Complex networks

Hierarchy, core-periphery

Janos Torok

Department of Theoretical Physics

May 23, 2023

Page 1



Mesoscopic structures

» Communities
» Core-periphery
> Layers
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Hierarchy

» Greek: hierarhia (tepapxia) "rule of a high priest" from
hierarkhes (tepapxn() "leader of the sacred rites"

» Used first for the word in the 5th—6th centuries for both
celestial hierarchy and the ecclesiastical hierarchy by
Pseudo-Dionysius the Areopagite

» In English 19th century
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Catholic Church

» Misconception:

pope.
_ Cardinals
_ Archbishops
o Eshees
e
L cahies
» Actual hierarchy:
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Army

» This may be the flow of commands but does not represent
interactions and flow of info.
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Hierarchy of needs

morality,
creativity,
spontaneity,
problem solving,
lack of prejudice,
eptance of faci

Self-actualization

self-esteem,
confidence, achievement,
Esteem respect of others, respect by others

/ friendship, family, sexual intimacy \

security of body, of employment, of resources,
of morality, of the family, of health, of property

Safety

Physiological
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Nested hierarchy: Evolution

Classifying life (Figure 1.8)

Animalia

= Mammalia
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Social hierarchy

The Ri:h




Social hierarchy

Seurce: Barry K. Beyer et al., The Werld Around Us: Eastern Hemisphere, MachMillan Publmh
(adap
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Animal hierarchy: Sorry :-)

Wolf Pack Hierari:—ﬂV

Voice Male
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Animal hierarchy

Alpha

Shaman
Swear
Drefault Adulef
Samma
I
Adolescent
wagabond

Lone Wolf
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Benefit of hierarchy
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» Evolutionary benefit:

>
>
>
>

>

Selects the fittest and gives highest chance to reproduce
Increases efficiency to solve tasks for the group

Positive feedback loop: Getting better access to resources
strengthens position

Complex tasks need organization of work (c.f. flight of a
swarm, attacking a big animal, etc.)

The drive of lower rank to become upper rank gives a vivid
dynamics, which accelerates natural selection.

» Dominance vs. prestige

» Power vs. status

» Status hierarchy vs. decision hierarchy

» Hierarchies are ubiquitous in human society



Hierarchy
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» |s hierarchy a widespread feature of complex systems
organization?
» What types of hierarchies do exist?

» Are hierarchies the result of selection pressures or, conversely,
do they arise as a by-product of structural constraints?

» How to detect hierarchy?



Types of hierarchy

» Order hierarchy

Il B o
® © @®© =—> O-0-0—-®

» Nested hierarchy
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Direction of hierarchy in real systems
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Pigeon flocks (Nagy,
.. Vicsek Nature, 2013)

10 birds with GPS
recorder

Free flight and homing

Correlation in pairwise
velocity offset by

Time delay of maximal
correlation indicates who
is following who
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Pigeon flocks
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Pigeon hierarchy: homing efficiency?
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> Multiple flock flight

Mean distance, d; (m) 4 T
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Pigeon hierarchy: homing efficiency?
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» |s there any correlation between homing efficiency and

leadership?
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Pigeon hierarchy: homing efficiency or speed?
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leadership?

» |s there any correlation between homing efficiency/speed and
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Random scale-free graph as null model

» Start with a configuration model with given degree distribution
» Maximally hierarchical: Connect nodes with decreasing k

» Maximal anti-hierarchical: Node with the highest degree is
connected to the lowest degree, observing that the network
should remain connected

» Random: What the word says

Maximally hierarchical Random  Maximal anti-hierarchical

a) b) c)
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Directed Acyclic Graphs (DAG)

Directed graph
Contains no cycles (no path returns to the same node)

Obtaining a DAG from any directed graph

vvyYyy

Replace each cycle with a single node

g e

» Node can be weighted a; sum of the nodes in the cycle (node
weighted condensed graph, or DAG)

= EE e
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Direction of hierarchy: Main measures

