster than

typical neural signal time scales of milliseconds! Proposed links between quantum theory and
consciousness are unfounded.

The unfortunate cat in Schrodinger's Gedanken experiment either dies or survives before the

box is opened - in fact this happens almost in an instant!

Note that the above process is described by a differential equation

Ap(x,x',t) = —Alx — x'|?p(x, x', t)

This equation is a particular example of the dynamical description of open quantum systems,

see later.

Experimental evidence for position localisation by decoherence

K. Hornberger, S. Uttenthaler, B. Brezger, L. Hackermiiller, M. Arndt, and A. Zeilinger,

Phys. Rev. Lett. 90: 160401, 2003.

e

FIG. 1. Schematic setup of the near-field interferometer for
Cqp fullerenes. The third grating uncovers the interference
pattern by yielding an oscillatory transmission with lateral
shift x;. Collisions with gas molecules localize the molecular
center-of-mass wave function leading to a reduced visibility of
the interference pattern.

50

(a) ¢ CH, data
— theory

20

=

visibility (%)

wm

(a)
NAANNAAAN b)

0&':.5 pos. third grating [pm] &5

[
countsin3s §

0 05 1 15 2 25
pressure (1 0® mbar)

FIG. 2. Fullerene fringe visibility vs methane gas pressure on
a semilogarithmic scale. The exponential decay indicates that
each collision leads to a complete loss of coherence. The solid
line gives the prediction of decoherence theory; see text. The
inset shows the observed interference pattern at (a) p = 0.05 X
1075 mbar and (b) p = 0.6 X 1075 mbar.



Lecture 11

Qubit toy model for decoherence

Take a two-state apparatus interacting with an environment of N qubits
Hpp =Hy @Hy  Hy =span{|M), [U)} Hp =Qy Hy Hj = span {|T), [ )}

Interaction between apparatus and environment

N
Hpp = (1M = [U){U]) ® ng AT = NXD«
k=1

Initial state:

N
[2(0)) = (@l + bI8) Q)@+ Bl lal? + IbI = 1 = lasl? + Bl
k=1

Time evolution:
(b)) = ﬂ|TL)|5n(t)) + b|U)|Ey (1))

1€0(0)) = () (@ee9¥ M) + e 94| 1),)

k=1
N

1€u(0)) = () (wee 944 M) + e 94| 1),)

k=1

Reduced density matrix of the apparatus:

pa(t) = Trg |P(ONP )| = |al*(Eq(OEONNMUN] + ab*(Eq (D) Ey () MNY]
+ |12 E(DEG(ENUNL] + a*b(Ey () |Eq (1)) UN(N]
i.e.

pa() = lal* TN + ab’;‘v?‘(t)Iﬂ)(U|+a*br(t)*|U)(ﬂ| + [bI?[U)(Y]

r(t) = (Ea(®1E(D)) = H[COS 2gxt — i(Jag|® = | B |?) sin 2g; t]
k=1

For an environment with many spins at long times
N

r@)? = 27V | [11+ Qe = 187

k=1
which is typically exponentially small.

pa(t) = |al* TN + [b]?|U)(Y]



so superpositions of the states |T1), |U) are unstable under interaction with environment.
However: interaction with the environment preserves purity of the states |1){ft| and [U){J] !
Pointer states and einselection

|1), [U): pointer states

Environment induced superselection: einselection (Zurek)

Pointer states are selected by the interaction with the environment. If the apparatus has its own
Hamiltonian, them it is typically going to rotate the pointer states into superpositions; however,
if the decoherence is fast, the superpositions are short-lived, and the effective dynamics
becomes classical in terms of the pointer variables.

Fundamental example of pointer states: position of macroscopic objects

We know that the wave-function spreads for an isolated object. However, for macroscopic
objects localisation by the environment is very fast, and the position is decohered.

Measurement outcomes
Hine = ) In)(nl @ 4y
n

|n): measured states discriminated by D A,: operators acting on states of the apparatus D

[n)|®g) — e~ Hint|n)|@g) = [nye™"n|dg) = |n)| @, ()

(Z Cn In)) |Do) = Z Cn I 2, (D))

p= (Z CaCn |n><m|) [Po)@ol = )" CaCir (mYmD(PHONP(OD

The state of the system is

ps =Trpp = D CaCir (I)mI)(@p(8)]n(0))

The apparatus discriminates the "target" states if after some time ¢,
(D, (DD, (t)) = Sy t >ty |D,(t)): pointer states

Apparatus D = "pointer” Q & environment E



Typically: pointer states are locations of macroscopic objects (literally "pointers") which are
very efficiently decohered by environment:

|¢n(t)) = |QR) X |£n(t)) (en(t)lem(t)) & Omn

Then we have
psg = Trep ~ D 1Cal? [1)(n] ® [4.)(gl
n

So, if we do not keep track of the environment (which is usually impossible) - we get apparent
collapse into definite outcomes from the perspective of the system + the pointer.

-y

Silver atoms travelling through an inhomogeneous magnetic field, and being deflected up or down depending on
their spin; (1) furnace, (2) beam of silver atoms, (3) inhomogeneous magnetic field, (4) classically expected result,
(5) observed result (from Wikipedia)

Example: Stern-Gerlach device

3

The pointers are the pixels on the screen - these pixels are macroscopic objects whose position
is subject to extremely fast decoherence on the scale of their spatial separation!

When an experiment is designed to measure an observable O, the interaction between the
apparatus and the system is set up so that during the experiment the eigenstates of O
corresponding to the outcomes to be distinguished are entangled with pointer states of the
apparatus which evolve very fast into decohered alternatives.



Note that the original superposition is still there - if we could observe the environmental states
|E,(t)) (which is entirely unfeasible), we would be able to see that the outcome of the
measurement is a Schrodinger cat

D e ©) = > Culmlanlen(®)

But since we cannot monitor the environment, all we can
confirm is that the system + the apparatus is in the state

psg = Trep = ) [Cal? In)n| @ 1,)(anl
n

which is interpreted as the outcome corresponding to |n)
occurring with probability |C,|?, and the pointer of the
apparatus correspondingly being in the state |q,,).

What is the most general possible time evolution for a quantum
system?

Completely positive maps and quantum operations

General time evolution of quantum system: mapping density matrices to density matrices.
Space of density matrices: p(Hg) = {A:Hs > Hs|A =0, TrA =1}

Time evolution over some interval is a map V: p(Hs) = p(Hs)

Definition: a map V is positive if for all A > 0 it follows that V(4) > 0.

However, this is not enough since systems are usually subsystems of even larger systems.
Performing an operation only affecting the system, we must arrive at a state of the full system.
Therefore, we need

Definition: a map V is completely positive if for all N € N, V ® 1, is positive.

