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Diffusion on networks

Random walk
On lattices we know how it works.
In what sense will it be different?

What are the relevant measure for the probability distribution
of the walker?

> Why is it important?
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Diffusion on one dimensional lattice

> Master equation, lattice and arbitrary coordinates:

1 1
P(i,t+1)=P(i,t)+ zP(i—1,t)+ =P(i+ 1,t) — P(i, t)
2 2 —_—

loss

gain

P(x,t+ At) =P(x, t)+

At
+ D—X[P(x — Ax, t) —2P(x, t) + P(x + Ax, t)]

» Continuum limit: diffusion equation

OP(x,t) D82P(X, t)
ot 0x2
» Solution
1 X2
P(x,t) = e bt
47 Dt
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Diffusion on one dimensional lattice

» Continuum limit: diffusion equation

OP(x,t) B D82P(x, t)
ot 0x?

» Solution

(x) = / " xP(x, £)dx = 0

(x?) = /OO x?P(x, t)dx = 2Dt
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Random walk on lattice

» Moments of the coordinate

(x) = /OO xP(x, t)dx =0

—0o0

(x?) = /OO x2P(x, t)dx = 2Dt

—0oQ
» Probability to return to origin (Pdlya theorem):

Pret

1

1
0.34
0.19
0.145

U‘I-I>OOI\)I—“Q
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Random walk on lattice

» Expected number of distinct sites visited by the random walk

d | D,

1 [ ~Vt

2 ~ t/logt
3<d|~t

» The trail of the random walk is a fractal with fractal dimension
d=2
In d = 1 the trail is self-overlapping

v

» In d = 2 it gradually fills the space

v

In d > 4 the walk does not cross itself
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Random walk on graphs

» Distance is not as important of a quantity as in lattices
» Important quantities:

» Number of visited distinct sites

» Probability of return

» Probability of finding the walker on a given node
» Probability from going one node to the other
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Random walk on Watts-Strogatz graph

» p =0: We have a one dimensional lattice

» p = 1: Random network is similar to trees upon trees, always
new regions are explored, or infinite dimension

P Interesting regime 0 < p < 1:

» Characteristic distance between two crosslink ending: £ ~1/p
> One dimensional system up to t¢ ~ &2
» Infinite dimension afterwards
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Random walk on Watts-Strogatz graph
P Interesting regime 0 < p < 1:
Characteristic distance between two crosslink ending: £ ~ 1/p
One dimensional system up to t¢ ~ &2
Infinite dimension afterwards
Number of visited distinct sites:

D: = VE(£/t€) = VEF(tp?)

const if x<«1
f(x) =
Vx oo ifx>1

>
>
| 4
>

P

d
10° /
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Random walk on graphs
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>
>
>
>
>

>

Let r be the rate of leaving a site

The walker at node i

Moves randomly to any neighbour, with the same probability
Nodes are characterized by their degree k;

In order to land on a node with degree k from a node with
degree k’ the latter must have a neighbour with degree k

The probability of going from a node with degree k' to a node
with degree k is P(k’|k)/k’, where the former is the
probability of a node with degree k’ have a neighbour with
degree k (assortativity)

Master equation (nk(t) number of walkers on nodes with
degree k)

onk(t)
ot

= —rm(t) + rk S P(K'| K)o (£) /K
"



Random walk on graphs

» Master equation (nk(t) number of walkers on nodes with
degree k)

I _ oy () + e 3 P(K ) (1)K

k/

» The first term is the loss term: walkers leave with rate r
» The gain term is proportional to

» Walking rate

» The degree of the node k (walkers may come in through k
links)

» The probability that it comes from a node with degree k’
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Random walk on graphs

» Master equation (ng(t) number of walkers on nodes with
degree k)

8nakt(_t) = —rnk(t) + rkz P(k'|k)nk/(t)/k'
K/

» For uncorrelated networks we have
k'P(k")

