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Spreading on networks

» One of the most important problems on networks

» Also one of the real success
» This lecture:

» Advanced mean-field calculations
» Cascade models
» Spreading in temporal networks

Page 2



SIS: Comparison
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I[mmunization

» Epidemic threshold (complete graph/fully mixed state):

3 > 1 outbreak
Ro = ; =1 threshold
<1 localized

» The density of the immune vertices is g, then:

g'=p1-g)
» The threshold for networks
Bl-g) _ (K
I (k?)

» For infinitely large scale free network with v < 3 we get g =1

» For random immunization everybody must be vaccinated
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Threshold model
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v

Networks with average degree (k) = z
Nodes have threshold ¢;

If the number of active nodes in the neighborhood reach ¢;
then the node becomes active (too many friends have some
product | will also buy it)

Start from a small seed

If thresholds are sufficiently low cascades may propagate
through the whole system (size ~ O(N))

Watts, A simple model of global cascades on random networks (2002)



Threshold model: Phase diagram

» Top line: first order phase transition of cascades

» Bottom line: second order phase transition of network
percolation limit
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Fall of a social network site: Model
» Users leave due to exogenous effects (advertisements, news,
etc.):
» Here rate of leave increases with time as was the popularity of
the alternative site

» Users with low degree are more susceptible to global effects

» Users leave if their friends leave.
» Threshold model with threshold above 45%
> Leave is not immediate one needs time (7) to recognize friend

is inactive
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Percolation on networks (graphs)

» Network is defined by nodes and links

» Percolation gives us connected components

» Link removal percolation gives information about robustness,
and structure
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Percolation and attack on random networks

SNTeay
BESS

=8

» Failure: equivalent to percolation: remove nodes at random
> Attack: remove most connected nodes

Page 9




Error vs. attacks
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Percolation and attack on random networks

> Failure: equivalent to percolation: remove nodes at random
> Attack: remove most connected nodes
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Robustness
» Link/node removal percolation

» Here: random, and largest first
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» There is also weakest first
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Link removal percolation on networks

» Granovetter hypothesis: The strength of the weak ties
» Human communities have strong connections

» These communities are connected with weak ties

» Test the structures with Link removal percolation
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Link removal percolation on networks
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Robustness
» Resistant both against random and targeted attacks.
» Must have hubs to resist random attacks
» Small degree nodes should be interconnected so they remain
viable after removal of the hubs
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Robustness against attacks

» Malicious attacks target central nodes, hubs

v

Solution: central nodes should be connected

> Assortative mixing is preferred (high degree nodes are
connected between each other)

» (Barabasi-Albert is thus a bad example)

» Robustness measure:

1 N
R=5 . s(Q)
Q=1

» 5(Q) fraction of nodes in the largest connected cluster after
removing @ = gN nodes

» Optimize for R
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Onion structures

» Robustness measure:

1 N
R:NQZ::IS(Q)

» s(Q) fraction of nodes in the largest connected cluster after
removing Q = gN nodes
» Optimize R by only rewiring and keeping degree distribution
constant
» Onion structures are the most robust
> Assortative
» Layers with similar degree nodes

» Inter-layer connections

“0GRES/ARE LIKE ONIONS: 0GRES HAVE LAYERS
ONIONS! uy{:uuns...

£

{,s ”//

NOUGET 173 WEBOTH HAVETAYERS.".
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Onion structures

» Assortative

» Layers with similar degree nodes
» Inter-layer connections

In-layer edges

———— Between-layer edges




Chateau de Vincennes
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Flight route optimization
> Suppose weight of a link is defined as

wjj = djj/tj
where dj; is the distance, and t;; is the traffic between two
cities
» When more paths are possible the most economical is used:
C;; = min w,
i pGPZ !
lep
» Keep total traffic constant

» Function to be optimized is the average cost to pay to travel
from any node to any other

2
L= N(N—l)ZCij

i<j
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Flight route optimization

v

Check a small circle:
> Let us assume di = d(A,B) = d(B,C) > d(A.C) =d’

» Cost function (T is the average traffic between two cities):
2d+d’
Ly = =

» Cut connection (B, C). The new cost function

d+d
Lr= =7

< L4

» The optimal path is a tree!
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Tree model

