# Complex networks Sampling

János Török

Department of Theoretical Physics

May 15, 2023

## Sampling Networks

- Why?: Performance, and time limitation
- Reason:
  - Actual limit in the resources
  - ► Test ideas fast
  - Limited access
  - Temporal access
- ► How?: Depends what you want, but always complicated

Based on the lecture of Mohammad Al Hasan, Nesreen K. Ahmed, Jennifer Neville, Purdue University, West Lafayette, IN

#### Network characteristics

- ► Task: Measure should give the same value on the sampled network than on original:
- Measure type:
  - ► Single node: e.g. degree distribution, average degree
  - Link correlations: e.g. centrality, assortativity, clustering
  - ▶ Mesoscopic correlations: e.g. community structure, motifs
- ▶ Different level of correlations require different approaches
- Single node properties are the easiest to retain



# Sampling scenarios

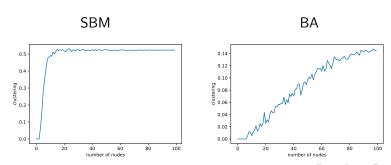
- ► Full access to the network
- Restricted access (through a collection of seed nodes)
- Streaming access (data not sampled is lost forever) (Not covered here)

# Full access, only nodal attributes

- Uniform node sampling
- Degree base random node sampling
- Random pagerank sampling
- ► Random edge sampling

# Random node sampling

- Uniform node selection
- Conserved quantities
  - Average degree
  - Average of any nodal attribute
  - ► Any function of nodal attributes (e.g. degree distribution)
- Quantities not conserved
  - Multi nodal correlations are systematically destroyed



# Degree based random node sampling

- ▶ Node selection is proportional to function  $\pi(k)$  of node degree
- Bias to nodes with higher degree
- Use case
  - Degree distribution is generally decreasing
  - Few large degree nodes are generally not selected by random node selection, for which measures have high error for large degrees
  - If degree distribution and  $\pi(k)$  is known sampled estimates can be corrected.
- Generally  $\pi(k) = k$



## Degree based random node sampling

- Very often conditional averages are calculated and contition is on degree, (e.g. assortativity)
- Select few nodes with each representative degree
- Problems:
  - ▶ High error for low degree nodes (e.g. error goes as  $\sim 1/\sqrt{k}$ ): oversample low degree nodes accordingly (rule of thumb same amount of cpu time for each bin)
  - Sproadic k values for large degree: allow range for large degree nodes anyway the error in degree will still be small
  - Feel free to drop irrelevant degrees (e.g. for humans 50 < k < 500)



# Pagerank based random node sampling

- Node selection is proportional to Pagerank probability  $dk_{in}/M + (1-d)/N$
- The previous two can be obtained as a special case with d=0 and d=1
  - Small degree nodes have tunable probability to be selected
  - Measured quantities can be transferred back to original system



# Random edge sampling

- Uniform edge selection
- ▶ A vertex is selected in function of the degree of the vertex *u*

$$P = 1 - (1 - \rho)^{k(u)}$$

- ▶ For  $\rho \to 0$ ,  $P(k) = \rho k$
- ▶ For  $\rho \ll 0$  bias is reduced
- Edge statistics are conserved
- Nodal statistics will be biased to high-degree vertices



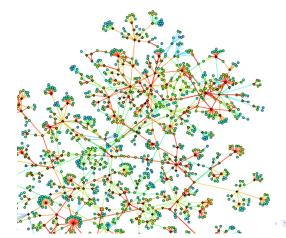
## Sampling under restricted access

- ► There are few (or 1) entry points
- No global property is known a priori
- Network supports crawling, neighbors of accessed nodes are known
- ► Graph traversal methods
  - Snowball sampling
  - ► Breadth-First Search
  - Depth-First Search
  - Forest fire
- Random walk based methods
  - Classic random walk
  - Random walk with restart
  - Markov Chain Monte Carlo using Metropolis-Hastings algorithm



# Snowball sampling

- Start from a seed
- ► Sample all links to neighbors
- ► (In some version this step is limited to *n* neighbors)
- ▶ Visit all neighbors and there also sample all links to neighbors
- Stop at desired level



## Snowball sampling

- Start from a seed
- Sample all links to neighbors
- ▶ Visit all neighbors and there also sample all links to neighbors
- Stop at desired level
- Advantage: simple, and long history in social science
- Problems:
  - Non random
  - Last layer has almost always degree 1
  - For large degree only very few layers can be sampled, very often two