Example of a positive but not completely positive map is matrix transposition:

1. A>20= AT >0

2. Composite system

0 0 0 O

_ 1 10 11 0
st)—ﬁ(m)ﬂm):pg_z O
0 0 0 O

We can apply 1 @ T (transposition in second Hilbert space)



b =

1®T)(ps) =

—_ o o O
o OO
o =Oo o
o O O =

This matrix has negative eigenvalues!

Let us denote the bounded linear operators Hg = Hg by B(H). For simplicity we assume
dim Hg is finite (we would need theory of C* algebras for infinite-dimensional cases, but there
is nothing essentially new to learn from that as far as physics is concerned).

Lemma: for any V € B(Hy), the map A — V(A) =VTAV is positive.

Proof: A>0=3B: A=BBT=>VTAVT = VBBV = (VTB)(VTB)T >0

Theorem (Choi): alinear map V:B(Hs) = B(Hy) is completely positive iff it can be expressed
as

V() = Z V,'AV, for some V, € B(H;)
i
Proof:

(1) One direction is trivial: if
V() = Z AV
1

then extending it to the space Hg ® CV is trivially positive since we can extend the operators
V; to the full space as V; @ 1y.

(2) Now assume ¥ is completely positive and letd = dim H. Extend the system with a Hilbert
space of the same dimension d and define a maximally entangled pure state on Hg ® C% by

d d
1w CINC o
)= ﬁ;|a>s|a> IrXrl = EMZ;II)S(IIS ® 1

where |i)s and |i) are arbitrary orthonormal bases of the two factors. We can extend the action
of I/ to the full space as

L=®1
1 d

Vz(IF)(FI)=EZ Vsl ® 1G] = Vi)s(ils) = d(iIV.(rXrplj)
Lj=1

But V, is positive so we can write



dZ
BAPNID = ) lvwi] - for some |v,) € 35 ® €
=1

Now for any vector [) € Hg ® C* we have a linear operator Vy € B(Hs) such that [p) =
(Vw X ld) |I"). Explicitely writing a general state as

lyp) = Z aij [i)s1))
i,j=1
we define the operator by giving its action on the basis of Hg as
d

Valids =Va ) ey li)s
i=1

Let us define now the operators V; as the ones corresponding to the states |v;):
lv)) = (V, ® DII')

Now we can express the action of V on an arbitrary basis element |i)s(jls of B(Hs) as

dz

V(1i)s(ils) = d(ilV,(IrKrp1j) = dZ(iI(lvz)(v;I)U)
=1

d2
- dzm(m ® 1UrXriv! ® 1)1j)
=1

d? d
= Z(il (V; ®1 ( Z lk)s(l]s @ |k><z|) AN 1) 1)
=1

kl=1
az d
— Zm (Z Vilk)s(llsV, @ Ik)(il) /)
I=1 kl=1
dZ
= > ndlsgls) vi
=1

which proves the theorem, since once we have it for any |i)s(j|s we have it for all linear
operators because |i)s(j|s forms a basis in B(Hy).

Theorem (Choi-Krauss): a linear map V:B(Hs) = B(Hy) is completely positive and trace-
preserving iff it can be expressed as

V() = Z V,'AV, for some V, € B(H;)
1

where

Zvlvf =1
l

Proof: we only need to consider the trace preservation property.



One way is trivial:
V() = Z viav, = Tri(4) = Z Trv, A, = Z TrV,V,'A = TrA
l l l

The other way: let's consider the starting point
Tr V(D)) = Tr [i){j| = &;;
But we can calculate
Tr V(Ji)]) = Trz VIiv, = (i Z Vi) =6, = Z =1
1 1 1

Definition: completely positive trace preserving (CPTP) maps are called quantum operations.
The V, are called Krauss operators.
Examples of quantum operations:

e Unitary time evolution

p - UpU' Uisunitary UUT =1
e Ideal (von Neumann) measurement

P Z PipP;

i
p; = P;r = P?: projectors for measurement outcomes satisfying completeness
Yt

i

» Non-ideal (positive operator valued) measurement
p aZMipMJ: M; = 0 and ZMiM;r =1
i i

If time evolution is non-unitary, the system is open: the Stinespring dilation theorem (below)
states that it can be embedded into a larger system with unitary time evolution.

Purification and Stinespring dilation

Purification of mixed states

Assume we have a quantum system Hg in a mixed state p. Diagonalising the density matrix
we can write

p =Zpili)(il 0<sp <1 Zm =1
i i



where |i) is an orthonormal basis for H.

(It is a theorem that p = 0 implies that p is Hermitian so it has an orthonormal eigen basis. It
also implies that all its eigenvalues p; are non-negative.)

Now we can take another system (ancilla) H; with dim Hg = dim H; and an orthonormal
basis |i) 4. We can then define the state

)= ) Bl ® li)s € Hs @ T,

This is a pure state satisfying
Try |9)0(%] = p

So, every mixed state of a system can be extended to a pure state of a larger system - this is
called purification.

Purification is impossible in classical systems

Let us assume we have a classical system with phase space X X Y which is in a pure state given
by a Dirac delta distribution &, (x,y): every observable is a function f(x,y) on the phase
space with a definite value in the pure state given by

(fy=| dxdydy,y,(x,y)f(x,y) = f(x0, ¥0)

XxY

The observables g(x) of subsystem X have values

= [ dxdys, , (xy)g@) = glxo) = f dx 8, (X)g(x)
X

XXY
So, if a classical system is in a pure state, all of its subsystems are in a pure state.

Pure state corresponds to having the maximum possible (i.e., complete) information about the
system.

Classically, if we have complete information about a system, then we have complete
information about all of its subsystems.

Quantum theory: it is possible to have only partial information about a subsystem (mixed
state) yet have complete information about the complete system (pure state)!

This is due to entanglement: the purified state

)= ) Bl ® li)s € Hs @ T,

L

has a nontrivial entanglement between the subsystem and the ancilla!



Purification of time evolution: Stinepsring dilation

Let us now assume a system undergoes a general quantum operation:
V(p) = Z V;rle for some V; € B(Hg) with Z VIV;r =1
1

Let us now take an ancilla 4 of dimension n, with a basis |i), i = 1,...,n

We can now define an isometry

Iy: Hs > Hs @ Hy W) = Uyl = Zvﬂlp) Q |1)
=1

WU Iy 1) = Z(kl ® WIVV 1) @ 1) = Z(klmwlvkv 1¥)

Zwlvvalw) = (Wly)
Note that

Ty (b ) @allf) = Trg D V) ® 1Dkl @ (alVie = D VI (la) (o) Ve
k|l l
= Try(lypl}) = Z vtov,

Any isometry can be trivially extended to a unitary map
UV: :}{5 ®3{A _):}{S ®HA

Therefore: any quantum operation on a system can be obtained by a partial trace from a
unitary time evolution on a larger system!

