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Mesoscopic structures

I Communities
I Core-periphery
I Layers
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Hierarchy
I Greek: hierarhia (ιεραρχία) "rule of a high priest" from

hierarkhes (ιεραρχηζ) "leader of the sacred rites"
I Used first for the word in the 5th–6th centuries for both

celestial hierarchy and the ecclesiastical hierarchy by
Pseudo-Dionysius the Areopagite

I In English 19th century
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Catholic Church

I Misconception:

I Actual hierarchy:
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Army
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Army

I This may be the flow of commands but does not represent
interactions and flow of info.
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Hierarchy of needs
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Nested hierarchy: Evolution
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Social hierarchy
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Social hierarchy
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Animal hierarchy: Sorry :-)
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Animal hierarchy
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Benefit of hierarchy

I Evolutionary benefit:
I Selects the fittest and gives highest chance to reproduce
I Increases efficiency to solve tasks for the group
I Positive feedback loop: Getting better access to resources

strengthens position
I Complex tasks need organization of work (c.f. flight of a

swarm, attacking a big animal, etc.)
I The drive of lower rank to become upper rank gives a vivid

dynamics, which accelerates natural selection.

I Dominance vs. prestige
I Power vs. status
I Status hierarchy vs. decision hierarchy
I Hierarchies are ubiquitous in human society
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Hierarchy

I Is hierarchy a widespread feature of complex systems
organization?

I What types of hierarchies do exist?
I Are hierarchies the result of selection pressures or, conversely,

do they arise as a by-product of structural constraints?
I How to detect hierarchy?
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Types of hierarchy

I Order hierarchy

A B C D A B C D

I Nested hierarchy

A

B

C D E

FG

H

I

J

A B C D E F G H I J

I Flow hierarchy
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Direction of hierarchy in real systems

I Pigeon flocks (Nagy,
. . . Vicsek Nature, 2013)

I 10 birds with GPS
recorder

I Free flight and homing
I Correlation in pairwise

velocity offset by τ
I Time delay of maximal

correlation indicates who
is following who
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Pigeon flocks

I Single flock flight
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Pigeon hierarchy: homing efficiency?

I Multiple flock flight
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Pigeon hierarchy: homing efficiency?

I Is there any correlation between homing efficiency and
leadership?
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Pigeon hierarchy: homing efficiency or speed?

I Is there any correlation between homing efficiency/speed and
leadership?
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Random scale-free graph as null model
I Start with a configuration model with given degree distribution
I Maximally hierarchical : Connect nodes with decreasing k

I Maximal anti-hierarchical : Node with the highest degree is
connected to the lowest degree, observing that the network
should remain connected

I Random: What the word says

Maximally hierarchical Random Maximal anti-hierarchical
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Directed Acyclic Graphs (DAG)

I Directed graph
I Contains no cycles (no path returns to the same node)
I Obtaining a DAG from any directed graph
I Replace each cycle with a single node

I Node can be weighted αi sum of the nodes in the cycle (node
weighted condensed graph, or DAG)
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Direction of hierarchy: Main measures
I Treeness: T
I Feedforwardness: F
I Orderability: O

Deviation from perfect hierarchy
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Orderability

I Fraction of nodes not part of a cycle
I O = 4/7 for the following example:

I Other def: fraction of nodes with weight 1 in the node
weighted condensed graph

I O = 4/8 for the following example:
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Feedforwardness
I M: set of maximal nodes, without incoming links in DAG
I µ: set of minimal nodes, without outgoing links in DAG
I πi ∈ Π: (set of) path(s) going from a maximal node to a

minimal one
I Calculate the ratio of the length of the path and the sum of

node strength along it:

F (πi ) =

∑
vi∈πi 1∑
vi∈πi αi

I For the sample F (πi ) = 4/7
I Feedforwardness F average for all paths for all layers. (Path is

always starting from a maximal node)
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Layers

I Start from DAG
I Remove all nodes with no outgoing nodes. They are layer one
I Continue. This is normal (backward) layering
I Forward layering is by removing nodes with no incoming links

I Feedforwardness is defined on the backward layering (good
question why?)

I O and F are not independent
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Treeness

I Calculate uncertainty of paths both forwards and backwards
I endpoint α has an uncertainty of 5, β has 1

I endpoint β has an uncertainty of 5, α has 1
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Treeness

I Calculate uncertainty of paths both forwards and backwards
I Forward entropy: For each starting node
I Calculate the number of probability of starting towards a given

neighbor (1/kouti )
I Calculate the the uncertainty from the from the chosen

neighbor node.
I Multiply the two, this is P(πk |vi )
I Sum up the entropy normalized by the number of starting

points

Hf = − 1
|M|

∑
πk ,vi

P(πk |vi ) logP(πk |vi )

I Do it also for backwards
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Calculating measures: an example

I DAG condensation and layers:
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Calculating measures: an example
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Hierarchy measures: The TOF space
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Hierarchy measures: The TOF space

Random network results
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The TOF space: examples
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Other methods

I Example: email network
1. number of emails
2. average response time
3. response score
4. number of cliques
5. raw clique score
6. weighted clique score
7. degree centrality
8. clustering coefficient
9. mean of shortest path length from a specific vertex to all

vertices in the graph
10. betweenness centrality
11. Hubs-and-Authorities importance

I Give score
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Other methods

I Example: email network
I Give score

1. Rank users from most important to least important
2. Group users which have similar social scores and clique

connectivity
3. Determine n different levels (or echelons) of social hierarchy

within which to place all the users. This is a clustering step,
and n can be bounded.
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The Enron email network example
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Mesoscopic structures

