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SBM: Summary

I Very flexible, generative method to model
I Communities, but also arbitrary mixing patterns, including, for

example, bipartite, and core-periphery structures;
I Able to separate noise from structure;
I No resolution limit
I Generalization to directed, weighted networks possible.
I Structure detection is converted to parameter inference
I Increasingly efficient algorithms
I Can be used to detect communities
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Growing networks
I Simulate real life
I Use minimal elements
I Do not incorporate effect what one wants to recover
I Example: simulate social network (modular)
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Growth models

I Barabási-Albert model: Simple growth mechanism, preferential
attachment, model for Internet

I More complicated systems?
I Two version of a simple model for social networks
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Social networks

I Human relation
I Very complicated dynamics
I Not really a growth model, more a dynamics steady state
I Observations:

I Weighted network
I Large clustering coefficient (friend of friends usually know each

other)
I Not scale free
I Small world
I Granovetter: Strength of the weak ties
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Granovetter: Strength of the weak ties
I Human groups are strongly connected
I There are weak connections connecting the groups
I These weak connections mean sproadic meeting
I Important for information flow
I Example: Find a job

Granovetter, Mark S. "The strength of weak ties." American journal of sociology 78.6 (1973):

1360-1380.Page 6



Kumpula model

I N nodes (originally unconnected)
I (a) Randomly meet someone (low probability) global

attachment
I (b) Two friends of someone get to know each other, cyclic

closure
I (c) An already present triangle gets strengthened

(a) (b) (c)

JM. Kumpula, Emergence of communities in weighted networks. PRL, 99(22), 228701 (2007).
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Kumpula model
I N nodes (originally unconnected)
I (a) (with prob. pr ) random link to an unconnected node. Link

weight w0
I (with prob. pd) i selects friend j with prob. proportional to the

link weight. j selects friend k similarly. Both links are
strengthened by δ. Two cases:
I (b) There is no link between i and k : create a link with p∆

with weight w0
I (c) There is a link between i and k : strengthen by δ

I (d) (with prob. pd) clear the links of a node (enforce steady
state, there are more realistic versions)

(a) (b) (c)
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Kumpula model: results (δ = 0, 0.1, 0.5, 1.0)
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http://yohm.github.io/p5js_simulations/wsn/


Kumpula model: results
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Kumpula model: results
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Kumpula model: results

I Very simple assumptions
I Emergence of community structure (depending on parameters)
I Good to test effects of elementary processes on global

structure
I Not apt for recovering well defined structures
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Multiplex networks: Social networks
Communication channel Social context

(a) (b)
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Axelrod model of dissemination of culture

I Each individual is endowed with a certain culture
I They have cultural needs and preferencies therein
I An individual’s culture is characterised by a list of F features
I Each feature has q different traits
I Assumptions

I people are more likely to interact with others who share many
of their cultural attributes

I these interactions tend to increase the number of cultural
attributes they share (thus making them more likely to interact
again).

Axelrod 1997
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Axelrod model of dissemination of culture

I Model
I One agent k (active) is selected at random.
I One of agent k ’s neighbours, denoted agent r (passive), is

selected at random.
I nkr number of features in which agents k and r matches
I Agents k and r interact with probability equal to their cultural

similarity nkr/f
I The interaction consist of k copying one of the unmatched

features of agent r
I In this way, agent k approaches agent r ’s cultural interests

MOVIE
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Multi layer model of social networks

I Peaple have F social features with
q values each

I Ego first selects feature (s)he wants
to do some social action

I (S)he can do it only with people
with matching the specific feature

I Random connection, rare
I Triangles: common

I Link selection proportional to
weight

I Link establishment with some
probability and strengthening
participating links

I Link aging

ji

i

i

j

j

k
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Link aging

I Steady state
I Relationships fade with time
I Communication is an instantaneous strengthening
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Multilayer social model: egocentric networks
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4
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20

F
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4,

q
=
4
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Multilayer social model: Phase diagram
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http://yohm.github.io/p5js_simulations/wsn_homophily/
http://yohm.github.io/p5js_simulations/wsn_homophily/


Link prediction

I If next link can be predicted, we can guess dynamics
I If process is known, we can rebuild the network (e.g.

preferential attachment)
I Correct missing links in ICT data
I Important for companies
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Triadic closure
I Triadic closure: friends of friends get friends.
I Cycloc closure: firends at distance d get friends
I Focal closure: tie formation is related to social focus (interest,

work, etc.)
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Triadic closure in twitter
I Twitter data
I Middle size celebrity (104−5 · 104 followers)
I Closure: New follower had link to an existing follower

Comedian, TV Presenter, Actor, Musician, Filmmaker, Actor
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Link prediction

I Given a social network structure can we predict, which links
will be formed in the future?