P(KIK) = 75

» Which leads to
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Random walk on graphs

» Master equation on uncorrelated graphs

oni(t) k
(‘;t = —rng(t) + rw Zk; nir(t)

» The stationary solution (left hand side vanishes):

h— kn
where n is the number of walkers. Or with probability
_ k1
pk - <k> N,
where py is the probability of finding the walker at a node with
degree k
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Random walk on graphs

» The probability of finding the walker at a node with degree k
_ k1
> |t is more likely to find the walkers at hubs than in a dead end

» There are more drunk people at Deak tér and at Nyugati than
e.g. at Gardonyi tér.
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Diffusion equation on graphs
» Recall diffusion equation on 1d lattice:
O(x, t+At) = O(x, t)+DAt[P(x—Ax, t)—2P(x, t)+P(x+Ax, t)]
» Which can be rewritten as
O(x, t + At) = O(x, t) + dtDLP(x, t),

where

Z d(x + dx) — Z 1

dxet+Ax dxe+Ax

» Multiple dimensions:

Z¢r+dr Zl

drenn. drenn.
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Diffusion equation on graphs

» Diffusion equation on lattices

Z¢+dr Zl

drenn. drenn.

2D, 6x6

o0
? )
O
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Diffusion equation on graphs
» Diffusion equation on lattices
Ld(r, t) = Z d(r 4 dr) — Zl
drenn. drenn.
» Laplace matrix has 1 values where the adjacency matrix would
also be 1 and apart from the diagonal is zero where the

adjacency matrix would be 0
» The diagonal is minus the degree of the node.

[ 35

o

2D, 6x6

35
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Diffusion equation on graphs

» Diffusion equation on lattices

Z O(r + dr) —

drenn.

» Generalization to graphs

Lj = Aj — kibj

> Valid also for directed graphs:

» Not symmetric
» In diagonal kP4t
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Spectral analysis
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» Diffusion operator on graphs

L,j = A,‘j — k,‘&'j

Spectral analysis

Z L,‘jUj = A,‘U,’
Jj

Larges eigenvalue: 0, Eigenvector: (1,1,1,...) with
multiplicity equals to the number of connected components
Second largest eigenvalue shows how difficult it is to split the
graph into two large pieces. (How easy it is to reach all parts
of the network)

A2 = _p for an n-clique

A2 =1 for a star

A2 = —2 4 2cos(m/n) for an n-chain
The last one goes to zero for n — oo



Spectral analysis of the diffusion operator

» Diffusion equation on graph

» Eigenvalue distribution (average them over all node):

1Y ,
= <N > (A - )\(’))>
i=1

» Initial condition: walker on node iy at t=0
» Probability to be at node i at time t

6 Itlo,
OpU: 16.0) = 3 il o)
» Laplace transform:
(o]
ﬁ,-,,-o(s) :/ e_Stp(i,t|i0,0)dt
0
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Spectral analysis of the diffusion operator

» Diffusion equation on graph
op(i, tlig, 0) t|'o,
Z LI_Ip ./a t|’0a

» Laplace transform:

o0
[5,-,,-0(5) = / e_Stp(i, t|i0, O)dt
0
» From the diffusion equation

SPiip — 0j sio — Z LijBjio
> f'(t) — Laplace transform —  sF(s) — f(0%)
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Spectral analysis of the diffusion operator

» Laplace transform:

o
Biio(s) = / e=p(i. t]ip, 0)dt
0
» From the diffusion equation
sPi,io — di,io = Z Lijbj.io
J
» From where

> (01 = Lip)Bjio = Gii
j
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Spectral analysis of the diffusion operator

» Probability to return to the origin

= <Ii/ Zp(io, tlio, 0)>

» Laplace transform

Po(s) = < Zp io, tlio, 0 >:< Trp(io, tlio, )> =

:<LTr(s<s,-,- Ly) >=<NZSA<)>
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Spectral analysis of the diffusion operator
» Probability to return to the origin