Deviation from perfect hierarchy
> Treeness: T

» Feedforwardness: F
» Orderability: O

C D
X g
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0 v Higys:
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Orderability
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» Fraction of nodes not part of a cycle
» O = 4/7 for the following example:

'\b.&/* ’\t) o

°
[
)

» Other def: fraction of nodes with weight 1 in the node
weighted condensed graph

» O = 4/8 for the following example:

T T e



Feedforwardness

> M: set of maximal nodes, without incoming links in DAG

» u: set of minimal nodes, without outgoing links in DAG

» m; € IN: (set of) path(s) going from a maximal node to a
minimal one

» Calculate the ratio of the length of the path and the sum of
node strength along it:

» For the sample F(7;) = 4/7
» Feedforwardness F average for all paths for all layers. (Path is
always starting from a maximal node)
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» Start from DAG
» Remove all nodes with no outgoing nodes. They are layer one
» Continue. This is normal (backward) layering
» Forward layering is by removing nodes with no incoming links
“s . @1
Wy &
wa Wa w3

.\o : -
“ ®

» Feedforwardness is defined on the backward layering (good
question why?)

» O and F are not independent
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Treeness

» Calculate uncertainty of paths both forwards and backwards

» endpoint « has an uncertainty of 5, 5 has 1

A

» endpoint 3 has an uncertainty of 5, a has 1

SR

a f a
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Treeness
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v

Calculate uncertainty of paths both forwards and backwards
Forward entropy: For each starting node

Calculate the number of probability of starting towards a given
neighbor (1/k?!")

Calculate the the uncertainty from the from the chosen
neighbor node.

Multiply the two, this is P(mx|v;)

Sum up the entropy normalized by the number of starting

points
1
Hf = _W Z P(wk|v,-) Iog P(ﬂ'k‘v,')

T, Vi

Do it also for backwards



Calculating measures: an example

» DAG condensation and layers:

1. Obtaining the node-weighted condensed graph

Criginal (D Node-weighted
graph condensed
»@ |77
condensation G
2. Graph layering
Forward layering Backward layering
G Gl? 6y
=1 i=1
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Calculating measures: an example

Treenness
Computation of entropies by layers

%(log 1 + ¥log 2+ ¥log 2)_L4(Y4log 4 +14log 4 + Lslog 2)

RETILY )

H{G)= 0.5 HyG)=1.5

14llog 1) Hilog1)  %llog1 +log 1) ¥(5log 2+ Ylog 2)

% 9] skee) [ W)

H{G)=H{G)=0  H(G)=0 Hy(Gy)=1
Trenness computation
ot o T (A6) +2(AG)+RG)))
max{He, Hy} T=14(-0.66 + 0 - 1)=-0.55

Feedforwa rd ness Orderability
HMu (Gl) =S L

Y ...
v v o T

F=14(3/6+3/6+2/2) + 14 (2/5 + 2/5)=0.56
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Hierarchy measures: The TOF space
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Hierarchy measures: The TOF space

Random network results
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The TOF space: examples

T>0,F€(0,1),0~09
Gene rigulatory networks (GRN)

B

T>0,F~050=~05
ecological webs

?

~0.F%0,0~05
mnnu\um and language

Ocellular

lectronic circuits (TECH)

W social

Mcitations

D Software (TECH)

EGRNs (GRN)

M Word Corpora (LANG)

M Kinase network

WFood Webs (ECO)
Ownership

enealogy

Fig.2. The morphospace of possible hierarchies Q. (A) Different morphologies and their respective location withins Q (Fig 1). Green icons represent unlikely
configurations (see S/ Appendix for more information). (B and C) The occupation of Q by an ensemble of random models. This set includes Erdés-Rényi (ER)
graphs with different sizes (100, 250, and 500) and average degrees (k) (see color bar). Symbols are proportional to network size. (C) Morphospace occupation

of Callaway’s network model overlapped with the ER ensemble as a reference. Three network sizes (100, 250, and 500) and four connectivities ((k)=2,4,6,8) -
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Other methods