As a result, quantum systems with non-unitary time evolution can always be considered
open systems interacting with an environment, whereby the full system is closed, since it
evolves unitarily.



Lecture 12

Markovian time evolution: the Lindblad equation
We look for an equation of the form

d,ps(t) = Lps(t)

so that the time evolution after a period t has the form

7, = elt with V,(A) = Z V(O AV, ()
1

Let us choose a basis for the operators on B(Hg) on Hg. Assuming that dim Hg = d we can
choose

F:i=0,..d?=1 TrF'F,=6; Fo= %1

We note that the bilinear form

A,B € B(Hg) - (A,B) = Tr(A'B)

defines a Hilbert-space structure on B(H). In particular it is non-degenerate:
(A,B)=0YVA=>B=0

Now we expand

V() = ) Cu(OF,
l

07:(p) =0 ) com(OF pFn  cim(®) = ) Cua(®)'Com(©)
k

ILm

Note that in a matrix form ¢ = CTC i.e. ¢ is a positive Hermitian matrix. Define the matrix
im () = 0,y (t) and write

d*-1 d?-1 d?-1
T 1 + 1 1
op = Z 9imF; pEy + a Z JoF'p + a Z gJopF + d_zgoop
Im=1 =1 1=1
d?-1 1 1(12—1
= Z glmF;me + FTP + pF + d_zgoop F= Pl Z JoipFy
Im=1 1=1

We now decompose



1 1 )
F=§(F+FT)+LE(F—FT)=G+LH G=G" H=HT

d?-1

. B - 1
dip = —i[H,p] + Z glmFlTme + G2(p)  Ga(p) = Gp +pG + d_zgoop

I.m=1

1
= {G + F‘goo: P} = {G,, p}

Here we used the cyclic property of the trace Tr (44 ... A,,_14,) = Tr (4,4, ... Ay—1)

Now we use the trace preserving property:

d?-1 d?-1
0=20,Trp) = Z gimTr (FlTme) + Tr{G,, p} = Z gimTr (meF;r) + 2 Tr pG,
ILm=1 ILm=1
=0Vp
d?-1
1 t
> G==3 ) Gimfuf,
I.m=1
This leads to
da?-1
- t Len ot
0 = ~ilH,p1+ Y i (F 0 — 5 {FuFi 0}
I.m=1

We can now diagonalise the matrix g,,,, denoting the eigenvalues by I}, and end up with
_ . t Loy : :
op =—i[H,p]l+ ) I \L,pLy — Q{LkLk: p} Lindblad equation
K

L;: jump operators (linear combinations of the F,, resulting from diagonalisation, which
can be chosen to be traceless by redefining H)

Therefore, the generic time evolution of any quantum system is described by the Lindblad
equation provided it is Markovian.

The operators L, and the coefficients [} can be obtained directly by explicit computation.
According to the Stinespring dilatation theorem, the generic time evolution of a quantum
system can be obtained as the restriction of unitary time evolution on a larger quantum system.
Provided this system and the full Hamiltonian is known, it is possible to compute a master
equation governing the dynamics of the subsystem sometimes exactly or using some
approximation e.g. perturbation theory. Assuming that the conditions of Markovian
approximation hold, this equation then gives a Lindblad equation with explicit expressions for
Lk and Fk-



Master equation for open quantum systems

Here we present a perturbative derivation of the master equation and its Markovian limit for a
generic system-environment setting.

Assume we have a system plus environment, with total Hilbert space

Hr=Hs @ Hy

described by unitary dynamics governed by the von Neumann equation

dpr(t) = —i[Hr, pr(t)]

Hr =Hs @ 1; + 13 ® Hp + aH, H,=ZSi®Ei

Consider interaction picture using aH; as thé interaction term. Operators then evolve as

O(t) = ellHsHHp)tgo-i(Hs+HE)

The evolution of the states can be recast as an integral equation:

t
0:pr(t) = —i“[ﬁf(f);ﬁr(t)] = pr(t) =pr(0) — i"IJ‘ ds [gf(s):ﬁ']"(s)]
0

0:pr(t) = —ia[H (t), pr(t)] = —ia

t
A10,pr(©) — i [ ds [ﬁf(s);ﬁr(s)]]
0
t
= —iaf(0,5r(0)] - @ [ ds [0, (A1), 1]
0

Repeating this step, we get
t

0:pr(t) = —ia[A;(6), pr(0)] - a? f ds [A,(t), [A,(s), pr(®)]| + 0(a®)
0

Perturbative approximation

We now assume that the strength of interaction with the environment is small and drop the
term O(a?):

t
0:pr(t) = —i“[ﬁf(t):ﬁr(o)] - "IZJ‘ ds [ﬁf(t): [HI(S):ﬁT(t)]]
0
Taking partial trace over the environment
t
0:ps(t) = —iaTrg [gf(t):ﬁ']"(o)] - azf dsTrg [gf(t): [ﬁf(s):ﬁr(f)]]
0
We now make some additional assumptions:
e The initial state is of the form p;(0) = ps(0) ® p(0)

This means that initially the system is assumed to be uncorrelated with the
environment.



o The environment is in thermal equilibrium (this is just to make the environmental
state specific, other choices are also possible):

—-Hg/T —-Hg/T

1
pe(0) = —e Zg = Trge
Zg

Therefore

Tre[H(8), pr(0)] = Z Tre[ Si(t) ® Ei(t), ps(0) ® pp(0)]

L

= Z( Si(t)pS(O)TrE[Ei(t)pE(O)] - PS(O)Si(f)TrE[PE(O)Ei(f)D

L
We can always redefine the environmental operators E; so that (E;) = Trg[pg(0)E;] = 0:

Hy = Hg + Hy +a:Zsi QE; = H5+aZ(Ei)Si+HE +aZSi®(Ei—(Ei))
i i i E{

Hg
Therefore, we reduce the equation to

t
0p5(0) = —a | ds Tr [/, [1(5),pr 0]
0

Markovian approximation

New assumption: the environment thermalizes very fast compared to the system dynamics so
we can always write

1
pr(t) = ps(0) @ pp(0) pg(0) = Z—e_HEfT Zp = Trge He/T
E

This means that the environment does not keep a memory of the system: system-environment
interactions do not depend on the interactions that happened before. This is essentially the same
as the Stosszahlansatz (molecular chaos assumption) used to derive irreversibility in classical
statistical mechanics (Boltzmann's H-theorem).

