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Preferential attachment

Page 2

v

Start with a seed of small network (e.g. clique)
Attach new nodes to the existing network.

If attached randomly, random network with exponential degree
distribution

Popular ones have higher chance to get new connections

New ones attach with probability proportional to existing
degree

This is preferential attachment

In networks it is called the Barabasi-Albert model



Barabasi-Albert model

» Probability that a node connects to a node is proportional to
the degree of the target node:

» Parameter m number of links the new node makes
» Published in 1999

» Extensive impact on science
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Barabasi-Albert model

» Empirical degree distribution: power law
» Exponent independent of m
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Barabasi-Albert model: Degree distribution calculation
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Number of nodes in time t, N(t) =t
Number of links at time t, L(t) = mt
Average degree at time t, (k)(t) =2m/N

Number of nodes with degree k at time t

N(k,t) = Np(k,t) = tp(k,t)

Preferential attachment:

k k

M(k) Py

Number of links added to nodes of degree k after the arrival of

a new node

{8l

Preferential attachment

X

tp(k, t)

Total number of k nodes

X

m

New links

k
= Zp(k. t
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Barabasi-Albert model: Degree distribution calculation

» Number of links added to nodes of degree k after the arrival of

a new node
k k
Py X tp(k,t) X m = = p(k,t)
2 ——— ~~ 2
\\n’,‘t/ New links

Preferential attachment Total number of k nodes

» Discrete time Master equation

(4 1)p(k, £ 1) — to(k,£) = L p(k —1,1) — & p(k. 1

Page 6



Barabasi-Albert model: Degree distribution calculation

» Discrete time Master equation

(4 (k. £ 1) — to(k,£) = L p(k —1,1) — & p(k. 1

» For k = m it is different, the gain term is the newly arriving
node:

(t+1)p(m, t+1) — tp(m,t) =1 — %p(m, t)
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Barabasi-Albert model: Degree distribution calculation
> We are interested in the steady state
Jim p(k, t) = p(k)

» Steady state solution of the Master equation:

k—1 k
plk) = “==p(k — 1) — = p(k)
2 2
m
p(m) =1-— EP(’")
» Recursive relations
(k)—u (k—1) for k >
p i 2p or m
2

p(m) = p— otherwise
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Barabasi-Albert model: Degree distribution calculation

» Solution

2m(m+1)

PU) = ks Dk +2)

> Asymptotically
p(k) ~ k=3

» Independent of m
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Initial Attractiveness Model
» Even nodes without connections can be popular
» Often cited example: Citation networks (paper with no
citation can be cited)
A+ ki

)= 255 %

» Asymptotically p(k) ~ k=7
» v =2+ A/m tunable exponent

log P(q)

logq

Dorogovtsev, Mendes, Samukhin, Phys. Rev. Lett. 85, 4633 (2000)
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Assortativity in Barabasi-Albert model

No calculations here :-)
» Disassortative regime 7y < 3, - m< A<O0:
» Neutral regime v =3, A=0
> Weak assortative regime v >3, A>0
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Clustering in Barabéasi-Albert model

Calculations :-!

» Definition
2N(A)

k(k —1)
» Probability that nodes i and j are connected: P(i,})

C =
» Probability that nodes i, j, / form a triangle
Ni(8) = PG )PGL P, T)
iJ

» We need to calculate P(i, )

» For this we will need the time evolution of the degree of the
nodes
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Time evolution in Barabasi-Albert model
» The time evolution of the degree of the nodes

Ok K

» Time is measured in units of nodes added, so at time t there
are N = t number of nodes and L = mt number of links

> So
Ok; ki

ot OC2t

» Solution
ki(t) = my/t/t;j ~ t}/?
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Time evolution in Barabasi-Albert model

» The time evolution of the degree of the nodes
ki(t) = m\/t/t; ~ t}/2

> Advantage of the first comers!

> Very often one can take t; =/
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Clustering in Barabéasi-Albert model

» Assume that t; < t; (i came first)

mki(t)) _  ki(t))

P(i,j) = mN(ki(t;)) = Sk m 2mt,

» We know the time evolution of k;(t;)
ki(tj) = my\/tj/t;
» From where we get
P(i.j) = 5 (tit) "

» Huhh... It is symmetric in i and !
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Clustering in Barabéasi-Albert model

» Back to the number of triangles:
Z P 7./ (/ I) -

= ? Z (65) "2 () (at) 2

3

titj
m N 1 N
a2

» For large times N — oo

l‘l-‘|_l
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Clustering in Barabéasi-Albert model

» So we have the number of triangles:

3
Ni(A) = —

= log? N
8l &

> We also know that
k/(t) = my/ N/l'/ SO k/(k/ — 1) ~ m2N/t/
» Finally the clustering coefficient is

_ 2%’—,3 log? N _ TlogzN
ki(kj — 1) 8 N

» For large networks N — oo the clustering vanishes C — 0
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Clustering in Barabéasi-Albert model