P If it is known that the network is a tree task is easier:

d
Eu == bei

ecT te
where b, is the link betweenness centrality
» The optimal traffic

_ Tbed,
Y e Vbede

» The optimal traffic tree can then be obtained by minimizing

L= Vbede

ecT

L=> bidy

ecT
where 1 and v control the relative importance of distance
against topology as measured by centrality

te

» More generally
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Optimal traffic on networks
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» Exponential degree distribution

» Power law betweenness distribution
» Hierarchical organizations

> u=v=205




Optimal traffic on networks

(a)

(c)
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Search on graphs
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» Shortest path algorithm
» Many applications: e.g. Route planning
» Calculation of betweenness centrality
» Global information needed
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Dijkstra’s algorithm
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v

Find the shortest path from a source
Known: links, link weights (node distances)

Store: distance to that point, link to previous element in
shortest path

List of unvisited path sorted by distance to origin (set to
infinity if unknown)
Algorithm:
1. Choose the unvisited node with the smallest distance to the
origin
2. Visit all its unvisited neighbors: if distance is smaller than the
current distance to that point, store it and set link to previous
element to the current active node
3. Mark node as finished
4. If list of unvisited nodes is not empty, go to 1.



Related problems

» Finding out of a labyrinth
» Search path with local knowledge

» Very important!
» Global optimization can be too expensive
» Global structure may net be known, or varies fast

» Recommender systems
» File sharing
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Greedy routing

> Agents have only local information
» They know how far their neighbors are from the target

» They forward the packet to the neighbor with the smallest
distance to the target
> May lead to dead end
» Navigability:
» Fully: The network is navigable if there exists a greedy path
between all pairs of nodes

» Fractional ps: the fraction of node pairs with greedy route
between them
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Navigability of scale free networks

» Scale free network (configuration model) P(k) ~ k¥
» Metric space is needed, here nodes are randomly placed on a
ring

» Probability of connection:

d —Q
ko K)Y=[1+—
r(g; k, k') ( + kk’>

» the probability of link connection between two nodes is
decreases with the distance as ~ d=¢

» Increases with their degrees as ~ (kk’)*
» Measure: Greedy navigation success rate ps

Bogufia et al. Navigability of complex networks, (2009)
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Navigability of scale free networks

» Navigable if ps(N) increases with N

» C is clustering for given «
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Navigability of scale free networks: Airport example

Toksook Bay, ¢
Bethet®

v
Detroit

b 30 c
-4.0
25k -4.5
; Detroit ; _50
_a;? 20 -°;‘0 1-5.5
g g
5 s Anchorage Valencia £ {-60
B Bethel B
£ £ -65
= =
& 10 5 -7.0
g g
3 3
-75
05 Toksook bay
-8.0
L L L L L L L L -85
9,000 8,000 7,000 6,000 5000 4,000 3,000 2,000 1000 0 3,000 2,000 1,000
Distance to Ibiza (km) Distance to destination (km)

Page 31



Navigability of scale free networks: Airport example
> General greedy routes: generally go though large degree nodes
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Navigability of scale free networks: Airport example

» Results of the model
» C increases with «
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Kleinberg model
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» Square lattice, with next nearest neighbor links

» Distance is defined in lattice (Manhattan) distance

» One long range link to a randomly selected node with
probability proportional to r=* (here also r is measured in
Manhattan distance)

» Expected behaviour
T~ L
» In small word we expect x — 0 and thus T ~ log” L
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Kleinberg Navigation in a small world, (2000)



Kleinberg model

» Expected behaviour T ~ [¥
» Kleinberg lower bounds (2d):

_J(@2-a)/2 0<a<?
(e =2)/(a—1) a>2
» Master equation

g g<a<d

d+l—a
x=<Ca—-d d<a<d+1
1 a>d+1
1.00

o

N

a
:

©  Simulation
—— Theory (x)
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o o
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(4] o
:

o
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Search strategies: Network

» What if there is no underlying metric?
» The position of the target is unknown

» Networks
» Power law degree distribution with exponent between 2 and 3
» Random weights on the links: smaller weights correspond to
shorter paths
» No global information: each node has information about its
neighbors (or second neighbors)
» structure may change in time

Thadakamalla et al. Search in weighted complex networks (2006)
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Search strategies

> Strategies:

» Random walk

» (Semi) Self avoiding random walk (do not send the package
back to the one from which it was received)

» Self avoiding random walk, do not send back to nodes where
packed already has been. (can lead to dead ends!)