» Example: email network
1. number of emails
average response time
response score
number of cliques
raw clique score
weighted clique score
degree centrality
clustering coefficient
mean of shortest path length from a specific vertex to all
vertices in the graph
10. betweenness centrality
11. Hubs-and-Authorities importance

LN REWN

» Give score
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Other methods

» Example: email network

> Give score
1. Rank users from most important to least important
2. Group users which have similar social scores and clique
connectivity
3. Determine n different levels (or echelons) of social hierarchy
within which to place all the users. This is a clustering step,
and n can be bounded.
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The Enron email network example
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Figure 1: Enron North American West Power Traders Extracted Social Network
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Mesoscopic structures

» Communities

» Core-periphery

> Layers
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Core-periphery: E.g. Internet routing
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1990:

Core-periphery: E.g. Bank network

2007:

N



Core-periphery: E.g. Subway network

G

T

INLITHI o i

Page 40



Core-periphery, onion structures: adjacency matrix

Community Core-periphery multiple Core-periphery

(@) (b) ()
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Multiple Core-periphery: e.g. Zakhary
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Core-periphery: Simple synthetic example
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Core: Definition

» Core: part with high
centrality

» Threshold on
centrality

» |s it enough?
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Core: Definition
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Many ways to define densely connected parts in a network:

Name of dense Definition References
network
structure
Clique a complete subgraph of size k, where complete [36,37]
means that any two of the k elements are connected
with each other
k-clan a maximal connected subgraph having a subgraph- [37-39]
diameter < k, where the subgraph-diameter is the
maximal number of links amongst the shortest
paths inside the subgraph connecting any two
elements of the subgraph
k-club a connected subgraph, where the distance between [37-39]
elements of the subgraph < k, and where no further
elements can be added that have a distance < k from
all the existing elements of the subgraph
k-clique a maximal connected subgraph having a diameter < [37-40]

k, where the diameter is the maximal number of
links amongst the shortest paths (including those
outside the subgraph), which connect any two
elements of the subgraph




Core: Definition

k-clique
community

a union of all cliques with k elements that can be
reached from each other through a series of
adjacent cliques with & elements, where two
adjacent cliques with & elements share -1 elements
(please note that in this definition the term k-clique
is also often used, which means a clique with k
elements, and not the k-clique as defined in this set
of definitions; the definition may be extended to
include variable overlap between cliques)

[41.42]

k-component

a maximal connected subgraph, where all possible
partitions of the subgraph must cut at least & edges

[43]

k-plex

a maximal connected subgraph, where each of the n
elements of the subgraph is linked to at least n-k
other elements in the same subgraph

[37.44]

strong LS-set

a maximal connected subgraph, where each subset
of elements of the subgraph (including the
individual elements themselves) have more
connections with other elements of the subgraph
than with elements outside the subgraph

[37.45]
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Core: Definition
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LS-set

a maximal connected subgraph, where each element
of the subgraph has more connections with other
elements of the subgraph than with elements
outside of the subgraph

[37.45,46]

lambda-set

a maximal connected subgraph, where each element
of the subgraph has a larger element-connectivity
with other elements of the subgraph than with
elements outside of the subgraph (where element-

connectivity means the minimum number of
elements that must be removed from the network in
order to leave no path between the two elements)

[37.47]

weak (modified)
LS-set

a maximal connected subgraph, where the sum of
the inter-modular links of the subgraph is smaller
than the sum of the intra-modular edges

[37.45]

k-truss or k-
dense subgraph

the largest subgraph, where every edge is contained
in at least (k-2) triangles within the subgraph

[48-51]

k-core

a maximal connected subgraph, where the elements
of the subgraph are connected to at least k other
elements of the same subgraph; alternatively: the
union of all k-shells with indices greater or equal &,
where the k-shell is defined as the set of
consecutively removed nodes and belonging links
having a degree < k

[37.4552]

Table after Csermely et al. 2013



Core: Discrete definition

» Borgatti-Everett
» Define Core: C;, i € [1, N]

1 if / € core
C = .
0 otherwise

» eg C=1{0,1,0,1,1,1,0,0,0,0,0}, where 1 stands for core
nodes

> Ci= GG

» Maximize the overlap between Cj; and the adjacency matrix

E A,'J'C,'j = Imax
i
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Core: Discrete definition

» Borgatti-Everett

» Maximize the overlap between Cj; and A;

= .