1 . .
po(t) = <N Zp(lo, t\/0,0)>
io
» Laplace transform
. 1 are 1 1
Po(s) = <NZ'D(IO’ t”070)> = <N Z S_)\(,)>
io i
» Transfer back
1 1 0]
_ ts _ |/ = AWt
Po(t)—/e <s—)\(i)>ds_ <NZe >

0
pol) = / e p(1)dA
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Spectral analysis of the diffusion operator

» Probability to return to the origin

0
()= [ o)

—0o0
» The shape of the spectrum thus determines the return
probability
» Example: Watts-Strogatz small world

t=d/2 if t <t
exp (—(p?t)Y3) if t >t

po(t) — po(0) ~ {

» The spectrum of the Laplacian is related also to the
community structure of the network

» The largest eigenvalue describes the stationary state.

» The second largest is related to processes longest time scales.
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Transition probability

» Transition probability from node i to j.
» We can exit node i an any of its link
» \We can enter node j only of there is a connection

A
Py =1L

» The probability of going from j to j in t steps is:
Pioi(t)=> P d Pud Pm-- Y PaPy= (P);
k i m v

» Pt s the tth power of the P matrix
» Distance measure

" Py P
1 /
r,_/(t): Z ! kl J

I=1
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Temporal networks

» Links are not always present
> Examples:
» Communication networks
» Public transportation
» Company contracts/orders
» Spreading
» Time evolution of the network
> |f timescales separate we can study temporal events over a
static networks

> Aggregate network: all links and nodes ever present
MOVIE

Peter Holme - Jari Saramaki (2011) Arxiv:1108.1780
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Network definition

>
>

>
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Static network: G = {V, E}

Temporal network: T = {V/,S}, where V is the set of vertices
and S is the set of event sequences (can be directed)

For sj e S
sij = {t,.(jl),Té.l)' 2 7(2); . }

where event r between node i and j begins at t,-(jr) and lasts
0

ij
TU(-r) can often be neglected

Adjacency index

AL, 1) 1 if i — j is active at time t
1, = .
J 0 otherwise



Adjacency index

» Adjacency index

o 1 if i — j is active at time t
A(i,j t) = {

0 otherwise
> Adjacency index for instantaneous events

1 if i — j is active between time t and t + AT

0 otherwise

A(i,j, t, At) = {

» Conditional aggregate networks: A(i, j, t, At)
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Temporal networks: path, journey

» Path: series of distinct edges visiting distinct nodes
» Journey: a time respecting path, time window (tmin, tmax)
J1on ={ti2, t23,. .., ta_1.0|tii € S, tmin < t12 <o < tho1n < tmax)

» Reachibility: i is reachable from j, if there exists a journey
from i to j

» Set of influence: all nodes which are reachable from i
li(t) = {Vjlj € V,3Ji;}
» Source set: all nodes from which 7 is reachable

Si(t) ={vjlj € V,3Ji}
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Temporal networks: visualization
» Journeys are non-transitive: 3J4_,g and 3Jg_,c, but AJa_,c
» Ix={B,C}, Sa={B,C,D}
> Ic(t € [5,10]) = {B, D}, Sc(t € [5,10]) = {A, B, D}

(b)
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Temporal networks: reachability
» Journeys with maximal waiting times: a time respecting
path, with limited event separation
IRt = {t1as o to1alty € S, t12 < - < to_1e tip1 — t < At}

> Reachability ratio: average fraction of nodes reachable from

each node
At(t E : ’/At t)’

1.0 d T T T 9000
@ Ralt} s
£0.8F 1F c 1

g :
= 0.6f S 4r ° 1
S ° )
< [ ] ®
2020 ° 16 o ©® E
0.0 00000 L L L L
10° 10> 10*  10° 10! 10° 10°
A (secs) Ac (secs)
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Temporal networks: reachability
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phone call

