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Sampling Networks

» Why?: Performance, and time limitation

» Reason:

» Actual limit in the resources
» Test ideas fast

» Limited access

» Temporal access

» How?: Depends what you want, but always complicated

Based on the lecture of Mohammad Al Hasan, Nesreen K. Ahmed, Jennifer Neville, Purdue University,

West Lafayette, IN
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Network characteristics

» Task: Measure should give the same value on the sampled
network than on original:
> Measure type:

» Single node: e.g. degree distribution, average degree
» Link correlations: e.g. centrality, assortativity
» Mesoscopic correlations: e.g. community structure, motifs

» Different level of correlations require different approaches

» Single node properties are the easiest to retain
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Sampling scenarios

» Full access to the network
» Restricted access (through a collection of seed nodes)

> Streaming access (data not sampled is lost forever) (Not
covered here)
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Full access, only nodal attributes
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» Uniform node sampling

» Degree base random node sampling
» Random pagerank sampling

» Random edge sampling



Random node sampling

» Uniform node selection
» Conserved quantities

> Average degree
» Average of any nodal attribute
» Any function of nodal attributes (e.g. degree distribution)

» Quantities not conserved
» Multi nodal correlations are systematically destroyed
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Degree based random node sampling
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» Node selection is proportional to function 7(k) of node degree

» Bias to nodes with higher degree

> Use case
» Degree distribution is generally decreasing
» Few large degree nodes are generally not selected by random
node selection, for which measures have high error for large
degrees
> If degree distribution and (k) is known sampled estimates can
be corrected.

» Generally w(k) = k



Degree based random node sampling

> Very often conditional averages are calculated and contition is
on degree, (e.g. assortativity)

» Select few nodes with each representative degree
» Problems:

» High error for low degree nodes (e.g. error goes as ~ 1/v/k):
oversample low degree nodes accordingly (rule of thumb same
amount of cpu time for each bin)

» Sproadic k values for large degree: allow range for large degree
nodes anyway the error in degree will still be small

> Feel free to drop irrelevant degrees (e.g. for humans
50 < k < 500)
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Pagerank based random node sampling

» Node selection is proportional to Pagerank probability
dkin/M + (1 —d)/N
» The previous two can be obtained as a special case with d =0
andd=1
» Small degree nodes have tunable probability to be selected
» Measured quantities can be transferred back to original system
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Random edge sampling

v

Uniform edge selection

v

A vertex is selected in function of the degree of the vertex u
P=1-—(1-pkw®

For p — 0, P(k) = pk
For p < 0 bias is reduced
Edge statistics are conserved

Nodal statistics will be biased to high-degree vertices
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Sampling under restricted access

» There are few (or 1) entry points

» No global property is known a priori

» Network supports crawling, neighbors of accessed nodes are
known

» Graph traversal methods

» Snowball sampling
» Breadth-First Search
» Depth-First Search
» Forest fire

» Random walk based methods

» Classic random walk

» Random walk with restart

» Markov Chain Monte Carlo using Metropolis-Hastings
algorithm
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Snowball sampling
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| 2

>
>
>
>

Start from a seed

Sample all links to neighbors

(In some version this step is limited to n neighbors)

Visit all neighbors and there also sample all links to neighbors
Stop at desired level




Snowball sampling

Start from a seed

Sample all links to neighbors

Visit all neighbors and there also sample all links to neighbors
Stop at desired level

Advantage: simple, and long history in social science
Problems:

» Non random

» Last layer has almost always degree 1

» For large degree only very few layers can be sampled, very
often two
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Snowball sampling: Variations

» Breadth-first Sampling:
» Above version
» Discover vertices at distance d before discovering any at
distance d + 1
» Depth-first Sampling:
» Discover farthest vertex along a chain
» If there is no more than go back recursively
» Forest Fire Sampling
» Neighbors of the current node are added with probability p
» The above is repeated until some condition
> Note the forest fire may go extinct before it reaches the
desired number of nodes or depth
» n—Snowball sampling

» For the each active node discover only n neighbors
» A node can be chosen if it has not been visited before
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Random walk

Start from a seed

Do a random walk

>
>
» All links to the visited node are discovered
» Biased towards high degrees

>

Samples the current community much more than the rest of
the network (can be a desired effect)
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Random walk with restart
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vVvyVvVvYyypy

v

Start from a seed

Do a random walk

All links to the visited node are discovered

Biased towards high degrees

With probability d jumps back to origin

Samples the current community much more than the rest of
the network, even more than simple random walk

Could be useful if one wants a good sample of a community
from an otherwise enormous network



Markov Chain Monte Carlo using Metropolis-Hastings
algorithm
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Correct the random walk bias

Go to a node with probability depending on the degree of the
target node

Current node i/, target node j
P(i —>J) = min(k,-/kj, 1)

Thus we always go towards smaller degree nodes but only with
probability k;/k; towards larger degree ones

In theory this model gives uniform sampling of the nodes



Horovitz-Thompson estimator

» Calculate the mean u of a quantity X; over the finite set S of
nodes.