> Pass through the link with the smallest weight (at least it is
not expensive)

» Choose the best connected neighbor (we saw in the metric
version that it is not a bad idea)

» Choose the neighbor with the smallest average link weight (it
is close to many)

» Choose neighbor with the highest link betweenness centrality
(use all available information)

Page 37



Search strategies: Results

» Random graph:

Beta Uniform Exp. Power-law
Search strategy o®=23 o® =83 o? =25 o? = 4653.8
Random walk 1271.91 1284.9 1253.68 1479.32
Minimum edge weight 1017.74 767.405 577.83 562.39
Highest degree 994.64 1014.05 961.5 1182.18
Minimum average node weight 1124.48 954.295 826.325 732.93
Highest LBC 980.65 968.775 900.365 908.48
» Scale free network:
Beta Uniform Exp. Power-law
Search strategy 0%2=23 02=83 02 =25 0% = 4653.8
1107.71 1097.72 1108.70 1011.21
Random walk
(202%) (241%) (272%) (344%)
Minimum edge weight 704.47 414.71 318.95 358.54
(92%) (29%) (7%) (44%)
Highest degree 379.98 368.43 375.83 394.99
(4%) (14%) (26%) (59%)
- . 1228.68 788.15 605.41 466.18
Minimum average node weight
(235%) (145%) (103%) (88%)
Highest LBC 366.26 322.30 298.06 247.77

» Columns are for different edge weight distributions
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Search strategies

> Strategies:

» If heterogeneity is small the best performing method is the
minimum weight search, which outperforms methods using
more information

> If link weights get homogeneous (o ~ 1) then minimum edge
weight becomes random walk, highest LBS becomes highest
degree and the latter performs better

» In scale free networks: highest LBS performs best as it
incorporates both degree and weight information

» Edge weights not shown is 1

Neighbors: 2,3,4,5
(a) * (b)

(a) L(2) = 76.0, L(3) = 42.0, L(4) = 42.0, L(5) = 0.0

(b) L(2) = 76.0, L(3) =92.0, L(4) =42.0, L(5) = 0.0
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Optimization: costs
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| 2

>
>
| 2
>

Internet Autonomous system topology

Providers can connect to the top tier or be a customer
They are responsible for directing the Internet traffic
Simple protocols define the routing (mainly greedy)
Many optimizes the structure




Internet topology

» Autonomous systems (AS) of the Internet
» Routing between AS
» Must be fully navigable

» Impossible to know the full structure — local routing
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Internet topology

> Traffic

» |ocal

» transit
> Relationship

» customer-provider
> peering
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AS routing policy

Valley-free route
Highest local preference
Shortest AS path

etc.

el
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AS routing policy

1. Valley-free route

» Flow of traffic must coincide with the flow of cash
» Data forward from AS A to B only if

» incoming traffic is from a costumer of A
» or B is a costumer of A

» A valid path contains n customer-provider, at most 1 peer and
m provider-customer link strictly in this order

1 customer-provider
n m n m - peer
® © ® © ® ®-0© @0
Valley-free not Valley-free

2. Highest local preference

3. Shortest AS path
4. etc.
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AS routing model

>

>
>
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Number of players P
Edges: (p) directed provider, (r) undirected peer
Valley-free routing: u can forward traffic coming from w to v
only if
1. w is a costumer of u (the relationship between u and v can be
anything)
2. v is costumer of u (the relationship between v and w can be
anything)
Payoff (of u):

Cu=>_ dve(u,v)+ dpup+ druy
v#u
where ¢, is the cost of an edge of type x € {r, p}, ux is he
number edges of type x
0  There is a VF path between u, v

oo otherwise

d\/,:(u, V) = {



AS routing model

» Number of players P

» Edges: (p) directed provider, (r) undirected peer

» Valley-free routing between all pairs

» Independent of the cost functions (provided they are positive)
>

Resulting network

» Has a clique core with only peer (r) links
» Trees rooted at the core consisting exclusively from provider
links (p), the provider is always closer to the clique than the

consumer
@ ---- peer-to-peer (1) edge
U () K — customer-to-provider (p) edge
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AS routing model

Page 48

» Include Highest Local Preference rule
» Player always picks from the available VF paths according to

its local interest

» Players do not like customer-provider links
» Cost function

0 VF +first is peer or p — ¢
dvr(u,v)=4¢1 VF+firstisc—p

i
N M
H#j’ \TR@



AS routing model
» Valley-free rule

» Highest Local Preference rule
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