» The clustering coefficient for BA networks
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Other models

Linear growth, linear pref. attachment

Nonlinear preferential attachment
Tk~ kg

Asymptotically linear pref. attachment
I(k;)~a.k; as k;—o=

Initial attractiveness
M(k)~A+k,
Accelerating growth (k)—¢*
constant initial attractiveness

Internal edges with probab. p

Rewiring of edges with probab. g

© internal edges
or removal of ¢ edges

Gradual aging
k) ~ki(r—1)™"
Multiplicative node fitness
T~ ki

Edge inheritance

Copying with probab. p
Redirection with probab. r
‘Walking with probab. p
Attaching to edges
p directed internal edges

Page 10 T0kede) =k +N) (ke + 1)

y=3

no scaling for a=1
y—2ifa.—=
y—oo if au—0

y=2if A=0
y—oe if Ao

y=15if 6—1
y—2 if 80
y=2if

1—p+m

=T am

Yoo if p.g.m—0

y—2if c—oo
y—om if e——1
Y2 if s —o
y—= if 1
—1-c

Pk —k
]

d
Pk)= k—_,,ln(ﬂk..)
y=(2=-p)i(1=p)
y=1+1Ur
y=2 forp>p,
y=3

Yin=24+ph
Yow=1+(1=p) "+ up/(1-p)
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Gasometer Oberhausen
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Random graphs/networks

» Generative models

» randomly generating observable quantities

» known examples:
» Erdés-Rényi, or random graph model — no structure
> Watts—Strogatz model — small world property
» Configuration model — degree distribution

> Stochastic Block Models (SBM)

» will be detailed today

P> community structure

» hierarchical structure

» Latent Space Models

» nodes live in a latent space

» link properties depend on
vertex-vertex proximity
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Random graphs/networks
» Growing networks

>

>
>
>
>

Kumpula,
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networks change as function of time
real life processes can be incorporated (realistic models)
stationary state representative of network
difficult to tune properties
examples:
> Barabasi-Albert model (preferential attachment)
» Kumpula model (will be detailed today)

Jussi M., et al. PRL 99 (2007): 228701,



Block models

] /e
4@ Y
> Why? g '..Q 9 .
» Adjacency matrix i
» Communities ;
» Block structure I
1 X
Community structure in networks adjacency matrix
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Stochastic Block Models (SBM)

» Community structure

» Multi layer network (nodes are labeled)

Block matrix
Bl B2

‘ I =4 B1 Py Prp
B2 Py Pyp
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Multilayer, multiplex networks

Multiplex Multi layer

links are colored nodes are colored
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Multi layer representation

» Different layers (parents, children)
» Intra-layer links (parents — children)
» P;; depends on the layers

» Here Pjj=1 special case
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Link probability P;

Page 28

» Intra-group links with high probability but not 1 (not
everybody knows each other

» Inter-group links with much lower probability



Link probability P;

» Groupwise (blockwise) probability (i, refers to groups)

» P;; intra-group probability high

» Pj inter-group probability low

» Stochastic equivalence: Probabilities for all links within a block
are the same.
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Generative models

» Given N nodes
» Define probability distributions for P(G|6), where

» G is a network instance
» ( set of parameters describing the edge configurations

» Generate:

» Given 6 a network instance G can be generated
» Inference:

» Given a network G we identify 6 that produces it

P(G|0) <=>[Generation]|[Inference] G = (V, E)
—— —_——

model data
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Notation

Number of nodes: N
Indexes for nodes: u, v
Adjacency matrix: A,y
Number of blocks: K

Indexes for blocks: i, j

Link probability between groups: Pj
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Stochastic Block Models (SBM)
Definition of 6:
> K: number of groups in the model
» z: a N dimensional vector indexing to which group a node
belongs to. E.g. z(i) € [1, K] gives the group index of node i.
» Pj: a K x K matrix describing the probability that a vertex of
group i is connected to a vertex of group j.

Note?:

Pj;: gives the probability that vertexes of group i are connected.
Note?:

Graphs of all groups are Erdés-Rényi random graphs
Note?:

Alternative definition: 0 = {K,z, P;j} = {K,s, P;j}, where s is a
K dimensional vector with the size of the group as value. Of course
K
s(i)=N
i=1

1
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Example: N=50, K=5, s = {10,10,10,10,10}

Generation
Erdés-Rényi graph

stochastic block matrix random graph

All examples: Aaron Clauset: Network Analysis and Modeling,
CSCl 5352, Lecture 16
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Example: N=50, K=5, s = {10,10,10,10,10}
Erdés-Rényi graph

'.Q‘e.
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Example: N=50, K=5, s = {10,10,10,10,10}

Assortative communities
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5, s = {10, 10,10, 10, 10}
Ordered communities

K:

50,

Example: N

periphery structure

Core-
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SBM: Degree distribution

» All groups are ER subgraph with Poisson degree distribution

» Resulting degree distribution is a mixture of Poissonians
K

E[nlz(n)=j]1 = s(i)P;

i=1
The expected degree of a node n in group J.