As aresult, we get

t
05(0) = ~a® | ds Try [A0,[A,(52,50) @ ps O]
0

This is now a closed system for the density matrix of the system!

We can now change the variable s = t — s:

t
d.ps(t) = —a? f ds Trg [A,(0), [A,(t — $),55(5) ® ps(0)]]
0

and also extend the integral to infinity, reasoning that it does not matter if we include the far
past since the memory of the environment is short. What we say here essentially is that that the
temporal autocorrelation of the environment decays very fast, i.e. on a time scale much faster
than the scale on which the system's dynamics takes place:

8,ps(t) = —a? f ds Trg [A,(0), [A,(t — 5),ps(t) ® ps(0)]| Redfield equation
0



Rotating wave approximation
We can define the following "superoperator”
A € B(H):A - HA = [H, A]

We expand the operators S; in the eigenbasis of H:

S = Zsi(w) [Hs, ()] = ~wSi(w)  [Hs,S] ()] = ~wS] (@)

Recalling that

H, =Zsi®5i butsince H; = H! = H, =ZSJ®E§
i i

Wwe can compute

ﬁf t) = ei(H5+HE)ter—i(H5+HE)t — Z e—iwtsk(w) ® Ek(t) — Z e+iwtsg(w) ® E}I(t)
k,w k,w
Expanding the commutators:

0.ps(t) = —a? f ds Trg [A,(0), [A,(t — $),p5(t) ® ps (0]
0

= —q? f ds Trg[A,(OF, (£ — )ps(0) ® pi(0) — Ay ()ps(6) @ pe (DA, ¢ — 5)
0

— H,(t - 5)ps(t) ® pe(0)H, (1)
+ps(t) & pe(0)H,(t — s)H,; ()]

Substituting the expression for H,;(t) and collecting the terms gives
055(8) = ) (e~ g (@) [Sw)ps(0),ST(@)]
w,w’
k.l
+ e (@)1 (@), As @S (@N])
Ly(w) = a? f ds e"STrg [Ef (D Ey(t — 5)pp(0)]
0

Rotating wave approximation: environment is fast - keep only resonant terms with w = @'
(all other terms oscillate too fast, average out on time scale of evolution of the system)

055(5) = ) (T (@)[S:(@)ps(0), SH(@)] + (@) [S@), A (OS] (@)])

kl

Now we decompose

1 .
L (w) = z}'kl(a’) ting(w) mplw) = _%(Fkl(w) — ()



V(@) = Fu(w) + [ (@) = a? f ds e Trg B} (£)E,ps (0)]

and rewrite

1
0:05(8) = ~ilH15, As(O] + ) 11a(@) (S:(@)As(OS] (@) = 5 {51 (@)5i(w), 55D} )

kl
His = ) ma(@)S](@)5,(w)
w
k,l

Back to Schrodinger picture

1
0ups(6) = —ilHs + Hya ps(0)] + ) yia(@) (S:(@)ps(0S] (@) = 5 (5] @)51(), ps ()

k.1
Markovian master equation

Diagonalising the matrix y,;(w):

y1(w) 0 0
vy =vl ° Yz(:w) -0y
0 0 v Yn(w)

we can write our equation in a diagonal form

1
0ups(8) = —ilHs + i ps(®)] + ) (Le(@)ps(®L @) = 5 {Lh(@)Le(w), ps(0)})
w,k

This is a Lindblad equation, the ij(co) are the jump operators and the term H; is called
Lamb shift.

Short notation:
d.ps(t) = Lps(t) L:Lindblad superoperator, also called the Liouville operator

Note that

0, Trgps(t) = Tr (Eps(f)) =0

So, this time evolution preserves the trace of the density matrix - i.e., probability.



An example of a Lindblad equation: quantum Brownian motion

System: quantum particle of mass M moving in a potential V (x)
Environment: harmonic oscillators at temperature T

Master equation (simplified version)

[ [
,(') = - E [HSJ p] - EY[xJ {p; p}] - D[x, [x, p]]
2yMkgT
2
This is the high-T limit of the master equation: (W.H. Zurek, arXiv: quant-ph/0105127)

y:dissipation D = : position localisation coefficient

Dual Liouville operator
p=1Lp = 8,4) = ([*(A)) with (A) = Tr(pA)

Essentially this means that
Tr(L(p)A) = Tr (pL*(4))
i.e. [* is the adjoint of L under the trace inner product.

For the above master equation, we have

I'(4) = = £ [A, Hs] = £7{p. [4,21} - D[x, [x,4]]
Example: the dual of the term [x, {p, p}] is [p, {4, x}]:

Tr ([, {p, p}]4) = Tr ((xpp + xpp — ppx — ppx)A) = Tr (p(Axp + pAx — xAp — pxA))
= Tr (p{p, [4,x]})

Homework: derive the other two terms!

Ehrenfest equations
p dix) 1
= _

*(x) = W_E(p)
e o, d{p) _ )
L'(p)==-V'(x)—2yp = 3 - —(V'(x)) = 2y(p)

Problem with Ehrenfest equations in the case with no environment:

o wave packet spreads in time, so its width in position space grows

o (V') # V'({x)

Decoherence term
In position representation p(x, x") = (x|p|x")



(x|[%, [, p]]Ix") = (x|2%p — 2%pR + p&2|x') = (x — x")?p(x, x")

resulting in

d.p(x,x") = =D(x —x")? p(x,x") + other terms yp:decoherence rate
¥D

This leads to a quick suppression of position interference terms:

p(x, x") < exp(— ypt) for |x — x'| large

— )2
p _ = %) = ———— :thermal de Broglie wavelength

—= -7 A =
2 T

Y A7 J2MkzT

It keeps the wave packet localised to scales [x — x'| S 47!

Also: at macroscopic separations |[x —x'| > Ay the decoherence time scale is very fast

compared to dissipation - in the limiting case it is possible for the system to be classical with

negligible dissipation, and so its dynamics can be described by conservative Newtonian

dynamics. To get that we need to replace (V'(x)) by V'({x)), so the distance over which the
potential varies should be much longer than 4.

The decoherence term [x, [x, p]] can also be interpreted as diffusion in momentum space, with
interesting applications to quantum chaos (cf. W.H. Zurek, arXiv: quant-ph/0105127).

Loss of purity
i i
pp = —=[Hs,plp — +v[x.{p.pYlp — D[x, [x.pllp

Take trace and evaluate terms using cyclic property of trace and [x, p] = ik

d
> ETF p? = —4D Tr(p?x? — (px)?) + 2yTr p?

The second term is usually unimportant (except for very sharply localised states with DAx? <

y ie. Ax < Ap), so starting from a pure state with p = |Z}¥| purity generally decreases
according to

d
ETrpz = —4D ({(x?) — (x)?)

