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Search on graphs
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» Shortest path algorithm
» Many applications: e.g. Route planning
» Calculation of betweenness centrality
» Global information needed
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Dijkstra’s algorithm
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v

Find the shortest path from a source
Known: links, link weights (node distances)

Store: distance to that point, link to previous element in
shortest path

List of unvisited path sorted by distance to origin (set to
infinity if unknown)

Algorithm:

1. Choose the unvisited node with the smallest distance to the
origin

2. Visit all its unvisited neighbors: if distance is smaller than the
current distance to that point, store it and set link to previous
element to the current active node

3. Mark node as finished

4. If list of unvisited nodes is not empty, go to 1.



Related problems

» Finding out of a labyrinth
» Search path with local knowledge

» Very important!
» Global optimization can be too expensive
» Global structure may net be known, or varies fast

» Recommender systems

» File sharing
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Path search

» Milgram experiment
» There are short paths (topology)
» They can be found using local info (search)
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Greedy routing

» Agents have only local information
» They know how far their neighbors are from the target
» They forward the packet to the neighbor with the smallest
distance to the target
» May lead to dead end
» Navigability:
» Fully: The network is navigable if there exists a greedy path
between all pairs of nodes

» Fractional ps: the fraction of node pairs with greedy route
between them
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Navigability of scale free networks

» Scale free network (configuration model) P(k) ~ k7
» Metric space is needed, here nodes are randomly placed on a
ring

» Probability of connection:

o dN\
r(g; k, k') = (1+ P

» the probability of link connection between two nodes is
decreases with the distance as ~ d=¢

> Increases with their degrees as ~ (kk')*

» Measure: Greedy navigation success rate ps

Bogufia et al. Navigability of complex networks, (2009)
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Navigability of scale free networks

» Navigable if ps(N) increases with N
» ( is clustering for given «
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Navigability of scale free networks: Airport example
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Navigability of scale free networks: Airport example
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» General greedy routes: generally go though large degree nodes
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Navigability of scale free networks: Airport example

» Results of the model
» C increases with a
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Kleinberg model
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Square lattice, with next nearest neighbor links

Distance is defined in lattice (Manhattan) distance

One long range link to a randomly selected node with
probability proportional to r=% (here also r is measured in
Manhattan distance)

Expected behaviour

T~ L¥
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(a) r << 2 (b) r~2

Kleinberg Navigation in a small world, (2000)



Kleinberg model

» Expected behaviour T ~ L*
» Kleinberg lower bounds (2d):
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Search strategies: Network

» What if there is no underlying metric?
» The position of the target is unknown

» Networks
» Power law degree distribution with exponent between 2 and 3
» Random weights on the links: smaller weights correspond to
shorter paths
» No global information: each node has information about its
neighbors (or second neighbors)
» structure may change in time

Thadakamalla et al. Search in weighted complex networks (2006)
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Search strategies
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> Strategies:

>
| 4

>

Random walk

(Semi) Self avoiding random walk (do not send the package
back to the one from which it was received)

Self avoiding random walk, do not send back to nodes where
packed already has been. (can lead to dead ends!)

Pass through the link with the smallest weight (at least it is
not expensive)

Choose the best connected neighbor (we saw in the metric
version that it is not a bad idea)

Choose the neighbor with the smallest average link weight (it
is close to many)

Choose neighbor with the highest link betweenness centrality
(use all available information)



Search strategies: Results
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» Random graph:

Beta Uniform Exp. Power-law
Search strategy 0% =23 0% =83 0% =25 o2 = 4653.8
Random walk 1271.91 1284.9 1253.68 1479.32
Minimum edge weight 1017.74 767.405 577.83 562.39
Highest degree 994.64 1014.05 961.5 1182.18
Minimum average node weight 1124.48 954.295 826.325 732.93
Highest LBC 980.65 968.775 900.365 908.48
» Scale free network:
Beta Uniform Exp. Power-law
Search strategy 02 =23 o2 =83 o2 =25 o? = 4653.8
1107.71 1097.72 1108.70 1011.21
Random walk
(202%) (241%) (272%) (344%)
Minimum edge weight 704.47 414.71 318.95 358.54
(92%) (29%) (7%) (44%)
Highest degree 379.98 368.43 375.83 394.99
(4%) (14%) (26%) (59%)
. . 1228.68 788.15 605.41 466.18
Minimum average node weight
(235%) (145%) (103%) (88%)
Highest LBC 366.26 322.30 298.06 247.77




Search strategies

> Strategies:

» If heterogeneity is small the best performing method is the
minimum weight search, which outperforms methods using
more information

» If link weights get homogeneous (o ~ 1) then minimum edge
weight becomes random walk, highest LBS becomes highest
degree and the latter performs better

» In scale free networks: highest LBS performs best as it
incorporates both degree and weight information

» Edge weights not shown is 1

Neighbors: 2,3,4., 5
(@) ’ ®)

(a) L(2) = 76.0, L(3) = 42.0, L(4) = 42.0, L(5) = 0.0

(b) L(2) = 76.0, L(3) = 92.0, L(4) = 42.0, L(5) = 0.0
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Internet topology

» Autonomous systems (AS) of the Internet
» Routing between AS
» Must be fully navigable

» Impossible to know the full structure — local routing

Page 19



Internet topology

» Traffic

» |ocal
P> transit

» Relationship

» customer-provider
» peering
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AS routing policy

Valley-free route
Highest local preference
Shortest AS path

etc.

A
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AS routing policy

1. Valley-free route
» Flow of traffic must coincide with the flow of cash
» Data forward from AS A to B only if
» incoming traffic if from a costumer of A

» or B is a costumer of A
» A valid path contains n customer-provider, at most 1 peer and

m provider-customer link strictly in this order
o (&) - n“‘m ® ﬁ:zsetromer-provider
‘ b ® © G ®--0© @0
Valley-free not Valley-free

2. Highest local preference
3. Shortest AS path
4. etc.
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AS routing model
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>

>
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Number of players P
Edges: (p) directed provider, (r) undirected peer
Valley-free routing: u can forward traffic coming from w to v
only if
1. wis a costumer of u (the relationship between u and v can be
anything)
2. v is costumer of u (the relationship between u and w can be
anything)
Payoff (of u):

v#u
where ¢, is the cost of an edge of type x € {r, p}, ux is he
number edges of type x
0  There is a VF path between u, v

oo otherwise

C/V[:(U7 V) = {



AS routing model

Number of players P
Edges: (p) directed provider, (r) undirected peer

>

>

> Valley-free routing between all pairs

» Independent of the cost functions (provided they are positive)
>

Resulting network

> Has a clique core with only peer (r) links
» Trees rooted at the core consisting exclusively from provider
links (p), the provider is always closer to the clique than the

consumer
() ---- peer-to-peer (r) edge
wmy Ko — customer-to-provider (p) edge
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AS routing model
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» Include Highest Local Preference rule

» Player always picks from the available VF paths according to
its local interest

» Players do not like customer-provider links

» Cost function

0 VF + first is peer or p — ¢
dve(u,v) =<1 VF +4firstisc—p

oo otherwise




AS routing model
» Valley-free rule

» Highest Local Preference rule
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