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SBM: Summary

v

Very flexible, generative method to model

v

Communities, but also arbitrary mixing patterns, including, for
example, bipartite, and core-periphery structures;

Able to separate noise from structure;

No resolution limit

Generalization to directed, weighted networks possible.
Structure detection is converted to parameter inference

Increasingly efficient algorithms
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Can be used to detect communities
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Growing networks

» Simulate real life

» Use minimal elements

» Do not incorporate effect what one wants to recover

» Example: simulate social network (modular)
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Growth models

» Barabasi-Albert model: Simple growth mechanism, preferential
attachment, model for Internet

» More complicated systems?
» Two version of a simple model for social networks
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Social networks

» Human relation
» Very complicated dynamics
> Not really a growth model, more a dynamics steady state

» Observations:

» Weighted network

> Large clustering coefficient (friend of friends usually know each
other)

> Not scale free

» Small world

» Granovetter: Strength of the weak ties
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Granovetter: Strength of the weak ties

» Human groups are strongly connected

» There are weak connections connecting the groups
» These weak connections mean sproadic meeting

» Important for information flow

» Example: Find a job

Granovetter, Mark S. "The strength of weak ties." American journal of sociology 78.6 (1973):
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Kumpula model

» N nodes (originally unconnected)

» (a) Randomly meet someone (low probability) global
attachment

» (b) Two friends of someone get to know each other, cyclic
closure

» (c) An already present triangle gets strengthened

JM. Kumpula, Emergence of communities in weighted networks. PRL, 99(22), 228701 (2007).
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Kumpula model

» N nodes (originally unconnected)
» (a) (with prob. p,;) random link to an unconnected node. Link
weight wy
» (with prob. py) i selects friend j with prob. proportional to the
link weight. j selects friend k similarly. Both links are
strengthened by 6. Two cases:
» (b) There is no link between i and k: create a link with pa
with weight wg
» (c) There is a link between i and k: strengthen by ¢
» (d) (with prob. py) clear the links of a node (enforce steady
state, there are more realistic versions)
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Kumpula

model: results (0 =0, 0.1, 0.5, 1.0)



http://yohm.github.io/p5js_simulations/wsn/

Kumpula model: results

FIG. 3: Ry—4 (O) and {n,) (A) as a function of 4. Results
are averaged over 10 realizations of N = 5 x 10" networks.
Error bars are measured standard deviations.
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Kumpula model: results
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FIG. 3: Ry—4 (O) and (n,} (A) as a function of §. Results
are averaged over 10 realizations of N = 5 x 10? networks.
Error bars are measured standard deviations.
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Kumpula model: results

» Very simple assumptions
» Emergence of community structure (depending on parameters)

» Good to test effects of elementary processes on global
structure

» Not apt for recovering well defined structures
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Multiplex networks: Social networks
Communication channel
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Social context




Axelrod model of dissemination of culture

Each individual is endowed with a certain culture

They have cultural needs and preferencies therein

>
>
» An individual's culture is characterised by a list of F features
» Each feature has ¢ different traits

>

Assumptions
» people are more likely to interact with others who share many
of their cultural attributes
» these interactions tend to increase the number of cultural
attributes they share (thus making them more likely to interact
again).

Axelrod 1997
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Axelrod model of dissemination of culture
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» Model

>
>

>

MOVIE

One agent k (active) is selected at random.

One of agent k's neighbours, denoted agent r (passive), is
selected at random.

nk, number of features in which agents k and r matches
Agents k and r interact with probability equal to their cultural
similarity ng, /f

The interaction consist of k copying one of the unmatched
features of agent r

In this way, agent k approaches agent r's cultural interests



Multi layer model of social networks

» Peaple have F social features with I:I
q values each

» Ego first selects feature (s)he wants @ ---@

to do some social action l J

» (S)he can do it only with people
with matching the specific feature @ ----@
» Random connection, rare i K J
» Triangles: common
» Link selection proportional to ’
weight
» Link establishment with some
probability and strengthening i j
participating links !
» Link aging N
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Link aging

> Steady state
> Relationships fade with time
» Communication is an instantaneous strengthening

something
_

© 1300 Time (days)
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Multilayer social model: egocentric networks
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Multilayer social model: Phase diagram
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http://yohm.github.io/p5js_simulations/wsn_homophily/
http://yohm.github.io/p5js_simulations/wsn_homophily/

Link prediction
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> If next link can be predicted, we can guess dynamics

» If process is known, we can rebuild the network (e.g.
preferential attachment)

» Correct missing links in ICT data
» Important for companies



Triadic closure

» Triadic closure: friends of friends get friends.
» Cycloc closure: firends at distance d get friends
» Focal closure: tie formation is related to social focus (interest,

work, etc.)
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Triadic closure in twitter

» Twitter data
» Middle size celebrity (10*—5 - 10* followers)
» Closure: New follower had link to an existing follower
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Link prediction

» Given a social network structure can we predict, which links
will be formed in the future?