» |f sampling is unbiased of course we have
/‘I’ ’S| ZXM
ieS

where |S| is the cardiality of the set S

» If there is a bias 7; for selecting node i (of course 7 can also
be a function of X and other quantities)

» The Horovitz-Thompson estimator:

HAT = 7g] ZX/TF,

i€eS
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Vertex selection probability (bias)

» Note: in image d = k the degree of a node

Vertex Selection Probability, w(u)
V| =n,|E|=m,
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uniform n
target

RDN, d(u)
RWS m

RPN, c- din (W)

1 .
RWIJ m T 1-0)- -, (undirected)

c- % +(1—-c¢) % (directed)

RE )

2m

RNE

Sl

1
(l+ z adj(x))

x€adj(u)

Page 20



Vertex selection probability (bias)
» Note: in image d = k the degree of a node

d 24 Random Walk (RW)
d Graph traversal techniques:
- DFS
- Forest Fire
- Snowball

|

Metropolis-Hastings Random Walk (MHRW)
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Full access neighbor correlations

v

Using all methods the clustering coefficient will be wrong

v

This is because the triangles are missing, and have low
probability
» Solution: Induction

» Include links between sampled nodes
» Partial induction

» Include links between sampled nodes With probability p
» Note: nomenclature

» jnduced: all links between selected nodes
» incident: all edges between nodes of selected links
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Samples: 25% of the nodes

original random node

random edge pagerank
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Samples: 25% of the nodes

original random edge

random edge w. induction random.edge w. partial
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Samples: 25% of the nodes

original random walk

Metropolis Hastings Shortest path
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Example bias

BA PPI AS arXiv

Degree Exponent T
Average Path Length | T 7
=

Betweenness
Assortativity
Clustering Coefficient | = =

G ) e
— ||+
—| ==l

Lee et al (2006): Entries indicate direction of bias for induced subgraph
(red), incident subgraph (green), and snowball (blue) sampling.

Eric D. Kolaczyk Dept of Mathematics and Statistics, Boston University
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Sampling by ICT data
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» ICT data: Samples society by a communication channel
> Knowledge is always partial

» data is temporal
» data displays part of the structure

» All sampling process alters the network structure.

» Main question: To what extent partial data can be use to
describe the original system?



ICT data: degree distribution
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Dunbar number: 150
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Dunbar number vs. ICT degree distribution

» Do we know anyone who has one single acquaintance?

» This must have been the most frequent case!

/ Personal network (~150)

/ Active / close network (~50)

Sympathy group (~15)
Support clique (~5)
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ICT data: assortativity
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ICT data: assortativity

» Different system, similar curve!
» What do they show?
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Social network and ICT data: Multiplex network
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ICT data

» ICT data is always partial

v

Most of the people do not live all their life in an online service
(though we all know some who does)

» There is also a strong time factor (we need time to fully adapt
a service)

v

There is also personnel preference

» Certain communication channels are not apt for certain tasks

Page 34



ICT data: Observations

» Degree distribution
> It is always decreasing
» Can it be reality?
> Assortativity
» Increasing
» Shape looks universal. Why?
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ICT
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data: Observations
» Degree distribution

> It is always decreasing

» Can it be reality?

» Remark that experienced/enthusiastic users have a peaked

degree distribution
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ICT data model
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Agents use the ICT systems to communicate
Agents may use g different communication channel

Each agent i has a personal preference £ for channel «
Agents i and j want to communicate, which channel to use?

> One's favorite? Of course not! (I may write an email to my
son and he will read in a week time, it is event worse if he tries
to chat with me over Skype)

» So we use the least uncomfortable:

min, (£, f;")

If communication channel (layer) « is studied the probability
of a link between users i and j is

P = min(f?, £%)

Let us drop o and focus on a single communication channel



ICT data model for a communication channel
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» We start from a surrogate network (can be anything)
» Each agent / has a personal preference f; for the given channel

> f; is taken from a decreasing probability distribution e.g.

1
P(f) = ge*f/fo

» Links between agents / and j are kept with probability

pij = min(f;, 6)



ICT data model for a communication channel
» Analytic solution:
> 1

P(k) =Y Po(K)——<1/ o \(k+1,K —k+1)
2 Py () K
where Ix(a, b) is the regularized beta function.
-1
10 E a'nalysis RR ——
analysis ER
simulaton RR =
simulation ER  ®
102 }
§ fy=0.2 f,=0.3
103 |
107 - - - -
0 10 30 40 50 60

Page 39



ICT data model: degree distribution

» Degree distribution changes from peaked to a monotonously

decreasing one
» Devoted users have peaked degree distribution

» Surrogate network ER with (k)=150
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ICT data model: assortativity
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Sampled Social network
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ICT data model: message

ICT data is a biased sampling of the original network
» Properties may be results of the sampling/link selection
process
network

Original features may be totally invisible

Experienced users in data are more similar to the original
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