(a) f ]
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Static motifs

Triad Significance Profile

=~ TRANSC-E.COLI

~ TRANSC-YEAST
~»~ TRANSC-YEAST-2
—# TRANSC-B.SUBTILIS

~&~ SIGNAL-TRANSDUCTION
—— TRANSC-DROSOPHILA
~4~ TRANSC-SEA-URCHIN
—=- NEURONS

il
E?‘

o WWW-1 N=325,729
o WWW-2 N=277,114
= WWW-3 N=47 870
—a— SOCIAL-1 N=67
~&- SOCIAL-2 N=28
—+— SOCIAL-3 N=32

&d |

= LANGUAGES: ENGLISH

o—=be = FRENCH
[ —+ SPANISH
Lot —or | 05| - BIPARTITE MODEL
1 8 10 11 12 13
/\ -A Vo
v7v A Av oo
subgrapha
=] & = E = o
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Action triggers

0t,=27-17=10s

2 4 8163264 128 01

w‘q

[

» Detect causal chains of

events T
> Measure typical reaction :
time *H‘*?“'. e R
> Measure waiting time /@
5884 01,=90-84=6%

between incoming and @M et s
outgoing calls (‘5” © :

> Make histogram from it

b

124 8163264128 01
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Action triggers histogram
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» Maximum occurs at 17 seconds for returned calls

» Maximum occurs at 25 seconds for calls to a new person
» SMS peaks are typically 20-24 seconds later

» You need that much time to read and write an SMS

Returned call RIS cturned SMS

W0 E

Connt,

0 g

I ' ' I 10? |
Call 10 new person 10° | HMH 0 new person 4
w0tk 4 =
10 F ~
. . L . 10%
LIS U (S (A U 10? ml m? 0?# m’
At
(a) From call to call (b) From call to SMS

Returned SMS
0 E
10°

Count
Count

' " Returned call
0k E

" )
" Call to new person HI\IH m new person

g = 10 E E
3 0% F 4 3

o —»«-\“f\._\/ O 10f M

w w1t ! w* ' ow? 1wt !
At At
(c) From SMS to call (d) From SMS to SMS



Temporal motifs

> Now we know the relevant timescales
» We detect topological objects within the defined time window
» Sliding window over the whole data

» Null model: Shuffled time reference

->

m|Oo|= | >
mlajla|=
-3

m|o|® | >

N Neoll Nol B~
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occurrence of triangles

Temporal motifs

600 s window

Nmper o T ()

— Number of 3-cl

A

3600 s window

Number of 3-cliques (ref)

)
z
&
5
¥
8
z

E] g 2

aneoy s wnbiR-g Jo g

g 8§ §8 8§

ot 3 SRBIR-E J0 BWNN

B

indow

120/s wi

—  Number of
Number of -cliques (ref)

Time

180Q s window

—  Number of 3-liques
—  Number of 3-cliques (ref)

B = = -

00y 3od onbipg jo sy

g

§ 8§ 8§ @&

ot 190 SRbI-§ Jo BNy

100/

Time
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Temporal motifs: occurrence of triangles

» Without order
» Horizontal line: time shuffled reference

120 300 600 1800 3600 /
0

Time window (s)
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Temporal motifs: occurrence of ordered sequences

Most frequent ones

1,2,3 1,2 2,3
=0 o&—=0
3 1

5.83¢6(0.270)  1.70e6(0.079)  1.55¢6(0.072)

(b) TIME-SHUFFLED (unbiased)

el

8.67e4(0.063)  4.76e4(0.035)  4.24e4(0.031)

(¢) TIME-SHUFFLED (m = 32)

1.58¢6(0.121)  8,2065(0.063)  8.20e5(0.063)
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1.36e6(0.063)

2,3
e

4.23e4(0.031)

1,3
-

8.2065(0,063)

3.19e4(0.001)

3.3004(0.003)

Least frequent ones

NYYY

3.02¢4(0.001)  2.06e4(0.001)  1.19¢4(0.001)