» Recommendation systems: If costumer A has chosen items
x,y,z what shall we recommend?

» How to uncover a criminal network from sparse data?

» How to reconstruct the network if only partial information is
awailable?
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Supervised learning

> Artificial neural network
> Use data to teach and test
» Useful for companies, can always be updated with new data

» Black box, does not help to recover important features
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Measures

> Given two nodes

» Define a measure

» The links with the highest measure will have the largest
probability to appear

» Let us visit the zoo of measures!
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Common neighbors

» Local
» Graph distance
» Common neighbors (CN)
» Jaccard (JC)
» Adamic-Adar (AA)
> Preferential attachment (PA)

» Global

» Katz score
» Hitting time
» PageRank
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Graph distance

» Length of the shortest path

» Negated, (or inverse) to give higher
score for better guesses

» Generally not very reliable, as it
starts with value of 2 and the value
of 3 is already around average value

» Cannot distinguish between the
second neighbors
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Common neighbors

» Number of common neighbors

CN = [F(x) N T(y)|

v

I'(x) neighbors of x

|S| size of set S

In spite of its simplicity surprisingly
accurate

vy

» Use this if you have no better idea
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Jaccard’s coefficient

» Number of common neighbors
normalized by the number of total
neighbors

I r

oy M nro)
r)ur(y)l

» Normalization does not necessarily

improve results especially if k is
large

» In most cases it is worse than
common neighbors
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Adamic/Adar

» Consider all common neighbors

» Weight common neighbors with low
degree higher

» The idea behind this is that a low
degree node connects both they are
more likely to get connected

1
AA= Y ——
zel (x)N(y) |Og ’r(z)’

» Generally the best performance
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Preferential attachment

» Neighborhood size as feature value

» Rich gets richer

PA= T - T(y)]

» Far the worst

PA=5-6=30
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Katz/g
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» Consider all possible path between
x and y

» Sum them with penalty for longer
path

KS = Z lel

pEpath(x,y)

where |p| is the length of the path
> 5 < 1, but generally
B~ 0O(1072 — 107%)
» Very small 8 is similar to common
neighbors because then only paths
of length contribute

KS =3-0.13+4.01%+
+5-0.1° + 0(0.1°)
(1)



Katzg

» Consider all possible path between x and y
» Sum them with penalty for longer path

KS = Z BIP\
pEpath(x,y)

where |p| is the length of the path

» Generally excellent performance
An O(N3) method

> |t is equivalent to calculating

(I — AL —1

v

where A is the adjacency matrix, | the identity matrix
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Hitting time

» Start a random walker at x
> Measure the expected time it needs to reach y
> |t is the hitting time

HT = —Hy,

» From mediocre to worst performance
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Commute time

» Symmetrized hitting time
HT = —Hy,, — Hy x

» Much better, acceptable performance
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Normalized commute time

» Problem with hitting time that high degree nodes with high
stationary probability (7) get the walker fast irrespective of the
starting point

» Normalize with it
HT = —Hx 7, — Hy x7x

» Worse than unnormalized
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Rooted page rank

Page 37

vVvYyyvyy

Random walker starting from x

With probability 1 — « to goes on randomly

With probability « it is reset to x

Depending on o may achieve very good performance

Equivalent to
RPR=(1-a)(l —aA-D™ 17!

where Dj; = k; a diagonal matrix with the degrees



SimRank
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» Two objects are similar if they are similar to two similar objects
» Check all neighboring pairs and average similarity

» Similarity is defined in a recursive way

if x=y

otherwise

1
simRank(x, y) = { S aer(x) Lber(y) SimRank(a, b)
LCIIRINED]

» Acceptable performance



random predictor
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} graph-distance predictor
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Link predictor comparison: Common neighbors

common-neighbors predictor
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Link predictor comparison: Table

Predictor astro-ph cond-mat gr-qc hep-ph hep-th

that a random prediction is correct 0.475% 0.147% 0.341% 0.207% 0.153%
graph distance (all distance-2 pairs) 9.4 251 213 12.0 29.0
commeon neighbors 18.0 40.8 27.1 26,9 46.9
ial h 4.7 6.0 15 15.2 T4
Adamic/Adar 16.8 54.4 30.1 33.2 50.2
Jaccard 16.4 2.0 19.8 276 41.5
SimRank y =08 14.5 39.0 22.7 26.0 415
‘hitting time 6.4 237 249 3.8 133
‘hitting time—normed by stationary distribution 53 37 1.0 113 212
commute time 52 15.4 330 17.0 232
ute ti d by il distribution 53 16.0 1.0 113 16.2
rooted PageRank 10.8 27.8 330 187 291
138 39.6 352 245 4i.1
16.6 40.8 27.1 275 423
17.1 2.0 249 298 46.5
16.8 40.8 242 30.6 46.5
Katz (weighted) 3.0 213 19.8 2.4 129
13.4 544 30.1 24.0 5L9
14.5 538 30.1 325 5L5
Katz (unweighted) 10.9 41.4 374 18.7 47.7
16.8 414 374 241 494
167 414 374 248 494
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Diffusion on networks

Random walk
On lattices we know how it works.
In what sense will it be different?