## Snowball sampling: Variations

- Breadth-first Sampling:
  - Above version
  - Discover vertices at distance d before discovering any at distance d + 1
- Depth-first Sampling:
  - Discover farthest vertex along a chain
  - ▶ If there is no more than go back recursively
- Forest Fire Sampling
  - Neighbors of the current node are added with probability p
  - The above is repeated until some condition
  - Note the forest fire may go extinct before it reaches the desired number of nodes or depth
- ▶ n—Snowball sampling
  - For the each active node discover only *n* neighbors
  - A node can be chosen if it has not been visited before



#### Random walk

- Start from a seed
- Do a random walk
- All links to the visited node are discovered
- ► Biased towards high degrees
- Samples the current community much more than the rest of the network (can be a desired effect)

#### Random walk with restart

- Start from a seed
- Do a random walk
- All links to the visited node are discovered
- ► Biased towards high degrees
- ▶ With probability *d* jumps back to origin
- Samples the current community much more than the rest of the network, even more than simple random walk
- Could be useful if one wants a good sample of a community from an otherwise enormous network

# Markov Chain Monte Carlo using Metropolis-Hastings algorithm

- Correct the random walk bias
- ► Go to a node with probability depending on the degree of the target node
- Current node i, target node j

$$P(i \to j) = \min(k_i/k_j, 1)$$

- Thus we always go towards smaller degree nodes but only with probability  $k_i/k_j$  towards larger degree ones
- In theory this model gives uniform sampling of the nodes



## Horovitz-Thompson estimator

- ▶ Calculate the mean  $\mu$  of a quantity  $X_i$  over the finite set S of nodes.
- ▶ If sampling is unbiased of course we have

$$\mu = \frac{1}{|S|} \sum_{i \in S} X_i,$$

where |S| is the cardiality of the set S

- If there is a bias  $\pi_i$  for selecting node i (of course  $\pi$  can also be a function of X and other quantities)
- ► The Horovitz-Thompson estimator:

$$\mu_{HT} = \frac{1}{|S|} \sum_{i \in S} X_i / \pi_i$$



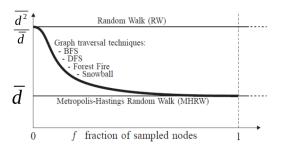
# Vertex selection probability (bias)

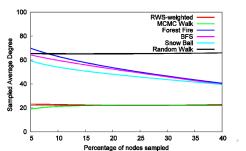
▶ Note: in image  $d \equiv k$  the degree of a node

| Method                       | Vertex Selection Probability, $\pi(u)$ $ V =n,  E =m,$                                                                                              |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| RN, MH-<br>uniform<br>target | $\frac{1}{n}$                                                                                                                                       |
| RDN,<br>RWS                  | $\frac{d(u)}{2m}$                                                                                                                                   |
| RPN,<br>RWJ                  | $c \cdot \frac{d_{in}(u)}{m} + (1-c) \cdot \frac{1}{n} \text{ (undirected)}$ $c \cdot \frac{d(u)}{2m} + (1-c) \cdot \frac{1}{n} \text{ (directed)}$ |
| RE                           | $ \begin{array}{c} 2m \\ \sim \frac{d(u)}{2m} \end{array} $                                                                                         |
| RNE                          | $\frac{1}{n}\left(1+\sum_{x\in adj(u)}\frac{1}{adj(x)}\right)$                                                                                      |

# Vertex selection probability (bias)

▶ Note: in image  $d \equiv k$  the degree of a node



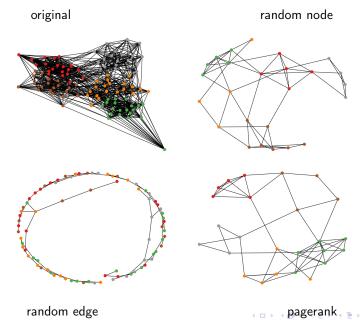


#### Full access neighbor correlations

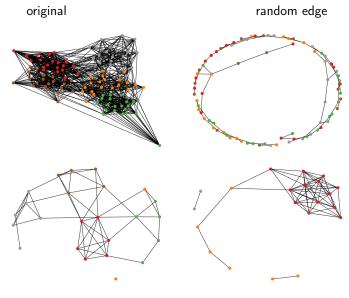
- Using all methods the clustering coefficient will be wrong
- This is because the triangles are missing, and have low probability
- ► Solution: Induction
  - Include links between sampled nodes
- Partial induction
  - ▶ Include links between sampled nodes With probability p
- Note: nomenclature
  - induced: all links between selected nodes (e.g. egocentric network)
  - incident: all edges between nodes of selected links