I Recommendation systems: If costumer A has chosen items
x,y,z what shall we recommend?

I How to uncover a criminal network from sparse data?
I How to reconstruct the network if only partial information is

awailable?
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Supervised learning

I Artificial neural network
I Use data to teach and test
I Useful for companies, can always be updated with new data
I Black box, does not help to recover important features
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Measures
I Given two nodes
I Define a measure
I The links with the highest measure will have the largest

probability to appear
I Let us visit the zoo of measures!
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Common neighbors

I Local
I Graph distance
I Common neighbors (CN)
I Jaccard (JC)
I Adamic-Adar (AA)
I Preferential attachment (PA)

I Global
I Katz score
I Hitting time
I PageRank

x

y
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Graph distance

I Length of the shortest path
I Negated, (or inverse) to give higher

score for better guesses
I Generally not very reliable, as it

starts with value of 2 and the value
of 3 is already around average value

I Cannot distinguish between the
second neighbors

x

y

GD = 2
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Common neighbors

I Number of common neighbors

CN = |Γ(x) ∩ Γ(y)|

I Γ(x) neighbors of x
I |S | size of set S
I In spite of its simplicity surprisingly

accurate
I Use this if you have no better idea

x

y

CN = 3
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Jaccard’s coefficient

I Number of common neighbors
normalized by the number of total
neighbors

CN =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

I Normalization does not necessarily
improve results especially if k is
large

I In most cases it is worse than
common neighbors

x

y

CN = 3/8
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Adamic/Adar

I Consider all common neighbors
I Weight common neighbors with low

degree higher
I The idea behind this is that a low

degree node connects both they are
more likely to get connected

AA =
∑

z∈Γ(x)∩Γ(y)

1
log |Γ(z)|

I Generally the best performance

x

y

k=

k=

k=5

4

4

AA =
1

log(4)
+

1
log(4)

+
1

log(5)
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Preferential attachment

I Neighborhood size as feature value
I Rich gets richer

PA = |Γ(x)| · |Γ(y)|

I Far the worst
x

y

k=5

k=6

PA = 5 · 6 = 30
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Katzβ

I Consider all possible path between
x and y

I Sum them with penalty for longer
path

KS =
∑

p∈path(x ,y)

β|p|

where |p| is the length of the path
I β < 1, but generally
β ' O(10−2 − 10−4)

I Very small β is similar to common
neighbors because then only paths
of length contribute

x

y

x

y

β = 0.1

KS =3 · 0.13 + 4 · 0.14+

+ 5 · 0.15 +O(0.16)
(1)
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Katzβ

I Consider all possible path between x and y

I Sum them with penalty for longer path

KS =
∑

p∈path(x ,y)

β|p|

where |p| is the length of the path
I Generally excellent performance
I An O(N3) method
I It is equivalent to calculating

(I − βA)−1 − I

where A is the adjacency matrix, I the identity matrix
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Hitting time

I Start a random walker at x
I Measure the expected time it needs to reach y

I It is the hitting time

HT = −Hx ,y

I From mediocre to worst performance
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Commute time

I Symmetrized hitting time

HT = −Hx ,y − Hy ,x

I Much better, acceptable performance
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Normalized commute time

I Problem with hitting time that high degree nodes with high
stationary probability (π) get the walker fast irrespective of the
starting point

I Normalize with it

HT = −Hx ,yπy − Hy ,xπx

I Worse than unnormalized
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Rooted page rank

I Random walker starting from x

I With probability 1− α to goes on randomly
I With probability α it is reset to x

I Depending on α may achieve very good performance
I Equivalent to

RPR = (1− α)(I − αA · D−1)−1

where Dii = ki a diagonal matrix with the degrees
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SimRank

I Two objects are similar if they are similar to two similar objects
I Check all neighboring pairs and average similarity
I Similarity is defined in a recursive way

simRank(x , y) =

{
1 if x = y

γ
∑

a∈Γ(x)

∑
b∈Γ(y) simRank(a,b)

|Γ(x)|·|Γ(y)| otherwise

I Acceptable performance
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Link predictor comparison: Random prediction
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Link predictor comparison: Graph distance
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Link predictor comparison: Common neighbors
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Link predictor comparison: Table
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Diffusion on networks

I Random walk
I On lattices we know how it works.
I In what sense will it be different?
I What are the relevant measure for the probability distribution

of the walker?
I Why is it important?
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Diffusion on one dimensional lattice

I Master equation, lattice and arbitrary coordinates:

P(i , t + 1) =P(i , t) +
1
2
P(i − 1, t) +

1
2
P(i + 1, t)︸ ︷︷ ︸

gain

−P(i , t)︸ ︷︷ ︸
loss

P(x , t + ∆t) =P(x , t)+

+ D
∆t

∆x2 [P(x −∆x , t)− 2P(x , t) + P(x + ∆x , t)]