Classical and quantum information

By measuring or observing a system, we extract information about it. Therefore, it is interesting
to consider the information theory description of what we can learn about physical states.



Classical (Shannon) information
If an event happens with some probability p, we can associate to its observation a surprise

1(p):

I(p) is monotonically decreasing with p
I(p) =0

I(1) =0

[(p1p2) = 1(py) + 1(p2)

S

(4) has the unique solution I(p) = —klogp and (2) implies k > 0, with (1) and (3) then
automatically true. Choice of k corresponds to the choice of units: k = 1/log 2 gives I(p) =
—log, p in bits.

Shannon entropy and its relation to Gibbs entropy

If querying a source of information can result in N outcomes X;, ..., X of a random variable

X with probabilities p,, ..., py, then the information content of the source is given by the
average surprise

N N
HX) = me(pi) = —Z p;logp;
i=1 i=1

Maximum pOSSible entropy is for eql..liprobdr ble events
pl. N Og

Note that (up to a factor kg which specifies the units) this is exactly the thermodynamics Gibbs
entropy associated to a system which can be in N states of a statistical ensemble with
probabilities p;, ..., py. Therefore, the Gibbs entropy just quantifies our ignorance about the
state of the system i.e. how much we learn if we ascertain its true state.

Remark: the Gibbs entropy can be defined far away from thermal equilibrium, and can be
shown to agree to the classical Clausius definition

_%

éS T

Relative entropy

Taking two random variables X and Y, suppose we learn that Y = y;. Then the remaining
information we can extract from measuring X is given by

H(xly)) = = > p(uly,) logp(xuly,)

Averaging over all outcomes for Y gives the relative entropy



P\ X, Yj
HX|Y) = —ZP(%)P(%M)IOgP(xilyf) - _Z:p(xi'yf) log }E'(y})})

which quantifies the information in X which is independent of Y.
Properties:
5. HX,Y)=HX|Y)+HY)=H{Y|X)+ HX)
where the entropy of the joint system is
H(X,Y) = - Z p(xi,y;) log p(x:,¥;)
6. IfY = f(X) tl:;n H(f (X)|X) = 0 so we get
H(X|f(X)) + H(FCO) = HFOIX) + HX) = H(f (X)) < H(X)
i.e. the entropy of a variable can only decrease when it is passed through a function.
7. X andY are independent = H(X|Y) = H(X)
8. HX,Y)SHX)+H()
Mutual information
How much information does X contain besides the one not determined by Y?
I(X;Y)=HX)—HX|Y) =HX)+H(Y) - HX,Y)
It is non-negative: I(X;Y) = 0 and symmetric: I[(X;Y) = I(Y; X)

Mutual information quantifies the information contained in both X and Y i.e. it is a measure of
mutual dependence (correlation) between the variables.

Von Neumann entropy

Mixed state: we are ignorant about true state of system

p= Z pil) (Wl

Von Neumann entropy:
S(p) = —-Trplogp = —Z p;logp;

L
Let us assume we have a bipartite system Hy @ Hjy which is in a pure state |¥). Any pure state
can be written using the Hilbert-Schmidt decomposition
)= > Pilvoa ® l9s (il = 8 = (ildy) pi 20

L



w|wy = 1=>Zpi= 1
i
Partial states:
pa =TrglW)W] = D pilwdil  ps = Tal®X¥I = ) pild)eil
i i
Entropies of the full system and the subsystems:

Sap =S(IPHW) =0 Sy =S(pa) = —Zm logp; Sp=S(ps) = —Zm logp;
i i

Mutual information:
IAB = SA +SB _SAB = ZSA = ZSB !!

The composite system has twice as much mutual information as can be stored in either of the
subsystems! This is much different from the classical case.

In fact, the von Neumann entropy measures entanglement between the subsystems - which is
a highly quantum mechanical phenomenon.

Note that by measuring any of the subsystems only half of the mutual information can be
extracted - i.e. we can only access as much as allowed by classical theory. The rest of the
correlations is irreducibly quantum - it is related to the fact that albeit the subsystems are in a
mixed state, the full system is in a pure state (cf. also purification).



Lecture 13

Branching states o

Typically, the environment consists of many
subsystems, and observers intercept only a small
part of the environment to learn about the state of \
physical objects (they do not need to interact with kxv* Q y
the object directly at all!). 2

Considering the wave-function of the system with
the environment, it is a mathematical theorem that
is can always be written as a Hilbert-Schmidt
decomposition

(0

’ﬂ’ﬂr .
‘:;r

|¥)se = ZAHSEHSE) ;=0 ZALZ =1
i i

where (Sils}.') = 6” = (&'Ll&'})

But this is only guaranteed for a bi-partitioned system. If the Hilbert space is a product of more

than 2 factors, it is only mathematically guaranteed that a general state can be decomposed into
a multiple sum such as

Iy

|1P)551...En = Z Ciil...ilei) 5(1)> Ei(:)>

Lig,in

Digression: why is the Hilbert-Schmidt decomposition guaranteed for bi-partite systems? We
can start from the guaranteed decomposition

|¥)sp = Z Ci}'ldi)lej)
ij

Using the theorem of singular value decomposition in linear algebra, there always exist unitary
matrices U and V' such that the matrix C can be written as

A 0 . 0

c=ul® % = %)y with 2,20
0 0 .. Ay

SO

|¥)sp = ZAHSEHGE) |s;) = Z Ukilog) lei) = ZVik|€k)
7 i i

g

%%
1



However, we can proceed by subdividing the environment into many pieces. Then decoherence
results in a state of the form

|ltU)551...En = Zﬁilsi) Si(l)) Si(N))

L
This is a very special sort of state in the multi-factor Hilbert space called a branching state:
in such a state the wave function decomposes into branches that are orthogonal to each other
to a very high precision.

Branching states and (proto-)locality

Why does decoherence result in a branching state? The reason is that the Hamiltonians
describing fundamental physics are in a special class: they have a "proto-local" structure.

Proto-local structure: denote the total Hilbert space by H; (U for Universe) and the
Hamiltonian by Hy,. It has a proto-local structure if there exists a factorisation of the Hilbert
space

Hy=H,QH, ® ...

such that when expanding the Hamilton into terms which depend on 1, 2, etc. factors as

_ € @ ®)
=D M )+ B+
i

i1,iz i1,i2,i3

with Hi(lni)_in € fB(:?{il R..Q Hin) corresponding to "n-body" interactions, the expansion
terminates after the first few terms. Many fundamental Hamiltonians have only terms up to
n = 2 so elementary interaction steps only involve subsystems in a pairwise fashion. For the
argument it is probably enough that the terms decrease fast enough with n although I know no

theorems in this regard.