VVVYY

2721(0.002) 2674(0.002) 1696(0.001) 1985(0.001)

VVVYY

3.30e4(0.003)  2.44e4(0.002)  2.444(0.002)



Example of temporal effects

A oo o0 o9 o9 D

+54 % +42 % +41 % 141 % 1st pre to post

B
v v v v Outstar: Target
age same

+201 % +152 % +145 % +134 %

@ Female, 42 + 2 years old, prepaid user
6@ Male, 50 + 2 years old, postpaid user
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Spreading on temporal networks
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» Links are not always present
» This definitely slows down the spreading

» This effect can be considerable




Importance of different effects in temporal spreading

» Original data: time ordered sequence of call events

» It contains information about the underlying network
» Correlations:

» D: daily pattern

» C: community structure

> W: weight-topology

» B: bursty single-edge dynamics
> E: event-event

Karsai et al. PRE 2011
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Link shuffling

» Select random pairs of link sequences and exchange them

» Destroys topology-weight and link-link correlation

t11 t21 t31 tN 1
t12 t22 t32 tN2
Lo geee
t1n_ 1
t2n_2
th_N
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Time shuffling

» Destroys burstiness (and link-link correlations)

> Keeps weight and daily pattern
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Importance of different effects in temporal spreading

» Original data: time ordered sequence of call events

[ Event sequence []

«|1©
o

[ Original I

— onginal sequence

0 50 100 150 200 250 300
t (day)
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Importance of different effects in temporal spreading

» Configuration model: Network is rewired, community structure
destroyed
» Event times are shuffled: Bursty dynamics destroyed

[ Eventsequence [ D [ C W [ B [ E [ 25% |
[ Original v IIvIIv v I[v][37]
| Config. model || v | X | x | x | x | 16.4 |

— original sequence
time shuffled configuration network

50 100 150 200 250 3
t (day)
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Importance of different effects in temporal spreading

» Configuration model: Network is rewired, community structure
destroyed

> Event times are kept Bursty dynamics kept

0.8
[ Eventsequence [ D [ C T W ] B E [ 25% | ~ 0.6
Original VIV v v [V [337 E
Config. shuffle v X X X X 16.4
Config. keep v X X v X 23.8 0.4

0.2

"~ oniginal sequence
configuration network
time shufed configuration network

0'“0 50 100 150 200 250 300

t (day)
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Importance of different effects in temporal spreading

Page 49

» Time shuffled event sequence

» Bursty dynamics destroyed

» Community and weight topology correlations kept

[ Event sequence [[ D C \\ B E [ 25% |
Original v v v v v 33.7
Config. shuffle v X X X X 16.4
Config. keep v X X v X 23.8
Orig. shuffle v v v X X 229

0.8

0.2

— original sequence
— time shuffled
configuration network
time shuffled configuration network

50

100

150 200 250 3
t (day)



Importance of different effects in temporal spreading
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» Link sequence shuffled

» Link-link and weight topology is destroyed

» Bursty dynamics and community structure is kept

[ Event sequence [[ D C W B E | 25% |
Original v v v v v 33.7
Config. shuffle v X X X X 16.4
Config. keep v X X v X 23.8
Orig. shuffle v v v X X 22.9
Shuffle. keep v v X v X 27.5

0.8

0.2

— orlginal sequence
— link sequence shuffled
— time shuffled
configuration network
time shuffled configuration network

0.0

150 200 250 3
t (day)




Importance of different effects in temporal spreading

» Equal-weight link-sequence shuffled: Whole single-link event
sequences are randomly exchanged between links having the
same number of events

» Only link-link correlation is destroyed

1.0
0.8
[ Event sequence [[ D [ C W B E [ 25% |
Original v v v v v 33.7 /
Config. shuffle v X X X X 16.4 208 |
Config. keep v X X v % 23.8 E [
Orig. shuffle v v v X X 22.9 04 [
Shuffle. keep v |V X v X 27.5 ' [/
W keep sh. keep v v v v X 35.3 |/
1
02 |/
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— original sequence
— equal link sequence shuffled
— link sequence shuffled
— time shuffled
configuration network
time shuffled configuration network