I Communities
I Core-periphery
I Layers
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Core-periphery: E.g. Internet routing
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Core-periphery: E.g. Bank network
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Core-periphery: E.g. Subway network
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Core-periphery, onion structures: adjacency matrix

Community Core-periphery multiple Core-periphery
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Multiple Core-periphery: e.g. Zakhary
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Core-periphery: Simple synthetic example
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Core: Definition

I Core: part with high
centrality

I Threshold on
centrality

I Is it enough?
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Core: Definition

Many ways to define densely connected parts in a network:
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Core: Definition
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Core: Definition

Table after Csermely et al. 2013
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Core: Discrete definition

I Borgatti-Everett
I Define Core: Ci , i ∈ [1,N]

Ci =

{
1 if i ∈ core
0 otherwise

I e.g. C = {0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0}, where 1 stands for core
nodes

I Cij = CiCj

I Maximize the overlap between Cij and the adjacency matrix∑
ij

AijCij = max
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Core: Discrete definition

I Borgatti-Everett
I Maximize the overlap between Cij and Aij
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Core: Modified discrete definition
I Define Core: Ci , i ∈ [1,N]

Ci =

{
1 if i ∈ core
0 otherwise

I Let s = {0, a, 1} a three dimensional vector with s(0)=0,
s(1)=a, s(2)=1

I Cij = s(Ci + Cj)
I Minimize ∑

ij ,i 6=j

(Aij − Cij)
2 = min
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Core: Modified discrete definition

I Minimize ∑
ij ,i 6=j

(Aij − Cij)
2 = min

I Either use standard stochastic optimization
I Or use implicit iterative method:

Ci =

∑
j ,i 6=j(Aij − Cij)

2∑
ij ,i 6=j C

2
ij
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Core: Modified continuous method
I Rombach et al.
I Core is never so disjoint
I Instead of a step function use a smooth one: g(i)
I Use two parameters

I α sharpness (α = 1 previous case with step function)
I β relative size of the core

I Many such functions e.g.

g(i) =
1
2
erf
(
β − i/N

1− α

)
+

1
2

I Instead:

g(i) =
1

1 + exp[−(i − Nβ)] tan(απ/2)

I For latter, g(i) = 0.5 depends on N, α, (No comment. . . )
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Core: Modified continuous method

g(i) =
1
2
erf
(
β − i/N

1− α

)
+

1
2

g(i) =
1

1 + exp[−(i − Nβ)] tan(απ/2)
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Core: Methods/score

1. method
I Start from (α, β)
I Maximize Rα,β =

∑
ij AijCij

I Then find optimal (α∗, β∗)

2. method
I Use a two dimensional set of (α, β)
I Maximize Rα,β =

∑
ij AijCij for each (α, β) pair

I Aggreagate results

CS(i) =
1
Z

∑
αβ

Rα,βCα,β(i)

where Z = maxi
∑
αβ Rα,βCα,β(i)

I This gives a core score for each node
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Core score example: network scientists
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Core score: Benchmarks

I The good old Block model:
I CP(N, d , p, k): N number of nodes, dN in the core, and other

parameters such that:
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Core score: Comparison

I Yet another centrality measure?

CP(100, 0.5, 0.25, k)
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Metro lines
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Metro lines

Number of stations
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Random walk based methods

I The probability that a walker at node i jumps to j

mij =
wij∑
k wik

with wij being the strength of link ij

I The probability of finding the walker in node i at time t is
πi (t)

I The stationary solution for the probability distribution of
finding a walker at node i is

πi =
σi∑
j σj

,

where σi =
∑

j wij
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Random walk based methods: persistence probability

I Let s be a partition of the network, then the probability that
the walker is in part d if it was in part c the step before:

ucd =

∑
i∈sc ,j∈sd πimij∑

i∈sc πi

mij =
wij∑
k wik

I Let us define αr = urr the persistence probability, as
τr = (1− αr )−1 is the escape time from part r .
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Random walk based method: Algorithm

I Select at random a node i among those with minimal strength
I Set P1={1} and hence α1=0
I In the following steps chose the node (or random one from

nodes) having

αk = min
h∈N\Pk−1

∑
ij∈Pk−1

πimij +
∑

i∈Pk−1
(πim)ih + πhmhi )∑

i∈Pk−1
πi + πh

I The resulting αi is the CP profile.
I For complete graph αi=(k − 1)/(N − 1)

I For star graph: αi=0 for i ∈ [1,N − 1], and αN=1
I Centralization:

C = 1− 2
N − 2

N−1∑
k=1

αk
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Core-periphery profile, centralization
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Core-periphery profile, centralization: Example
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Comparison
I Biggest outlier: Mexico, huge amount of trade but only with

USA → not central.
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Comparison

I Strong correlation with some outliers
I This anomaly indicates peculiarities of some specific nodes
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K-shell decomposition
I Remove nodes having one link
I Repeat until there are no nodes with k=1
I Do it now with k=2
I Now with three, etc. Four shalt thou not count, nor either

count thou two, excepting that thou then proceed to three.
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Multiple cores: Algorithm

I Rerank nodes based on local connection to existing core
I Calculate region density for each node
I Find core sets based on thresholds
I Look for periphery classes

Single core Multiple core Community structure
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Multiple cores: Karate club
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Multiple cores: US polblogs

Examples from: Xiang et al. 2016
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