Complex networks Network growth, node similarity

János Török

Department of Theoretical Physics

April 5, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

SBM: Summary

- Very flexible, generative method to model
- Communities, but also arbitrary mixing patterns, including, for example, bipartite, and core-periphery structures;

- Able to separate noise from structure;
- No resolution limit
- Generalization to directed, weighted networks possible.
- Structure detection is converted to parameter inference
- Increasingly efficient algorithms
- Can be used to detect communities

Growing networks

- Simulate real life
- Use minimal elements
- Do not incorporate effect what one wants to recover
- Example: simulate social network (modular)

Growth models

 Barabási-Albert model: Simple growth mechanism, preferential attachment, model for Internet

- More complicated systems?
- Two version of a simple model for social networks

Social networks

Human relation

- Very complicated dynamics
- Not really a growth model, more a dynamics steady state
- Observations:
 - Weighted network
 - Large clustering coefficient (friend of friends usually know each other)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

- Not scale free
- Small world
- Granovetter: Strength of the weak ties

Granovetter: Strength of the weak ties

- Human groups are strongly connected
- There are weak connections connecting the groups
- These weak connections mean sproadic meeting
- Important for information flow
- Example: Find a job

Granovetter, Mark S. "The strength of weak ties." American journal of sociology 78.6 (1973):

Kumpula model

- N nodes (originally unconnected)
- (a) Randomly meet someone (low probability) global attachment
- (b) Two friends of someone get to know each other, cyclic closure
- ► (c) An already present triangle gets strengthened

イロト 不得 トイヨト イヨト

JM. Kumpula, Emergence of communities in weighted networks. PRL, 99(22), 228701 (2007).

Kumpula model

- N nodes (originally unconnected)
- (a) (with prob. p_r) random link to an unconnected node. Link weight w₀
- (with prob. p_d) i selects friend j with prob. proportional to the link weight. j selects friend k similarly. Both links are strengthened by δ. Two cases:
 - (b) There is no link between i and k: create a link with p_∆ with weight w₀
 - (c) There is a link between *i* and *k*: strengthen by δ
- (d) (with prob. p_d) clear the links of a node (enforce steady state, there are more realistic versions)

Kumpula model: results ($\delta = 0, 0.1, 0.5, 1.0$)

Kumpula model: results

FIG. 3: $R_{k=4}$ (\Box) and $\langle n_s \rangle$ (Δ) as a function of δ . Results are averaged over 10 realizations of $N = 5 \times 10^4$ networks. Error bars are measured standard deviations.

◆□> <個> <=> <=> <=> <=> <=> <<</p>

Kumpula model: results

FIG. 3: $R_{k=4}$ (\Box) and $\langle n_s \rangle$ (\triangle) as a function of δ . Results are averaged over 10 realizations of $N = 5 \times 10^4$ networks. Error bars are measured standard deviations.

Page 11

Kumpula model: results

- Very simple assumptions
- Emergence of community structure (depending on parameters)

・ロト ・ 同ト ・ 三ト ・ 三 ・ つへの

- Good to test effects of elementary processes on global structure
- Not apt for recovering well defined structures

Multiplex networks: Social networks

Communication channel

Social context

Axelrod model of dissemination of culture

- Each individual is endowed with a certain culture
- They have cultural needs and preferencies therein
- ► An individual's culture is characterised by a list of *F* features
- Each feature has q different traits
- Assumptions
 - people are more likely to interact with others who share many of their cultural attributes
 - these interactions tend to increase the number of cultural attributes they share (thus making them more likely to interact again).

(日) (同) (三) (三) (三) (0,0)

Axelrod 1997

Axelrod model of dissemination of culture

Model

- One agent k (active) is selected at random.
- One of agent k's neighbours, denoted agent r (passive), is selected at random.
- n_{kr} number of features in which agents k and r matches
- Agents k and r interact with probability equal to their cultural similarity n_{kr}/f

・ロト ・ 同ト ・ 三ト ・ 三 ・ つへの

- The interaction consist of k copying one of the unmatched features of agent r
- In this way, agent k approaches agent r's cultural interests

MOVIE

Multi layer model of social networks

- Peaple have F social features with q values each
- Ego first selects feature (s)he wants to do some social action
- (S)he can do it only with people with matching the specific feature
- Random connection, rare
- Triangles: common
 - Link selection proportional to weight
 - Link establishment with some probability and strengthening participating links
 - Link aging

Link aging

- Steady state
- Relationships fade with time
- Communication is an instantaneous strengthening

イロト 不得下 不良下 不良下

э

Multilayer social model: egocentric networks

Multilayer social model: Phase diagram

Page 19

Link prediction

- If next link can be predicted, we can guess dynamics
- If process is known, we can rebuild the network (e.g. preferential attachment)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

- Correct missing links in ICT data
- Important for companies

Triadic closure

- > Triadic closure: friends of friends get friends.
- Cycloc closure: firends at distance d get friends
- Focal closure: tie formation is related to social focus (interest, work, etc.)