50

100

150 200 250
t (day)

3



Importance of different effects in temporal spreading

» Long time behaviour:

[ Eventsequence [[ D [ C W [ B [ E ] 25% |
Original v v v v v 33.7
Config. shuffle v X X X X 16.4
Config. keep v X X v X 23.8
Orig. shuffle v v v X X 22.9
Shuffle. keep v v X v X 27.5
W keep sh.,keep v v v v X 35.3
.02 T
1.0F
v
08F v
v
Z 0.6 ypg 2 —~
= =t
= [y
041 1
0.2F
0
0.0 ‘O 10 20 30 0
-0 100 200 300 400 600 800
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Importance of different effects in temporal spreading

» Everything slows down the spreading

» Burstiness has higher impact than topological structures

| m@mmsmuéxe
0,020 EE equal link sequence shuffled
E link sequence shuffled
[ configuration network
H time shuffled
0.015} [0 time shiffled configuration network | |
=
& 0.010
0,005}
0.000

300 500 600 700 800
tu (day)
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Interevent time
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v

Time interval between successive events 7

Distribution of 7 is P(7)

Distribution is characterized by the average (7) and the
variance o

Burstiness:

_o—(n)
o+ (7)
(a) B = —1: deterministic, (b) B = 0: Poisson, (c) B = 1:
bursty

o] I — — — — N 9
s [T T T & \ ,
o I 111 1] 1 | - ‘

A



Bursty examples:

> Response times for letters

10" [T 10" I T T 10” [rrm T
(a) g (©)
3 E E
7 10%F 10%F
|
= E E
= =
! 10 10
4 I
, Einstein o 4 10°F @ 10°F Freud Uy
o Eovd ol ool vl 10 conad vl 3ol sl 3vwd vl o

10° 10' 107 10® 10* 10° 10° 10" 10 10® 10* 10" 10" 16® 10° 10°

Response time 1, (days)

A. Vazquez PRE 2006
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Reason of bursty behavior

» Highly concentrated events
» If you pick up phone you complete more tasks

» If an old friend called you it is more probable that you call him
back soon

something

— T
1500 Time (days) 2000

—~
©
g
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Seasoning
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» Problem with day/week/year
25 s

(
or \
60+ ‘| )
| |
50 F |
X i I Bl
1 |
L 1 I ‘ | | | B
40 A | | | |
I\ |I\ | o I i
I | {
30} /" | I A e
i A Al | A TR TR
I ho Il I (V] vy
o A A N U Y
[V V| | [0 \ | | | I
1 | | 1 | |
| \ | |
wh \ | \
/ \ \ | |/ \ |
\ | \ ,
\ / \/ N\
o W, AV S N Y -




Deseasoning

v

Rescedule the events to be periodic over a period T
» Let / be an individual

» n;(t) = 1 if there is an event n;(t) = 0 if there is not
t
si(t) =Y ni(t))
t'=0
» Strength of node i over the observation period
> For a set of people A, the number of events at time t

ien

Jo et al., Circadian pattern and burstiness in mobile phone communication (2011)
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Deseasoning
» Rescaled event rate

T /T T
vt = Z m(t+kT)  sn=>_ m(t)
t=0
T*:t(tﬂrl)—t ZP/\T ¢
o<t/<t
10°

3 e
original - —
rescaled 1ol b e
: 1 ¢
L 10! wholg ~wunns
E original

! Al
8 T=1daj
/‘/ \ 10 Z dayg
28 days ‘
0 3 6 9 12 16 18 21 24 0% 104 108 102 107 100 10! -

- <>

p(t)

l4 weeks

w week

10° original
T=1day
7 days -
102 28 days ‘
10° 104 -

1
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