I Continuum limit: diffusion equation

∂P(x , t)

∂t
= D

∂2P(x , t)

∂x2

I Solution
P(x , t) =

1√
4πDt

e−
x2
4Dt
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Diffusion on one dimensional lattice

I Continuum limit: diffusion equation

∂P(x , t)

∂t
= D

∂2P(x , t)

∂x2

I Solution
P(x , t) =

1√
4πDt

e−
x2
4Dt

I Moments of the coordinate

〈x〉 =

∫ ∞
−∞

xP(x , t)dx = 0

〈x2〉 =

∫ ∞
−∞

x2P(x , t)dx = 2Dt
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Random walk on lattice

I Moments of the coordinate

〈x〉 =

∫ ∞
−∞

xP(x , t)dx = 0

〈x2〉 =

∫ ∞
−∞

x2P(x , t)dx = 2Dt

I Probability to return to origin (Pólya theorem):

d pret
1 1
2 1
3 0.34
4 0.19
5 0.145
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Random walk on lattice

I Expected number of distinct sites visited by the random walk

d Dt

1 ∼
√
t

2 ∼ t/ log t
3 ≤ d ∼ t

I The trail of the random walk is a fractal with fractal dimension
d = 2

I In d = 1 the trail is self-overlapping
I In d = 2 it gradually fills the space
I In d > 4 the walk does not cross itself
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Random walk on graphs

I Distance is not as important of a quantity as in lattices
I Important quantities:

I Number of visited distinct sites
I Probability of return
I Probability of finding the walker on a given node
I Probability from going one node to the other
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Random walk on Watts-Strogatz graph

I p = 0: We have a one dimensional lattice
I p = 1: Random network is similar to trees upon trees, always

new regions are explored, or infinite dimension
I Interesting regime 0 < p � 1:

I Characteristic distance between two crosslink ending: ξ ∼ 1/p
I One dimensional system up to tξ ∼ ξ2
I Infinite dimension afterwards
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Random walk on Watts-Strogatz graph
I Interesting regime 0 < p � 1:
I Characteristic distance between two crosslink ending: ξ ∼ 1/p
I One dimensional system up to tξ ∼ ξ2
I Infinite dimension afterwards
I Number of visited distinct sites:

Dt =
√
tf (t/tξ) =

√
tf (tp2)

f (x) =

{
const if x � 1
√
x if x � 1
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Random walk on graphs
I Let r be the rate of leaving a site
I The walker at node i

I Moves randomly to any neighbour, with the same probability
I Nodes are characterized by their degree ki
I In order to land on a node with degree k from a node with

degree k ′ the latter must have a neighbour with degree k

I The probability of going from a node with degree k ′ to a node
with degree k is P(k ′|k)/k ′, where the former is the
probability of a node with degree k ′ have a neighbour with
degree k (assortativity)

I Master equation (nk(t) number of walkers on nodes with
degree k)

∂nk(t)

∂t
= −rnk(t) + rk

∑
k ′

P(k ′|k)nk ′(t)/k ′
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Random walk on graphs

I Master equation (nk(t) number of walkers on nodes with
degree k)

∂nk(t)

∂t
= −rnk(t) + rk

∑
k ′

P(k ′|k)nk ′(t)/k ′

I The first term is the loss term: walkers leave with rate r
I The gain term is proportional to

I Walking rate
I The degree of the node k (walkers may come in through k

links)
I The probability that it comes from a node with degree k ′
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Random walk on graphs

I Master equation (nk(t) number of walkers on nodes with
degree k)

∂nk(t)

∂t
= −rnk(t) + rk

∑
k ′

P(k ′|k)nk ′(t)/k ′

I For uncorrelated networks we have

P(k ′|k) =
k ′P(k ′)

〈k〉

I Which leads to

∂nk(t)

∂t
= −rnk(t) + r

k

〈k〉
∑
k ′

nk ′(t)

Page 53



Random walk on graphs

I Master equation on uncorrelated graphs

∂nk(t)

∂t
= −rnk(t) + r

k

〈k〉
∑
k ′

nk ′(t)

I The stationary solution (left hand side vanishes):

nk =
k

〈k〉
n

N
,

where n is the number of walkers. Or with probability

pk =
k

〈k〉
1
N
,

where pk is the probability of finding the walker at a node with
degree k
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Random walk on graphs

I The probability of finding the walker at a node with degree k

pk =
k

〈k〉
1
N
,

I It is more likely to find the walkers at hubs than in a dead end
I There are more drunk people at Deák tér and at Nyugati than

e.g. at Gárdonyi tér.
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