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Temporal motifs: occurrence of ordered sequences

Most frequent ones

1,2,3 1,2 2,3
=0 o&—=0
3 1

5.83¢6(0.270)  1.70e6(0.079)  1.55¢6(0.072)

(b) TIME-SHUFFLED (unbiased)

el

8.67e4(0.063)  4.76e4(0.035)  4.24e4(0.031)

(¢) TIME-SHUFFLED (m = 32)

1.58¢6(0.121)  8,2065(0.063)  8.20e5(0.063)
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1.36e6(0.063)
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4.23e4(0.031)

1,3
-

8.2065(0,063)

3.19e4(0.001)

3.3004(0.003)

Least frequent ones

NYYY

3.02¢4(0.001)  2.06e4(0.001)  1.19¢4(0.001)

VVVYY

2721(0.002) 2674(0.002) 1696(0.001) 1985(0.001)

VVVYY

3.30e4(0.003)  2.44e4(0.002)  2.444(0.002)



Importance of different effects in temporal spreading

» Equal-weight link-sequence shuffled: Whole single-link event
sequences are randomly exchanged between links having the
same number of events

» Only link-link correlation is destroyed
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Importance of different effects in temporal spreading

» Long time behaviour:
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Importance of different effects in temporal spreading

» Everything slows down the spreading

» Burstiness has higher impact than topological structures
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E link sequence shuffled
[ configuration network
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0.015} [0 time shiffled configuration network | |
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0.000
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Interevent time
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v

Time interval between successive events 7

Distribution of 7 is P(7)

Distribution is characterized by the average (7) and the
variance o

Burstiness:

_o—(n)
o+ (7)
(a) B = —1: deterministic, (b) B = 0: Poisson, (c) B = 1:
bursty
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Spreading on networks

» One of the most important problems on networks

» Also one of the real success
» This lecture:

» Advanced mean-field calculations
» Cascade models
» Spreading in temporal networks
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Epidemic models: notations
> States:

» S: susceptible
» |: Infected

» R: Recovered (immune)

> E: Exposed (infected but not yet infecting)
» Rates: 5, i, 1, ¥
SIR

S B.u.

SIS

SB
uu’

n



SIR reality vs. model

» Perfect mixing
» Everybody can meet everybody
» Ebola

Figurel. Confirmed weekly Ebola virus disease cases reported from Guinea,

s, Liberia and Sierra Leone
550
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SIR reality vs. model
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> Perfect mixing

» Everybody can meet everybody
» Covid-19, South Korea

» Susceptible approximated
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SIS model: mean field

» Perfect mixing

v

Everybody can meet everybody
» The different type meet with probability proportional to their

density
» Density of types:
= N*/N

» The mean field SIR equations:

dp!
P _ ﬁp /

d/) I
o —Bpp® + xp

where x = u for SIS and x = 0 for SIR.
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Epidemic threshold

» Linearization: p! <1, p° ~ 1

d /

dpt = Bp'p°> — pp’
d /
dfiﬁ(ﬁ*ﬁé)Pl

p'(t) = p'(0) exp[(B — p)t]

> Two regimes:

» 3 < p: Disease dies out
» 5 > p: Disease spreads

» Reproduction number: Ry = 3/

» The epidemic threshold for perfectly mixing population is
Ry = 1 above which the epidemic spreads.
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SIR/SIS

> Above the epidemic threshold
» In SIS dynamic equilibrium

density of infected

SIS

SIR

time

Exponential growth Peak of epidemics Final stage
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SIS: Individual based mean field (IBMF)
» Markov chain approach
> Two state X; = 1 for / and X; =0 for S.
» E[X;(t)] expected value of X;
> ajj element of the adjacency matrix
» The Master equation:

PN £ | o) + QUM

» Introducing A = 3/ and rescaling the time by 1/u

» For static network:

)
) ) 4+ 03 au () )= 3 E s 0]

Pastor-Satorras et el., Epidemic processes in complex networks (2015)
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SIS: Individual based mean field (IBMF)

» Markov chain approach
» The Master equation for static network:
dpi(t)

PO — i) + 03 aul(6) - A3 s EX (DX (2)