==
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Core: Modified discrete definition
» Define Core: C;, i € [1, N]

C — {1 if 7 € core

0 otherwise

» Let s={0,a,1} a three dimensional vector with s(0)=0,
s(1)=a, s(2)=1

> Cj=s(Ci+G)

> Minimize

Z (Aj — C,--)2 = min

ij,i#j

*ﬁ

o~
=
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Core: Modified discrete definition

o™
=

» Minimize
Z (A,J — C,")2 = min
ij,i#j
» Either use standard stochastic optimization
» Or use implicit iterative method:

Zj,i;éj(Aij - Ci')2

C =
| Yijiz G
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Core: Modified continuous method

Rombach et al.
Core is never so disjoint

Instead of a step function use a smooth one: g(/)

vvyyy

Use two parameters

» « sharpness (o = 1 previous case with step function)
» [ relative size of the core

» Many such functions e.g.

£~ bt (22 2

2 11—« 2

» [nstead:

1

g(i) = 1+ exp[—(i — NB)]tan(am/2)

» For latter, g(i) = 0.5 depends on N, «, (No comment. ..
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Core: Modified continuous method

g(i)

g(i) = %erf </3_’/’V> +%

e
B 1
1+ exp[—(i — NB)]tan(ar/2)

(D= =00

oo

NIy

POOO9
AESSSES

025 erf:OC‘=0. s
5 01,
/ R: N=100 01,
0 = / R: N=25 05,
0 0.2 04 0 0.
i/N
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Core: Methods/score

1. method

> Start from («, 5)
> Maximize Ro 5 = ), AjGj
» Then find optimal (a*, 5*)

2. method

> Use a two dimensional set of (a, /)
> Maximize Ry 5 = ) ; AjCj for each (a, ) pair
> Aggreagate results

! .
cs(i) =5 > RasCas(i)
aB

where Z = max; Zaﬂ Re,3Ca (i)
» This gives a core score for each node

Page 54



Core score example: network scientists

NNS2006 Node Core score | NNS2010 Node Core score
Barabasi, A.-L. 1.00 Barabdsi, A.-L. 1.00
Oltvai, Z. N. 0.97 Newman, M. E. J. 0.94
Jeong, H. 0.96 Pastor-Satorras, R.  0.93
Vicsek, T. 0.95 Latora, V. 0.93
Kurths, J. 0.88 Arenas, A. 0.93
Neda, Z. 0.87 Moreno, Y. 0.92
Ravasz, E. 0.86 Jeong, H. 0.92
Newman, M. E. J. 0.86 Vespignani, A. 0.91
Pastor-Satorras, R.  0.85 Diaz-Guilera, A. 0.90
Schubert, A. 0.85 Guimera, R. 0.90
Boccaletti, S. 0.85 Watts, D. J. 0.89
Vespignani, A. 0.84 Vazquez, A. 0.89
Farkas, I. 0.84 Viczek, T. 0.89
Derenyi, I 0.83 Amaral, L. A. N. 0.89
Holme, P. 0.82 Solé, R. V. 0.88
Crucitti, P. 0.81 Albert, R. 0.87
Albert, R. 0.80 Kahng, B. 0.87
Schnitzler, A. 0.80 Boccaletti, S. 0.86
Solé, R. 0.80 Oltvai, Z. N. 0.86
Rosenblum, M. 0.79 Barthelemy, M. 0.85
Tomkins, A. 0.79 Kurths, J. 0.84
Moreno, Y. 0.78 Fortunato, S. 0.84
Latora, V. 0.78 Marchiori, M. 0.83
Rajagopalan, S. 0.78 Kertész, J. 0.83
Raghavan, P. 0.77 Caldarelli, G. 0.82
Pikovsky, A. 0.76 Dorogovtsev, S. N. 0.81
Kahng, B. 0.75 Boguna, M. 0.80
Diaz-Guilera, A. 0.74 Goh, K. I. 0.80
Vazquez, A. 0.74 Crucitti, P. 0.80
Kim, B. 0.74 Strogatz, S. H. 0.80
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Core score: Benchmarks