# Samples: 25% of the nodes



# Samples: 25% of the nodes

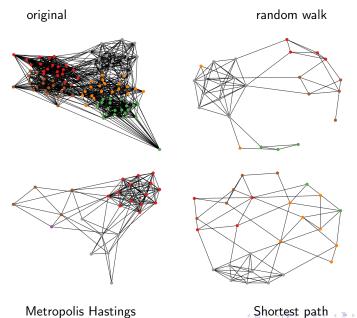


induction

random edge w. induction

random edge w. partial

# Samples: 25% of the nodes



## Example bias

|                        | ВА                             | PPI                            | AS                             | arXiv                              |
|------------------------|--------------------------------|--------------------------------|--------------------------------|------------------------------------|
| Degree Exponent        | $\uparrow \uparrow \downarrow$ | $\uparrow \uparrow =$          | = = \                          | $\uparrow \uparrow \downarrow$     |
| Average Path Length    | ↑ ↑ =                          | $\uparrow \uparrow \downarrow$ | $\uparrow \uparrow \downarrow$ | $\uparrow \uparrow \downarrow$     |
| Betweenness            | $\uparrow \uparrow \downarrow$ | $\uparrow \uparrow \downarrow$ | $\uparrow \uparrow \downarrow$ | = = =                              |
| Assortativity          | = = \                          | <b>=</b> = \                   | = = \                          | <b>=</b> = ↓                       |
| Clustering Coefficient | = = ↑                          | $\uparrow\downarrow\uparrow$   | $\downarrow\downarrow\uparrow$ | $\downarrow \downarrow \downarrow$ |

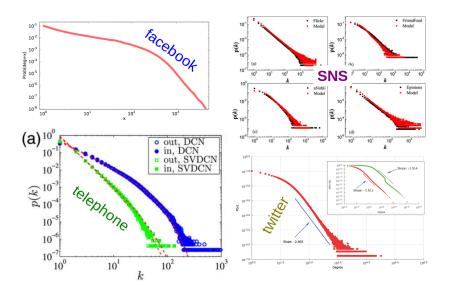
Lee *et al* (2006): Entries indicate direction of bias for induced subgraph (red), incident subgraph (green), and snowball (blue) sampling.

Eric D. Kolaczyk Dept of Mathematics and Statistics, Boston University

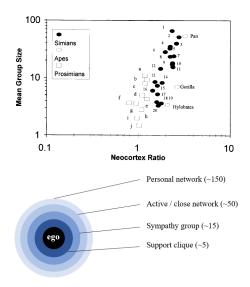
## Sampling by ICT data

- ▶ ICT data: Samples society by a communication channel
- Knowledge is always partial
  - data is temporal
  - data displays part of the structure
- ► All sampling process alters the network structure.
- Main question: To what extent partial data can be use to describe the original system?

# ICT data: degree distribution

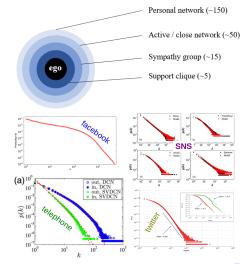


#### Dunbar number: 150

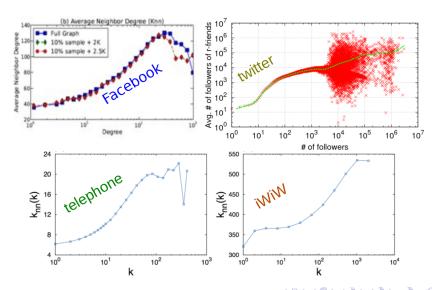


# Dunbar number vs. ICT degree distribution

- Do we know anyone who has one single acquaintance?
- ▶ This must have been the most frequent case!

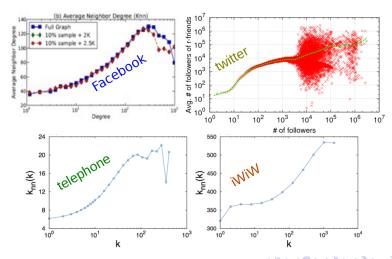


## ICT data: assortativity

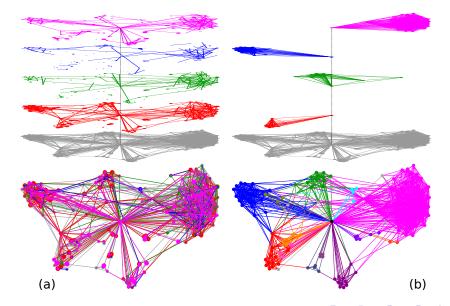


# ICT data: assortativity

- ▶ Different system, similar curve!
- ► What do they show?