» No explicit solution due to the two term correlations
ELXi(£)X (1))
Joint probability distribution cannot be calculated

v

> Assumption: neighboring nodes are statistically independent:
E[Xi(6)X;(t)] = EX((DIEDX;(0)] = pl(2)pj ()
» The Master equation for the SIS model thus reads:

1
) ey 4 A (] D a1
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SIS: Individual based mean field (IBMF)
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» The Master equation for static network SIS model in the
independent neighbors limit:

I
) — ey 4 (] 3 a1

» Loss term: probability that node i is infected times the rate of
recovery (hidden in the rescaled time)

» Gain term: probability that node i/ is susceptible, times the
total probability that any of its nearest neighbors is infected,
times the effective transmission rate A = 3/



SIS: Individual based mean field (IBMF)

Page 18

» The Master equation for static network SIS model in the
independent neighbors limit:

dpi(t)
dt

= —pl(8) + AL = pi(D] 3 aip)(1)

» Linear stability analysis

dpl(t) / / /
= —pi(t) + )\Zaijﬂj(f) = ZJUPj(f)
J J

with J;j = —d;; + Aaj;

» An endemic state occurs when A; the largest eigenvalue of J is
positive.

» The epidemic threshold is thus:

1
Y AIBMF =
> A¢ AL



SIS: Individual based mean field (IBMF)

v

For networks with power law degree distribution P(k) ~ k=7

» Largest eigenvalue:

A = min( \% Kmax <k2>/<k>)
» The epidemic threshold:
1 .
ABMF _ ) Vkax if v = 5/2
€ % if 2 <~y <5/2

: IBMF _
» In both cases limpy_ o0 A¢ = 0 for scale free networks

v

Of course in finite system there is a small deviation but in
infinite systems there is no epidemic threshold since the largest
degree is infinite.
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SIS: Degree based mean field (DBMF)

All nodes with the same degree are statistically equivalent.
Degree has a maximum K.
Number of equations kpax

Conditional probabilities: P(k’|k) probability that a node with
degree k is connected to a node of degree k'’

P(k'|k) is the same for all k degree nodes.

vvyYyy

v

» |n the case of uncorrelated networks:
k'P(k")
P(K'|k) =
(k)

Page 20



SIS: Degree based mean field (DBMF)
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> pL(t) is the probability that a node of degree k is infected at
time t

» Master equation:

I
T )+ kT2 (O] PR IR) e (1)

k/

> Note that the factor k in the gain term is for the number of
links the node of degree k has with that chance to get infected

» Linearized version

dp(t)
# ~ —ph(t) + Ak;P (K'[k)ph (t ijk,pk,
> With
Jkk’ = _(Skk’ —+ )\kP(kI“{)



SIS: Degree based mean field (DBMF)

» Linearized version

dpl(t
gf) = =Pk ( +>\kZP k/|k pk/ Z.jkk/pk/
Py

> With
Jkk’ = _(Skk’ —+ )\kP(kI“{)

» There is an epidemic state if

A > A\2BMF — /\i
1

where again A; is the largest eigenvalue of J
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SIS: Degree based mean field (DBMF)

» The epidemic threshold, for uncorrelated networks with
k'P(k")
(k)

» Probability to find an infected node following a randomly
chosen edge

P(K'[k) =

0 =3 Pl = “THD (o)
A

The Master equation of the Degree based mean field is

I
dﬂgft) = —ph(t) + Mk[1 — pL(t)]©

» The two latter equations can be solved in self-consistently.
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SIS: Degree based mean field (DBMF)

» The self-consistent solution allows for an epidemic state only if

(k)
» For power law degree distribution with exponent 2 < v < 3
The threshold is 0 in the infinite limit.

A > ADBMF (k)

threshold

Page 24 N



SIS: Comparison

Page 25

epidemic thresholds

> IBMF

\IBME _ T ifv>5/2

‘ T f2<y<5/2
> DBMF

k
A > ADBMF _ <2>

(K?)
» Network: scale free with v = 2.25
— :—_-1_;_‘:__7__“;;__ . i
10 71{“‘4\ -
L \‘;L&\——'-\,._ ]
r ® ~1
r o
o0 ACJBMF . ACDBMF o]
4-4 theoretical upper bound
10t k| AW(N) from simulations |
| | L il
10! 10° 10° 10 1°



SIS: Epidemic threshold

Page 26

It seems that in the scale free networks in the infinite system
there is no epidemic threshold

Numerical simulations show also this picture

Note that in the SIS model there is a dynamic steady state
with a fraction of infected nodes

In scale-free networks only part of the system will be infected,
the hubs and the immediate neighborhood.