In addition, observations show that the Universe satisfies what is called the Past Hypothesis,
which means that entropy was low in the past, i.e. for the initial conditions at the time of the
Big Bang. In our Universe, this is the origin of the global arrow of time.

For us this can be stated by assuming that the system starts from a state that has a product form
in the above decomposition i.e.

%) = [$1) @ [¥2) ... with [¢;) € H;

so that the initial state has a low entanglement between the subsystems. Prominent examples
of decoherence such as position localisation is a time evolution which proceeds in individual
scattering events which always only entangle the system with a given subsystem of the
environment. Since every step happens in a bi-partite subsystem, we can always re-diagonalise
the state in that subsystem and so the structure of the wave function becomes

() . |o0)

|5U)551...En = Z Ailsy)
i



Note that here the product structure is
Hs QHg, @ ... Q H,

and each environmental factor is composed of many elementary "proto-local" Hilbert space
factors. This requires an appropriate coarse graining.

Such a time evolution can be verified in detail in concrete models of decoherence. In fact, this
is probably what we mean by decoherence in the first place! There are many physical processes
we do not call decoherence as they do not lead to a branching wave function.

In my view, decoherence is a special class of physical processes for which the result is a
branching wave function. Positional localisation is one example: in each individual scattering
event, the position wave function is entangled with a single photon, and it is rapidly entangled
with a huge number of independent photons in the environment, each being a part of a different
sub-environment E; which label different spatial regions in which the scattered photons end

up.
Why proto-local?

This is my terminology © In the real world, the natural index in which the Hilbert space
factorizes is position, because interactions usually fall off with distance. So, one can think of a
structure

o= @,
Vi

where the V; are small volume cells and Hy, are the degrees of freedom localised in them. To
keep things safe, I do not assume factorisation to individual points is possible.

It is a very interesting thought, however, to start from a form

10, = R,

qEM

and ask whether the index set M can be endowed with a geometry. One needs a distance notion
here; such a notion is provided by entanglement: the distance between "proto-points" g, and
g can be chosen as a monotonically decreasing function of the entanglement between H, and

Hg,. One can therefore attempt to derive geometry from entanglement, and then even the

Einstein equations. Those interested are referred to S.M. Carroll and A. Singh, arXiv:
1801.08132 and references therein, and also M. Van Raamsdonk, arXiv: 1005.3035 and
1809.01197. Similar thoughts can also be formulated in the framework of tensor networks
(used in simulating quantum many-body systems), see e.g. B. Swingle arXiv: 1209.3304.



Pointer states, quasi-classical variables and redundant records

Using a suitable coarse-graining of the environment into subsystems, under which the
decomposition of the wave-function has the branching form

(). |e0)

W")sgl...gn = Z Ailsy)
i

with N sufficiently large, the states |s;) are pointer states of the system S which survive the
constant "monitoring"” by the environment: "quantum darwinism" (Zurek).

Quasi-classical variables: observables built from projectors on pointer states.

For such observables (apart from extremely short time scales) the system does not exist in
superpositions corresponding to values distinguishable with any reasonable finite precision.
Therefore, their dynamics is classical, and deterministic - apart from the environmental noise
which leads to small fluctuations and also dissipation.

Measuring a quasi-classical observable /O\

e It is to determine which branch of the wave-function
is realised.
o This can be decided by measuring any one of the

s-(a)>, S0

D oamul
3
'C
' g
"’y, &
o Although we destroy one particular record, other & tr‘
%
W
-

environmental "record keeping states" |g;

there is no need for direct interaction with S and this
is what happens in practice.

observers can verify our observations by checking
o

another record |si(b) ) and we are going to agree.

We (observers) and all the other sub-environments are an (astronomically) large number of
Wigner's friends which always agree about the result for quasi-classical observables. This is
guaranteed by the branching form

(). |e0)

W")sgl...gn = Z Ailsy)
i

Therefore, quasi-classical observables are those for which multiple records exist. Being quasi-
classical is a matter of degree - the more records it has, the more classical the observable is.
The most classical ones are the "Darwinian" winners of the environment-induced
superselection - called einselection by Zurek.

9

]



Partial information plot

We can compute the mutual information between the system S and n subsystems of the
environment as a function of the fraction f =n/N of the environment we use to get
information about the system. Typical result:

2H,

r
=]

= (1-8)Hs

oL
|
|

Information obtained I(S:F)

e |

0 0.5 1
Fraction of f of the environment measured

(from W.H. Zurek, Nature Physics 5: 181-188, 2009.)
Redundancy: R = 1/f

Green line: pure state picked out in random from Hg - necessary to measure half the
environment to get any information, but once we get halfway, we get the rest very soon.

Red line: decohered state - a small fraction of the environment gives the classically available
info H(S), but the full info 2H(S) can only be extracted if we measure all the environment -
the quantum correlations carried by entanglements are delocalised globally around the
environment.

E.g. for quantum Brownian motion: I(S:Ef) ~H(S)+ (1/2)logf/(1—f)

Environment as both censor and witness:
e Selects the states we have verifiable information about. This selection is dynamical and
depends on the Hamiltonian of the full system (Universe);
o Creates multiple records so that for these degrees of freedom we can cross-check and
compare notes with others!

Quantum theory: the fundamental postulates

Quantum postulates:

(i) States are vectors in Hilbert space

(ii) Time evolution is unitary

(iii) Immediate repetition of measurement gives the same result
(iv) Outcomes correspond to eigenstates of Hermitian operators
(v) Probabilities are given by the Born's rule.



Zurek: (iii-v) can be derived from decoherence and einvariance (environment assisted
invariance).

(iii): guaranteed by decoherence, but one can only choose from a limited set of observables
(environment censorship) and follows from existence of (redundant) environmental records.

Argument for (iv)

Assume there are two pointer states of S |u) and |v) which get entangled with the environment
which starts in an initial state |E,):

[u)E) = [W)EY) |V)Eg) = [V)IEy)

If the environment stores any information at all about these vectors, then |[(€,]|€,)| < 1. On
the other hand, since the time evolution of the system + environment is unitary, the scalar
product is preserved:

(ulv) (€o|E0) = (u[vNELIEY) = (ulv) = 0!

1
So, states corresponding to different outcomes are orthogonal therefore there exists a Hermitian
operator of which they are the eigenstates. (The eigenvalues of the Hermitian operator can be
chosen by us - they are simply labelling the different outcomes!)

Note: despite the no-cloning theorem, the information about the pointer states can be copied
without limitation.

The no-cloning theorem only forbids unitary operation that can copy any state (even
superpositions) in the Hilbert space, while here copying is restricted to particular elements
which are orthogonal to each other.