Triadic closure in twitter

- Twitter data
- Middle size celebrity $(10^4 5 \cdot 10^4 \text{ followers})$
- Closure: New follower had link to an existing follower

Comedian, TV Presenter, Actor, Musician, Filmmaker, Actor 2 + (2 +) 2 - OQC

Link prediction

- Given a social network structure can we predict, which links will be formed in the future?
- Recommendation systems: If costumer A has chosen items x,y,z what shall we recommend?
- ▶ How to uncover a criminal network from sparse data?
- How to reconstruct the network if only partial information is awailable?

Supervised learning

- Artificial neural network
- Use data to teach and test
- Useful for companies, can always be updated with new data

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Black box, does not help to recover important features

Measures

- Given two nodes
- Define a measure
- The links with the highest measure will have the largest probability to appear
- Let us visit the zoo of measures!

Common neighbors

Local

- Graph distance
- Common neighbors (CN)
- Jaccard (JC)
- Adamic-Adar (AA)
- Preferential attachment (PA)
- Global
 - Katz score
 - Hitting time
 - PageRank

イロト イボト イヨト イヨト 一日

Graph distance

Length of the shortest path

- Negated, (or inverse) to give higher score for better guesses
- Generally not very reliable, as it starts with value of 2 and the value of 3 is already around average value
- Cannot distinguish between the second neighbors

GD = 2

イロト 不得下 不良下 不良下

Common neighbors

Number of common neighbors

$$CN = |\Gamma(x) \cap \Gamma(y)|$$

- \blacktriangleright $\Gamma(x)$ neighbors of x
- \blacktriangleright |S| size of set S
- In spite of its simplicity surprisingly accurate
- Use this if you have no better idea

CN = 3

イロト イタト イヨト イヨト 一日

Jaccard's coefficient

 Number of common neighbors normalized by the number of total neighbors

$$CN = rac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}$$

- Normalization does not necessarily improve results especially if k is large
- In most cases it is worse than common neighbors

$$CN = 3/8$$

イロト イボト イヨト イヨト 一日

Adamic/Adar

Consider all common neighbors

- Weight common neighbors with low degree higher
- The idea behind this is that a low degree node connects both they are more likely to get connected

$$AA = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}$$

イロト イボト イヨト イヨト 一日

k=5

Generally the best performance

Preferential attachment

Neighborhood size as feature value

Rich gets richer

$$PA = |\Gamma(x)| \cdot |\Gamma(y)|$$

Far the worst

 $PA = 5 \cdot 6 = 30$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$Katz_{\beta}$

- Consider all possible path between x and y
- Sum them with penalty for longer path

$$\mathcal{KS} = \sum_{p \in \text{path}(x,y)} \beta^{|p|}$$

where |p| is the length of the path

•
$$\beta < 1$$
, but generally
 $\beta \simeq \mathcal{O}(10^{-2} - 10^{-4})$

 Very small β is similar to common neighbors because then only paths of length contribute

$Katz_{\beta}$

- Consider all possible path between x and y
- Sum them with penalty for longer path

$$\mathcal{KS} = \sum_{\boldsymbol{p} \in \text{path}(\boldsymbol{x}, \boldsymbol{y})} \beta^{|\boldsymbol{p}|}$$

where |p| is the length of the path

- Generally excellent performance
- ▶ An $\mathcal{O}(N^3)$ method
- It is equivalent to calculating

$$(I - \beta A)^{-1} - I$$

・ロト ・ 同ト ・ 三ト ・ 三 ・ つへの

where A is the adjacency matrix, I the identity matrix

Hitting time

- Start a random walker at x
- Measure the expected time it needs to reach y
- It is the hitting time

$$HT = -H_{x,y}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

From mediocre to worst performance

Commute time

$$HT = -H_{x,y} - H_{y,x}$$

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● ● ●

Much better, acceptable performance

Normalized commute time

- Problem with hitting time that high degree nodes with high stationary probability (\pi) get the walker fast irrespective of the starting point
- Normalize with it

$$HT = -H_{x,y}\pi_y - H_{y,x}\pi_x$$

Worse than unnormalized
Rooted page rank

- Random walker starting from x
- With probability 1α to goes on randomly
- With probability α it is reset to x
- Depending on α may achieve very good performance