Concepts of:

» Epidemic state: Homogeneously infected
» Active state: Small finite active part

Thankfully real systems are never infinite and never scale-free



Problems with SIR model

» Fully mixed society — network
» Disease either dies out fast or infects the whole society even
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>

Age

0-9

10-19

20-29

30-39

40-49]

50-59

on networks — geographical location with travel links effected
by the infection

Inhomogeneous society — age groups and connections as in
SBM

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+

1928 48 30 71 37 31 meS
4.8 . 64 54 75 50
30 64 207 92 71 63
71 54 92 169 101 638
37 75 71 101 131 74

31 50 63 68 74 104

2 20 34 26 32 32
21 22T
2518 72072

Ram and Schaposnik, Sci. Rep. 2021



Problems with SIR model
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» Fully mixed society — network

> Disease either dies out fast or infects the whole society even
on networks — geographical location with travel links effected
by the infection

» Inhomogeneous society — age groups and connections as in
SBM

» Computational limitations — two level systems

» Government measures — new states in the SIR model
P

v
¥

detected

susceptible undetected detected
infected infected | | recovere d

aw | e qt) |e Y

y

social undetected detocted
distancing recovery/death deaths.

Khan, Van Bussel, Hussain, Epidemiology and Infection 2020



I[mmunization
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» Often the task is to stop the spreading

» Sometimes one can immunize part of the society
» Can we stop the spreading?

» Example:

» Of course, if every newborn baby is vaccinated, the population
is safe. This is the way, how smallpox (Variola) was defeated.

» Estimated death in 20 th century: 300 Million

» Estimated infected in 1967: 15 Million

» 1979: WHO declared smallpox eradicated



I[mmunization

» Epidemic threshold (complete graph/fully mixed state):

3 > 1 outbreak
Ro = ; =1 threshold
<1 localized

» The density of the immune vertices is g, then:

g'=p1-g)
» The threshold for networks
Bl-g) _ (K
I (k?)

» For infinitely large scale free network with v < 3 we get g =1

» For random immunization everybody must be vaccinated
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I[mmunization

» Epidemic threshold for networks

Bl-g) _ (k)

1 (k2)

» Targeted immunization: immunize high degree nodes

» This decreases the variance faster than the average

(klg _ B(1—2g)
<k2>g K

which defines the critical value of g
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Immunization
» Targeted immunization: immunize high degree nodes
(k)g > B(1-g)
2
(k)¢ H
which defines the critical value of g

1.0 r ! v
G—=6 Uniform Immunization

G—= Targeted Immunization |

Pastor-Satorras, Vespignani, 2001
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Innovation spreading

> Rogers (1962)

Early
Adopters

Majority | Majority

Innovaters

Laggards

» Mahajan, Muller and Bass (1990)

Adoptions Due to
Mass Media

Adoptions Due to
Interpersonal
Communication

Time ————)

N



Threshold model

» Sometimes the spreading is due to load from the neighbors

> E.g. if too many of my neighbors are infected | will also get
infected

» Innovation spreading: many of my friends have iPhone | will
also get one.
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Threshold model
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v

Networks with average degree (k) = z
Nodes have threshold ¢;

If the number of active nodes in the neighborhood reach ¢;
then the node becomes active (too many friends have some
product | will also buy it)

Start from a small seed

If thresholds are sufficiently low cascades may propagate
through the whole system (size ~ O(N))

Watts, A simple model of global cascades on random networks (2002)



Threshold model
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>

>

>

v

In large uncorrelated random networks there are hardly any
triangles

Vulnerable nodes are the ones where the threshold is less than
¢i < 1/k;, one neighbor is enough to get infected