Argument for (v): deriving Born's rule

Let us assume that in our branching state we have n terms have the same weight

5i(f)) 551—,0)

n
1
|¥) sk & =Z_|5i)
fE1-f
Jl=1\/H

Here E; is the fraction f < 1 of the environment that we intercept to do our manipulations,
and E;_y is the rest (that we do not even know about anything at all). Now we cannot predict

the outcome of the time evolution which we call measurement, since it is only the total wave-
function that obeys a deterministic (unitary) evolution, but not separately any subsystem of it.

Given our ignorance about the environment, how are we to assign probabilities to the outcomes
then? We could try to argue by taking the partial trace over the environment, but in fact that is
circular: the partial trace prescription was derived from Born's rule itself!

Note: we can consider a unitary "swap" gj, operation on S @ E; which exchanges the
outcomes j and k. Then we have



1 1
O\ =) O\ | (=1
(O}'k &® 1)|ltu)55f51_f = Z — Isi) & ) & )+ _lsf) |€f )|€k )
i#jk vn vn
1
L N |-
+\/ﬁ|5k) |5k )|€j )

Now the probabilities p; and pj, are swapped since their association to the ignored environment
E;_r is swapped. However, this swap can be undone by a unitary swap X, performed on the

ignored environment which swaps |€,§1_’F)) and |€}.(1 '”):

(lEf ® Ejk) (O}'k ® lgl_f) |lP)SEJrEl_Jr = |lp)SEfE'1_f

However, since we by assumption do not know anything about the environment, this operation
is totally unobservable for us. Therefore p; = py, i.e. all outcomes are equiprobable and so

1
P,f:E

Analogy: this is the way we get the probabilities for an unbiased coin or die from symmetry
considerations. However, here the symmetry is a quantum symmetry, and our ignorance is
quantum ignorance (i.e. the unknown information is not purely classical, but also involves
entanglement with the ignored environment E;_g.

Now what if the amplitudes are different? For simplicity, consider only two branches and also
suppress the sub-environment notation. Assume that

my m;
|¥)se = F|51)|51) + F|52)|52) my;+my; =N

We can then subdivide the environment by introducing orthogonal ancilla states

1 1 1 1
|€;) = m—1|511)+‘“+ m—llglml) |E,) = m—2|521)+‘“+ m—zlgzmz)

This corresponds to fine graining the environment, which is really huge, so this is not a
problem!

Now this is mapped to the case of equiprobable outcomes, each having probability 1/N, m, of
which corresponds to [s;) and m, of which corresponds to |s,). We conclude that the
probabilities of the outcomes are

1 m;

I51): == |s,)
SV 2

Again, Born's rule rulez!



Now the only case is when the coefficients are not square roots of rational numbers, but then
we can use that rational numbers are dense among reals and that the probability assignment is
expected to be continuous.

So, we have derived Born's rule... or have we?
My take on this: yes, we have, but we must keep track of the assumptions:
I. We assume the quantum postulates (i) and (ii)

2. We assume that the Hamiltonian is proto-local, the number of subsystems is very large, and
that it allows for decoherence processes which result in branched wave-functions (this needs
the Past Hypothesis as well).

Note: this part is justified by our experimental knowledge of the world.

3. We use the ignorance derivation of probabilities, which reflects a particular philosophical
approach to the meaning of probabilities.

4. We must also note that the information we ignore is not just classical correlations with E;_¢

but also quantum, which is an extension of the ignorance derivation (however plausible, it
is still an extension!)

Then we derive (iii) repetition; (iv) outcomes correspond to eigenstates of Hermitian operators
and that the only consistent probability assignment is (v) Born's rule.

Quasi-classical realms in a quantum universe

1. The quantum Universe is huge - most of its degrees of freedom are hidden from us and play
the role of the recording station - many little quantum scribes busily making notes and
never being appreciated for their absolutely vital contribution to our existence :)

2. A small (but still huge) portion of degrees of freedom - determined by the Universe's
Hamiltonian - leave redundant records via decoherence and together they form our quasi-
classical realm. Are there multiple disconnected quasi-classical realms? Maybe... but the
others are then really totally disconnected from ours.

3. The quasi-classical realm is necessary for faithful, repeatable copying of information - a
necessary condition for the evolution of beings like us (think about genetic info in DNA).
The ever-present noise supplies the necessary mutations, and because the dynamics is
mostly predictable, adaptation is possible.

4. Therefore, living beings are configurations of quasi-classical degrees of freedom, and we
only have access to the pointer variables - the rest is censored from us. (This does not
exclude however that quantum effects are important for life at the molecular level, e.g.
photosynthesis).

5. We can observe quantum phenomena by observing sufficiently isolated subsystems (atoms,
nuclei etc.) for phenomena with time scales shorter than their decoherence time scale.



6. Even for these quantum phenomena, we can only observe selected observables - these are
the ones which can be coupled to pointer variables by the design of the experiment. They
result in outcomes observable, repeatable and verifiable for us, and so we can do science
with them.

Even though the Quantum Sea is huge, the portion within our horizon it is still finite (bounded
by the so-called de Sitter entropy) - which means that the available memory is finite. So, there
are only finitely many details of finitely many events that can ever be recorded, and the

Universe can only perform finitely many quantum operations, before reaching the maximum
entropy state - cf. with 19th century "heat death".

Consistent histories and redundant records
Recall quantum histories

Xa = B (6) .. PV (ty)

dy
P (1) = e~ tHtep{ gt Z R =1 = ZX“ -1
(Ik=1 a

Weak consistency: condition for probabilistic interpretation

r

Re Tr)(a,o)(;, =0 a#a«a
Probability of a given history is p, = Tr y.p )(:;
Medium consistency:

D(a,a') =Tr )(ap)(;; =0 a#a

This behaves well under composition of systems: if we have systems A and B with histories
x2 and )(g and states p# and p?, then medium consistency in the subsystems implies medium
consistensy for the product histories in the product state of the composite system, while this is
not true for weak consistency:

Trap (x4 ® xE) (0" ® pP) (k2 ® x5r) = Tra (xlp*x) Tra (x2p"xE:)
So: DAB(apB,a'f’) = DA(a,a’)DE(B,B")
But: Re DAB(ap, a'B’) # Re DA(a,a’)Re DE(B, B") in general!

From now on we use medium consistency and assume that the complete system + environment
is in a pure state.

Consider history branches created by a (medium) consistent set of histories:



1
|lpa) =—Xa|lp)

Jra

These can be interpreted as alternative histories of the system: they satisfy
9)= > palWe) and (¥|wy) =1
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Consistent sets of histories in a system with a pure state have records: there exists a complete
set of orthogonal projector operators R, such that

|¥) = Ra|¥)

However, these records are not redundant and are also global in general, so to verify them one
needs to perform global measurements on the Universe.