Equivalent to

$$RPR = (1 - \alpha)(I - \alpha A \cdot D^{-1})^{-1}$$

where $D_{ii} = k_i$ a diagonal matrix with the degrees

SimRank

- Two objects are similar if they are similar to two similar objects
- Check all neighboring pairs and average similarity
- Similarity is defined in a recursive way

$$\operatorname{simRank}(x, y) = \begin{cases} 1 & \text{if } x = y \\ \gamma \frac{\sum_{a \in \Gamma(x)} \sum_{b \in \Gamma(y)} \operatorname{simRank}(a, b)}{|\Gamma(x)| \cdot |\Gamma(y)|} & \text{otherwise} \end{cases}$$

Link predictor comparison: Random prediction

Link predictor comparison: Graph distance

Link predictor comparison: Common neighbors

э

Link predictor comparison: Table

Predictor		astro-ph	cond-mat	gr-qc	hep-ph	hep-th
probability that a random prediction is correct		0.475%	0.147%	0.341%	0.207%	0.153%
graph distance (all distance-2 pairs)		9.4	25.1	21.3	12.0	29.0
common neighbors		18.0	40.8	27.1	26.9	46.9
preferential attachment		4.7	6.0	7.5	15.2	7.4
Adamic/Adar		16.8	54.4	30.1	33.2	50.2
Jaccard		16.4	42.0	19.8	27.6	41.5
SimRank	$\gamma = 0.8$	14.5	39.0	22.7	26.0	41.5
hitting time		6.4	23.7	24.9	3.8	13.3
hitting time-normed by stationary distribution		5.3	23.7	11.0	11.3	21.2
commute time		5.2	15.4	33.0	17.0	23.2
commute time-normed by stationary distribution		5.3	16.0	11.0	11.3	16.2
rooted PageRank	$\alpha = 0.01$	10.8	27.8	33.0	18.7	29.1
	$\alpha = 0.05$	13.8	39.6	35.2	24.5	41.1
	$\alpha = 0.15$	16.6	40.8	27.1	27.5	42.3
	$\alpha = 0.30$	17.1	42.0	24.9	29.8	46.5
	$\alpha = 0.50$	16.8	40.8	24.2	30.6	46.5
Katz (weighted)	$\beta = 0.05$	3.0	21.3	19.8	2.4	12.9
	$\beta = 0.005$	13.4	54.4	30.1	24.0	51.9
	$\beta = 0.0005$	14.5	53.8	30.1	32.5	51.5
Katz (unweighted)	$\beta = 0.05$	10.9	41.4	37.4	18.7	47.7
	$\beta = 0.005$	16.8	41.4	37.4	24.1	49.4
	$\beta = 0.0005$	16.7	41.4	37.4	24.8	49.4

Diffusion on networks

Random walk

- On lattices we know how it works.
- In what sense will it be different?
- What are the relevant measure for the probability distribution of the walker?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

Why is it important?

Diffusion on one dimensional lattice

Master equation, lattice and arbitrary coordinates:

$$P(i, t+1) = P(i, t) + \underbrace{\frac{1}{2}P(i-1, t) + \frac{1}{2}P(i+1, t)}_{\text{gain}} - \underbrace{P(i, t)}_{\text{loss}}$$

$$P(x, t + \Delta t) = P(x, t) + D\frac{\Delta t}{\Delta x^2} [P(x - \Delta x, t) - 2P(x, t) + P(x + \Delta x, t)]$$

Continuum limit: diffusion equation

$$\frac{\partial P(x,t)}{\partial t} = D \frac{\partial^2 P(x,t)}{\partial x^2}$$

Solution

$$P(x,t) = \frac{1}{\sqrt{4\pi Dt}} e^{-\frac{x^2}{4Dt}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Diffusion on one dimensional lattice

Continuum limit: diffusion equation

$$\frac{\partial P(x,t)}{\partial t} = D \frac{\partial^2 P(x,t)}{\partial x^2}$$