Global cascade is possible if these nodes percolate

This is the cascade condition

z> Z K)P(¢<1/k)

k(k — 1) increases with k
P(¢<1/k) decreases with k

Two or 0 solutions



Threshold model: Phase diagram

» Points simulation
» Dashed line calculated threshold

16 T T T T T T T
14F 4
!
12 = -
-, No Global Cascades
10 - PR 1
[
2 e e 1
1
6| f.:_'_.E 1
4| Global Cascades L2 e o
1
2| D4
e B e il B e o o B = B e B e B P =

1] 1 I ! ! 1 L i
0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

¢*
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Threshold model: Phase diagram

» Top line: first order phase transition of cascades

» Bottom line: second order phase transition of network
percolation limit

16 T T T T T T T
14 - 4
?
12 b= .
-, No Global Cascades
10 + FEr b
[
z 8y b T
1
6| f.:_'_.; 1
4|  Global Cascades 2 % e oo
1
2| E
e B B el B e o B o B i M e B P =

0 1 I i ! 1 1 L
0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
9,
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Threshold model: Phase diagram

> ¢ With normal distribution and o variance
» Scale free graph

15 te i a
1 !
1 s
I i
10=0.1
i
10
z
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Fall of a social network site
» Users leave due to exogenous effects (advertisements, news,
etc.)
» Users leave if some part of their friends leave.

» This depends on the embeddedness of the user
0.12

0.1

0 01 02 03 04 05 06 07 08 09 1
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Fall of a social network site: Model

» Users leave due to exogenous effects (advertisements, news,
etc.):
» Here rate of leave increases with time as was the popularity of
the alternative site
» Users with low degree are more susceptible to global effects
» Users leave if their friends leave.
» Threshold model with threshold above 50%
> Leave is not immediate one needs time (7) to recognize friend

is inactive
Jpa——
4]
808 [
5
)
206 ¢
=}
Q
!2 04 tau=inf
o tau=14d
.g tau=0d
30-2 [ iwiw  + b

0 1 1 1 1 1 1
2007 2008 2009 2010 2011 2012 2013 2014

date
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Percolation
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Percolation

Behavior of connected cluster
» Site percolation

» Bond percolation
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Percolation model

» Random environment
» With probability p site vacant (conducts)

> Two states: percolates or not!

» Percolation: presence of infinite cluster, in infinitely large
system the cluster holds finite fraction of nodes.

- .
low p: does not percolate

Page 44

o

n
i i e

i
AT

high p: does percolate



Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Mean cluster size (without the infinite one)?
4. Cluster size distribution

Answers:

1. Above a critical density with probability 1 below it with
probability 0

2. Only 1!

3. Decreases as a power low away from the critical density

4. Power law
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Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Cluster size distribution (ns)
4. Mean cluster size (without the infinite one)? (S = 3", s%n;)
Answers:
1. if p > pc then yes, otherwise no
2. Only 1!
3. ng~s—
4. S~ |p—pc|™7

Like a second order phase transition in a geometric system!

T
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Percolation model

12 T T
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Percolation model
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Percolating cluster

=10 —— T T

EE= \

10 === f?’mﬁﬂi‘

\

|

x . £ o
g
. &

L L L L L L L L
01 02 03 04 05 06 07 08 09 |

p

» Largest cluster

» fractal with fractal dimension of df

&f log(N/€7) p < pc
> S~ Nde/d P = Pc

NP (p) p > Pc
» Largest not infinite cluster: size ~ |p — pc|™
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Percolation on networks (graphs)

» Network is defined by nodes and links

» Percolation gives us connected components

» Link removal percolation gives information about robustness,
and structure

Page 50



Percolation and attack on random networks

SNTeay
BESS

=8

» Failure: equivalent to percolation: remove nodes at random
> Attack: remove most connected nodes
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Error vs. attacks

g gt

v | E s % |
= ]
% 1 S 45&
N - : B
o Failure
g\’i’ o = Attack
o /fc
8% 0.2 0.
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Percolation and attack on random networks

> Failure: equivalent to percolation: remove nodes at random
> Attack: remove most connected nodes

100 ° aloof o, b [10°F ° c
o
hosr o ho=
? E
ot % ofo 10 °
i 10° 107 10% 107 10" 102 10° 0O 2 4
o o
Attack °© O o ° o
Exponential o @) © 0%
network . O o o o ©
Failure OooD co vo °
o) c o
3k O
& fe
o
Scale-free o
network - 00000
(WWW, Failure o o 5
Internet) ° o o 00
[«] ° 000
109 @ d|1o°F° e|1°f ° f
102 107 o 109 3%
° 1074
o ol o ol £ d
L SN . . N ST
10° 102 10 10° 107 10' 10°10710%10°
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Robustness
» Link/node removal percolation