For mixed states the same is not true: medium decoherence

Tr Xopx) = 0

does not imply the existence of records, which is the existence of a complete set of orthogonal
projector operators R, such that

XaP = Rap
although the reverse implication holds.

It can be shown that pure decoherence (with an undivided environment) leads to medium
consistency for histories of the pointer variables, see C.J. Riedel, W.H. Zurek and M. Zwolak,
arXiv: 1312.0331. This relies on the observation that the state resulting from pure decoherence

|¥)sp = Z Ails €D

implies that the projectors on the environmental state |£;) serve as records to the system events
corresponding to [s;), i.e. the events |s;)(s;| ® 1.

It is intuitively clear that if we build histories upon pointer states which leave multiple records
in the environment, then this set of histories is objective in the sense that different observers
can compare notes and find then consistent. They can also verify these histories by accessing
only a small portion of the environment. This means that quasi-classical realms have an
objective past which different observers can find out and on which they agree.

It is shown in arXiv: 1312.0331 that the existence of redundant records is a sufficient condition
for redundant consistency, which then uniquely fixes the branch vectors. It selects, from the
multitude of the alternative sets of consistent histories, a small subset endowed with redundant
records characteristic of the objective classical past. The allowed sets only differ in minor
details, and they lead to the same decomposition



|¥) = Z\/ﬁwa) and (¥,|¥) =16

into branch vectors. The history of Universe (i.e. the branch actually realised) can then be found
on by observations and different observers will agree on it.

Final note: quantum Darwinism seems to have passed its first experimental checks, see
https://www.quantamagazine.org/quantum-darwinism-an-idea-to-explain-objective-reality-
passes-first-tests-20190722/

Have we solved all problems?

No: the wave function still contains the branches for all the alternate histories of the Universe!
This is sometimes stated as follows: pure quantum mechanics does not contain any mechanism
to choose between the alternate realities — such a (hypothetical) mechanism is sometimes called
the “chooser”. Quantum theory does not have a “chooser”.

_ THE FIRST-THING TEJ‘REAUZE‘ |
ABOUT PARALLEL.UNIVERSES
;_'__IS THAT TH EY ARE NDT PARALLEL

IP’I: 1 HAT AT TLE
REALIZ L-LIIJF‘T[]TI-HJ ‘MO

'-p-q.rﬁ TRUE. -

LY-A.THING
IE WSO0G

WHOLE SDRT DF GENEIRAL MISH MASH.

. ‘THE WHOLE SORT OF GENERAL MISH MASH DOESN'T ACTUALLY EXIST EITHER, s, . °
- _F'lIT ITIS JUST THE SUM TOTAL OF ALL THE mrrrpm- WAYS THERE WOULD BE OF LOOKING AT IT
S II—IT oiD.

‘ .-‘_THE REASON_HTH EY ARE NOT® PARALLEL

ARALLEL.ITD
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__SUMETHlNG THAT SUMEDNE W1L|_ CALL HOME
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|¥y): WSOGMM
Choice of the The way we slice up the WSOGMM. However, contrary to
history set X D.A.'s statement it is not up to us to choose it!

The environment acts as censor, we do not have much say in this.

|W,): branches a.k.a. "parallel worlds", decohered by the Quantum Sea



It is still open to interpretation, some of the main options are:

o Everett type (relative state) interpretations: they are sometimes called many-world, but
there are several flavours.

o Note: in each of them the quantum world is unique with a deterministic evolution!
It is the history of the quasi-classical realm that has branches.
o They are very minimal in their set of quantum postulates: only accept (i) and (ii).

o Copenhagen type: still alive and kicking :)

o Ensemble interpretation: the wave function does not describe individual systems, only
ensembles of systems — cannot be applied to individual systems, especially problematic for
quantum cosmology.

« Relational interpretations: states are relative to observers and describe correlations between
the system and the observer.

o Qbism: the wave function describes what observers know about the reality. When
performing observations, their beliefs are updated by a quantum analogue of Bayesian
inference.

This motivates some people to consider modifications of quantum mechanics.

 Hidden variables: Bohmian mechanics, cellular automatons
o Collapse models
¢ Nonlinear quantum mechanics
o Problems with signalling
o Results in influence without interaction between separate systems.
See T.F. Jordan, arXiv: quant-ph/0702171, arXiv: 1002.4673

However, it seems to me that no matter what we do with this, the "good old" classical Universe
won't come back.

In fact

Not on y 1S the universe

- -

stranger than we imagine, it is

W . T

stranger than we can imagine.

Arthur Stanley Eddington




Remarks on objective collapse models

Collapse models modify quantum mechanics and introduce mechanism so that macroscopic
superpositions disappear. Some such models are:

¢ Ghirardi-Rimini-Weber (GRW) model: constituents of physical systems undergo
spontaneous collapses distributed in time according to a Poisson process. The larger the
system, the stronger the collapse of the centre-of-mass wave function.

o Continuous spontaneous localization (CSL) model: collapse in position occurs
continuously in time.

o Dié6si—Penrose (DP) model: collapse related to gravity.

In many cases (e.g. CSL and DP), the time evolution of the density matrix is governed by a
Lindblad equation. Therefore, there exists an extension of the Hilbert space on which it can be
simulated by unitary dynamics. So, these can be considered open quantum systems without an
explicitly specified environment.

Main problems:

» Energy conservation is violated and in fact it turns out the energy increases with time due
to collapse. This can be compensated by adding dissipation, but energy would still not be
strictly conserved. The positive side of this is that it leads to experimentally observable
signatures.

o Compatibility with relativity is hard to achieve, no Lorentz covariant formulation exists
yet.

o Tail problem: wave function always has small, but non-vanishing tails, so the system is
never fully localised. Eventually there are several levels of the tail problem, and it is hard
to see how to address them in a satisfactory way.

See e.g.

- K.J. McQueen, Studies in History and Philosophy of Science Part B: Studies in History
and Philosophy of Modern Physics, Volume 49: 10-18, 2015.

- Albert D.Z., Loewer B. (1996) Tails of Schrodinger’s Cat

o Collapse theories do not get rid of the branches: they just do the same job as decoherence
does, but we are still left with the problem of interpretation. There is still no “chooser”.

In fact, given the above problems, and also the fact that the job is already performed by
decoherence, I fail to be motivated towards these theories: only some strong experimental
evidence would convince me.

No experiment found any evidence for these models so far. A recent experiment looking for
energy violation predicted by the DP model has come up empty:

S. Donadi et al. Underground test of gravity-related wave function collapse. Nat. Phys. (2020).
DOI: 10.1038/s41567-020-1008-4
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