# Social network and ICT data: Multiplex network

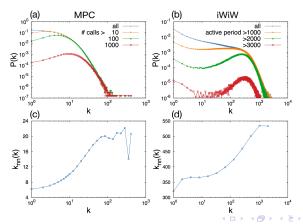


#### ICT data

- ICT data is always partial
- Most of the people do not live all their life in an online service (though we all know some who does)
- ► There is also a strong time factor (we need time to fully adapt a service)
- ► There is also personnel preference
- Certain communication channels are not apt for certain tasks

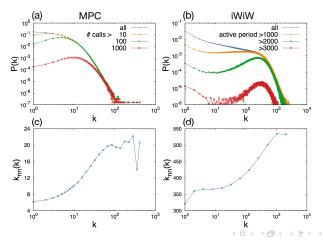
#### ICT data: Observations

- ► Degree distribution
  - ► It is always decreasing
  - ► Can it be reality?
- Assortativity
  - Increasing
  - ► Shape looks universal. Why?



#### ICT data: Observations

- Degree distribution
  - ► It is always decreasing
  - ► Can it be reality?
  - Remark that experienced/enthusiastic users have a peaked degree distribution



#### ICT data model

- Agents use the ICT systems to communicate
- Agents may use q different communication channel
- lacktriangle Each agent i has a personal preference  $f_i^{lpha}$  for channel lpha
- Agents i and j want to communicate, which channel to use?
  - One's favorite? Of course not! (I may write an email to my son and he will read in a week time, it is event worse if he tries to chat with me over Skype)
  - ► So we use the least uncomfortable:

$$\min_{\alpha} (f_i^{\alpha}, f_j^{\alpha})$$

▶ If communication channel (layer)  $\alpha$  is studied the probability of a link between users i and j is

$$p_{ij}^{\alpha} = \min(f_i^{\alpha}, f_j^{\alpha})$$

ightharpoonup Let us drop lpha and focus on a single communication channel



#### ICT data model for a communication channel

- We start from a surrogate network (can be anything)
- $\triangleright$  Each agent *i* has a personal preference  $f_i$  for the given channel
- $ightharpoonup f_i$  is taken from a decreasing probability distribution e.g.

$$P(f) = \frac{1}{f_0}e^{-f/f_0}$$

ightharpoonup Links between agents i and j are kept with probability

$$p_{ij} = \min(f_i, f_j)$$

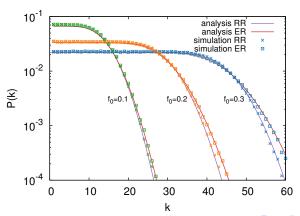


#### ICT data model for a communication channel

Analytic solution:

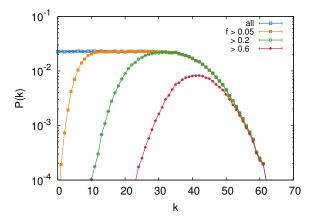
$$P(k) = \sum_{k'=0}^{\infty} P_0(k') \frac{1}{f_0(k'+1)} I_{\left(\frac{f_0}{1-f_0}\right)}(k+1, k'-k+1)$$

where  $I_x(a, b)$  is the regularized beta function.

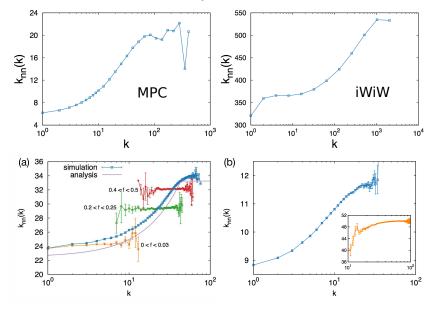


## ICT data model: degree distribution

- Degree distribution changes from peaked to a monotonously decreasing one
- Devoted users have peaked degree distribution
- ▶ Surrogate network ER with  $\langle k \rangle = 150$



## ICT data model: assortativity



Page 40

# ICT data model: message

- ▶ ICT data is a biased sampling of the original network
- Properties may be results of the sampling/link selection process
- Original features may be totally invisible
- Experienced users in data are more similar to the original network