» Here: random, and largest first

Page 54

» There is also weakest first

Poisson Scale-free
IUQ% -1.0 %-. — .
08 - %, (@) -os (b) | *squares: random failure
06l B los L & | e circles: targeted attack
D4; ;047 o 4
02 - ;02 - 1
0.0 = e 100 Lt
0 02 04 06 08 10

00 02 04 06 08 1.0 0.

Failures: little effect on the

integrity of the network if
scale free.
Attacks: fast breakdown

(d) |

= |: average

0 0
00 02 04 06 08 1.0 0.0 02 04 06 08 1.0

f

component size



Link removal percolation on networks

» Granovetter hypothesis: The strength of the weak ties
» Human communities have strong connections

» These communities are connected with weak ties

» Test the structures with Link removal percolation

(a) ND E ©O)LD / [

| u

o
N
%y o
‘@
L]
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Link removal percolation on networks

Ricc

0.8

0.6

0.4

Ricc
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Robustness
» Resistant both against random and targeted attacks.
» Must have hubs to resist random attacks
» Small degree nodes should be interconnected so they remain
viable after removal of the hubs
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Robustness against attacks

» Malicious attacks target central nodes, hubs

v

Solution: central nodes should be connected

> Assortative mixing is preferred (high degree nodes are
connected between each other)

» (Barabasi-Albert is thus a bad example)

» Robustness measure:

1 N
R=5 . s(Q)
Q=1

» 5(Q) fraction of nodes in the largest connected cluster after
removing @ = gN nodes

» Optimize for R
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Onion structures

» Robustness measure:

1 N
R:NQZ::IS(Q)

» s(Q) fraction of nodes in the largest connected cluster after
removing Q = gN nodes
» Optimize R by only rewiring and keeping degree distribution
constant
» Onion structures are the most robust
> Assortative
» Layers with similar degree nodes

» Inter-layer connections

“0GRES/ARE LIKE ONIONS: 0GRES HAVE LAYERS
ONIONS! uy{:uuns...

£

{,s ”//

NOUGET 173 WEBOTH HAVETAYERS.".
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Onion structures

» Assortative

» Layers with similar degree nodes
» Inter-layer connections

In-layer edges

———— Between-layer edges




Chateau de Vincennes
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Optimization: costs

Page 62

| 2

>
>
| 2
>

Internet Autonomous system topology

Providers can connect to the top tier or be a customer
They are responsible for directing the Internet traffic
Simple protocols define the routing (mainly greedy)
Many optimizes the structure




Flight route optimization
> Suppose weight of a link is defined as

wjj = djj/tj
where dj; is the distance, and t;; is the traffic between two
cities
» When more paths are possible the most economical is used:
C;; = min w,
i pGPZ !
lep
» Keep total traffic constant

» Function to be optimized is the average cost to pay to travel
from any node to any other

2
L= N(N—l)ZCij

i<j
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Flight route optimization

v

Check a small circle:
> Let us assume di = d(A,B) = d(B,C) > d(A.C) =d’

» Cost function (T is the average traffic between two cities):
2d+d’
Ly = =

» Cut connection (B, C). The new cost function

d+d
Lr= =7

< L4

» The optimal path is a tree!
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Tree model

P If it is known that the network is a tree task is easier:

d
Eu == bei

ecT te
where b, is the link betweenness centrality
» The optimal traffic

_ Tbed,
Y e Vbede

» The optimal traffic tree can then be obtained by minimizing

L= Vbede

ecT

L=> bidy

ecT
where 1 and v control the relative importance of distance
against topology as measured by centrality

te

» More generally
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Optimal traffic on networks

Page 66

» Exponential degree distribution

» Power law betweenness distribution
» Hierarchical organizations

> u=v=205




Optimal traffic on networks

(a)

(c)
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(0,1) (1/2,1/2)
2
%
N .‘V“‘v
(1,1) (1,0)

(d)