Solution

$$P(x,t) = rac{1}{\sqrt{4\pi Dt}}e^{-rac{x^2}{4Dt}}$$

Moments of the coordinate

$$\langle x \rangle = \int_{-\infty}^{\infty} x P(x, t) dx = 0$$

$$\langle x^{2} \rangle = \int_{-\infty}^{\infty} x^{2} P(x, t) dx = 2Dt$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Random walk on lattice

Moments of the coordinate

$$\langle x \rangle = \int_{-\infty}^{\infty} x P(x, t) dx = 0$$

 $\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 P(x, t) dx = 2Dt$

Probability to return to origin (Pólya theorem):

d	p _{ret}		
1	1		
2	1		
3	0.34		
4	0.19		
5	0.145		

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● ● ●

Random walk on lattice

Expected number of distinct sites visited by the random walk

$$\begin{array}{c|c}
d & D_t \\
\hline
1 & \sim \sqrt{t} \\
2 & \sim t/\log t \\
3 \le d & \sim t
\end{array}$$

The trail of the random walk is a fractal with fractal dimension d = 2

- ln d = 1 the trail is self-overlapping
- In d = 2 it gradually fills the space
- ln d > 4 the walk does not cross itself

- Distance is not as important of a quantity as in lattices
- Important quantities:
 - Number of visited distinct sites
 - Probability of return
 - Probability of finding the walker on a given node

Probability from going one node to the other

Random walk on Watts-Strogatz graph

- p = 0: We have a one dimensional lattice
- p = 1: Random network is similar to trees upon trees, always new regions are explored, or infinite dimension
- Interesting regime 0 :
 - Characteristic distance between two crosslink ending: $\xi \sim 1/p$

- One dimensional system up to $t_{\xi} \sim \xi^2$
- Infinite dimension afterwards

Random walk on Watts-Strogatz graph

- Interesting regime 0 :
- Characteristic distance between two crosslink ending: $\xi \sim 1/p$
- One dimensional system up to $t_{\xi} \sim \xi^2$
- Infinite dimension afterwards
- Number of visited distinct sites:

- Let r be the rate of leaving a site
- The walker at node i
- Moves randomly to any neighbour, with the same probability
- Nodes are characterized by their degree k_i
- In order to land on a node with degree k from a node with degree k' the latter must have a neighbour with degree k
- The probability of going from a node with degree k' to a node with degree k is P(k'|k)/k', where the former is the probability of a node with degree k' have a neighbour with degree k (assortativity)
- Master equation (n_k(t) number of walkers on nodes with degree k)

$$\frac{\partial n_k(t)}{\partial t} = -rn_k(t) + rk\sum_{k'} P(k'|k)n_{k'}(t)/k'$$

・ロト ・ 同ト ・ 三ト ・ 三 ・ つへの

 Master equation (n_k(t) number of walkers on nodes with degree k)

$$\frac{\partial n_k(t)}{\partial t} = -rn_k(t) + rk\sum_{k'} P(k'|k)n_{k'}(t)/k'$$

- The first term is the loss term: walkers leave with rate r
- The gain term is proportional to
 - Walking rate
 - The degree of the node k (walkers may come in through k links)
 - The probability that it comes from a node with degree k'

 Master equation (n_k(t) number of walkers on nodes with degree k)

$$\frac{\partial n_k(t)}{\partial t} = -rn_k(t) + rk\sum_{k'} P(k'|k)n_{k'}(t)/k'$$

For uncorrelated networks we have

$$P(k'|k) = rac{k'P(k')}{\langle k
angle}$$

Which leads to

$$rac{\partial n_k(t)}{\partial t} = -rn_k(t) + rrac{k}{\langle k
angle} \sum_{k'} n_{k'}(t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Master equation on uncorrelated graphs

$$rac{\partial n_k(t)}{\partial t} = -rn_k(t) + rrac{k}{\langle k
angle} \sum_{k'} n_{k'}(t)$$

• The stationary solution (left hand side vanishes):

$$n_k = rac{k}{\langle k
angle} rac{n}{N},$$

where n is the number of walkers. Or with probability

$$p_k = rac{k}{\langle k
angle} rac{1}{N},$$

where p_k is the probability of finding the walker at a node with degree k

The probability of finding the walker at a node with degree k

$$p_k = rac{k}{\langle k
angle} rac{1}{N},$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

It is more likely to find the walkers at hubs than in a dead end
 There are more drunk people at Deák tér and at Nyugati than e.g. at Gárdonyi tér.