» The good old Block model:

» CP(N,d,p, k): N number of nodes, dN in the core, and other
parameters such that:

pk? ke
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Core score: Comparison

» Yet another centrality measure?

1 s apeene
I ‘e
%0.95' LY M L4
§ 0.9 T
g - PR
© 0.85F . 4 °
2 N
g 081 5]
5
0.751
g ]
S 07 : ® Closeness
5 $ Betweenness
g 065¢ ' 4 MINRES
E 06 N v Degree
i + PageRank
0551 . LJ = Aggregate Core Score
0.5 L L L L ;
12 14 16 18 2
k

CP(100,0.5,0.25, k)

Page 57



Metro lines

Page 58

city P (millions) Ny, N B (%)
Beijing 19.6 9 104 39
Tokyo 12.6 13 217 43
Seoul 10.5 9 392 38
Paris 9.6 16 299 38
Mexico City 8.8 11 147 39
NYC 8.4 24 433 36
Chicago 8.3 11 141 71
London 8.2 11 266 47
Shanghai 6.9 11 148 61
Moscow 5.5 12 134 71
Berlin 3.4 10 170 60
Madrid 3.2 13 209 46
Osaka. 2.6 9 108 43
Barcelona 1.6 11 128 38




Metro lines

Number of stations
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Random walk based methods

» The probability that a walker at node / jumps to j
Wij

Dk Wik

with wj; being the strength of link ij

mij

» The probability of finding the walker in node i at time t is
mi(t)
» The stationary solution for the probability distribution of
finding a walker at node i is
o

Zj"f

m =

where o; = >, wj;
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Random walk based methods: persistence probability

> Let s be a partition of the network, then the probability that
the walker is in part d if it was in part ¢ the step before:

ZIGSCJESd Timjj
Ued =
ZIGSC iy
Wi
>k Wik
» Let us define a, = u,, the persistence probability, as
7, = (1 — a,) 7! is the escape time from part r.

mj =
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Random walk based method: Algorithm

Page 62

v

vvyYyy

Select at random a node i among those with minimal strength
Set Pi={1} and hence a;=0

In the following steps chose the node (or random one from
nodes) having

_ Dijepyy Timij+ X iep, , (mim)ih 4+ wpmp;)
QK= min

heN\Pk,]_ ZI’GP/(7]_ i + Th

The resulting «; is the CP profile.
For complete graph aj=(k —1)/(N — 1)
For star graph: a;=0 for i € [1, N — 1], and ay=1

Centralization:



Core-periphery profile, centralization
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Core-periphery profile, centralization: Example
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Comparison

> Biggest outlier: Mexico, huge amount of trade but only with
USA — not central.
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Comparison

» Strong correlation with some outliers

» This anomaly indicates peculiarities of some specific nodes

Netscience

Airports
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K-shell decomposition

Page 67

» Remove nodes having one link

» Repeat until there are no nodes with k=1

» Do it now with k=2

» Now with three, etc. Four shalt thou not count, nor either
count thou two, excepting that thou then proceed to three.




Multiple cores: Algorithm
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» Rerank nodes based on local connection to existing core
» Calculate region density for each node
» Find core sets based on thresholds

» Look for periphery classes

Single core Multiple core Community structure




Multiple cores: Karate club
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Multiple cores: US polblogs

Examples from: Xiang et al. 2016
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