What are the relevant measure for the probability distribution
of the walker?

> Why is it important?
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Diffusion on one dimensional lattice

> Master equation, lattice and arbitrary coordinates:

1 1
P(i,t+1)=P(i,t)+ zP(i—1,t)+ =P(i+ 1,t) — P(i, t)
2 2 —_—

loss

gain

P(x,t+ At) =P(x, t)+

At
+ D—X[P(x — Ax, t) —2P(x, t) + P(x + Ax, t)]

» Continuum limit: diffusion equation

OP(x,t) D82P(X, t)
ot 0x2
» Solution
1 X2
P(x,t) = e bt
47 Dt
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Diffusion on one dimensional lattice

» Continuum limit: diffusion equation

OP(x,t) B D82P(x, t)
ot 0x?

» Solution

(x) = / " xP(x, £)dx = 0

(x?) = /OO x?P(x, t)dx = 2Dt
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Random walk on lattice

» Moments of the coordinate

(x) = /OO xP(x, t)dx =0

—0o0

(x?) = /OO x2P(x, t)dx = 2Dt

—0oQ
» Probability to return to origin (Pdlya theorem):

Pret

1

1
0.34
0.19
0.145

U‘I-bwl\)l—l‘Q
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Random walk on lattice

» Expected number of distinct sites visited by the random walk

d | D

1| ~t
2 ~ t/logt
3<d|~t

» The trail of the random walk is a fractal with fractal dimension
d=2
In d = 1 the trail is self-overlapping

v

» In d = 2 it gradually fills the space

v

In d > 4 the walk does not cross itself
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Random walk on graphs

» Distance is not as important of a quantity as in lattices
» Important quantities:

» Number of visited distinct sites

» Probability of return

» Probability of finding the walker on a given node
» Probability from going one node to the other
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Random walk on Watts-Strogatz graph

» p =0: We have a one dimensional lattice

» p = 1: Random network is similar to trees upon trees, always
new regions are explored, or infinite dimension

P Interesting regime 0 < p < 1:

» Characteristic distance between two crosslink ending: £ ~1/p
> One dimensional system up to t¢ ~ &2
» Infinite dimension afterwards
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Random walk on Watts-Strogatz graph
P Interesting regime 0 < p < 1:
Characteristic distance between two crosslink ending: £ ~ 1/p
One dimensional system up to t¢ ~ &2
Infinite dimension afterwards
Number of visited distinct sites:

D: = VE(£/t€) = VEF(tp?)

const if x<«1
f(x) =
Vx oo ifx>1

>
>
| 4
>

P

d
10° /
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Random walk on graphs

Page 51

>
>
>
>
>

>

Let r be the rate of leaving a site

The walker at node i

Moves randomly to any neighbour, with the same probability
Nodes are characterized by their degree k;

In order to land on a node with degree k from a node with
degree k’ the latter must have a neighbour with degree k

The probability of going from a node with degree k' to a node
with degree k is P(k’|k)/k’, where the former is the
probability of a node with degree k’ have a neighbour with
degree k (assortativity)

Master equation (nk(t) number of walkers on nodes with
degree k)

onk(t)
ot

= —rm(t) + rk S P(K'| K)o (£) /K
"



Random walk on graphs

» Master equation (nk(t) number of walkers on nodes with
degree k)

I _ oy () + e 3 P(K ) (1)K

k/

» The first term is the loss term: walkers leave with rate r
» The gain term is proportional to

» Walking rate

» The degree of the node k (walkers may come in through k
links)

» The probability that it comes from a node with degree k’
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Random walk on graphs

» Master equation (ng(t) number of walkers on nodes with
degree k)

8nakt(_t) = —rnk(t) + rkz P(k'|k)nk/(t)/k'
K/

» For uncorrelated networks we have
k'P(k")

P(KIK) = 75

» Which leads to
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Random walk on graphs

» Master equation on uncorrelated graphs

oni(t) k
(‘;t = —rng(t) + rw Zk; nir(t)

» The stationary solution (left hand side vanishes):

h— kn
where n is the number of walkers. Or with probability
_ k1
pk - <k> N,
where py is the probability of finding the walker at a node with
degree k

Page 54



Random walk on graphs

» The probability of finding the walker at a node with degree k
_ k1
> |t is more likely to find the walkers at hubs than in a dead end

» There are more drunk people at Deak tér and at Nyugati than
e.g. at Gardonyi tér.
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