Example for wide distribution

Pk 2K

degrea, k.
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Generation

» Analyze parameter space

P Test for desired quantities, e.g. degree distribution, modularity,
assortativity.

Run parameter scan, and measure quantities
Draw a phase diagram
For practical use choose desired parameters

vvyyy

Nowdays: Estimate it with neural network

e.g. Adaptive coevolutionary networks:

0.6 T /'os'cillzuory

0.5 / J
041 healthy / 7

W03t / G
02 / 5
/ -
01 —— ]
il endemic
A" . s
0 0.002 0.004 0.006 0.008

V4
T Gross, B Blasius - Journal of the Royal Society Interface, 2008
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SBM: Inference

Page 39

» How to guess 6 if we want to model a system with given
characteristics?

» To be determined: K, s, Pj;. Total:

;1< F(K-1)+K(K-1)/2+ I;: = K(K +3)/2
S P,‘j, I#j fi

» Brute force will not work
» Maximum likelihood estimation

> estimate the parameters of a stochastic model such that they

maximize the likelihood of obtaining the predefined
observations.

» given the value K the task is to estimate the values of z, and

Pj



Maximum likelihood: Example

» We have four nodes and the network is a square

> We want to use the Erd6s-Rényi model

» What is p for which we get the square with the maximum
likelihood?

» Obviously it is p=2/3. But we can get anything like:
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SBM: Maximum likelihood

» Likelihood function: Calculate the probability of having an
edge between nodes u, v if there was an edge, or the
probability of not having an edge if there was none:

£(6IM,z) =[] Pltwvie] [] {1 Pl(u )]},

(u,v)€E (u,v)€E

where P[(u, v)|0] is the probability of generating an edge
between nodes u, v.

» The number of possible links between groups:

Ni — 5iSj if i 7§J
YU si(si—1)/2 ifi=j

» Expected number of links between groups is denoted by Ej
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SBM: Maximum likelihood

It is obvious that the maximum is when P; = Ej;/Nj;:

L(GIM,z)= [ Plw.v)Io] ] {1-Pl(u,v)I6]}

(u,v)EE (u,v)¢E

SIONC
ij Nij N

It is customary to calculate the log:

log £(G|M,z) =) [Ejlog Ejj + (Nj — Ej) log(Nj — Ej) — Nijlog Ny]
ij
» What does £ mean?
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SBM: Likelihood example

- - -y -
/7 \ 7 \ P \\I \
/ / 4
| \ \ ( |

/ / |
\ \ \
\__,/ \__,/ \.._____//\\_I

Lpaa = 0.000244 . ..

Lyoon = 0.043304 ...
I Lieq = —8.3178....

In Lgooq = —3.1395...

Myaq | red  blue

Megaod | red blue
red | 4/6 2/8

red | 3/3 1/9
blue | 1/9  3/3 blue | 2/8 1/1
E-\ Ei E..\ Ni—Eij
£(GIM.2) = (f) (1_U>
1:[ N N;
3)\° 3\% /1\'/8\°
— (2 12 = b .13 0° =0.0433...
) (3 () () oo
—— =1

=1
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SBM: Likelihood meaning

- - - e, -~

V4 \N 7 \ // \\/ \

/ /

. M b M'
/ / |

\ \ \

~_-7 27 \--.___.//\\_/

Lgood = 0.043304 . .. Lpag = 0.000244 . ..
I Lyo0d = —3.1395 ... In Lpoq = —8.3178...
Mggoa | red blue Myaq | red  blue
red | 3/3 1/9 red | 4/6 2/8
blue | 1/9 3/3 blue | 2/8 1/1

» Loood = 177 - Lyaq: The good partition is 177 times more
likely to generate the original data than the bad one.
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SBM: Optimizing the likelihood

Page 45

» For given K we may optimize the partition, see below.

» Optimizing K: problem — with increasing K the number of fit
parameters increase as well — better fit

» Limiting case K = N, P;; = Aj;, — perfect fit, and L =1
» Some knowledge is required from the system to estimate K



SBM: Problems

» SBM: Nodes in one block have similar degrees

» Good example: egocentric network
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SBM: Zachary karate club

Page 47

» Social partition, vs. SBM partition

» Likelihood values

IMrso cial

A (17)

B (17)

A(17)
B (17)

35/136
11/289

11/289
32/136

A (17
B (17)

social division, In £ = —198.50

» SBM is 108 times more likely!

0.2574
0.0381

0.0381
0.2353

Mgy | A (5) B (29)
A(5)| 5/10  54/145
B (29) | 54/145 19/406
A (5) ] 05000 0.3724
B (20) | 0.3724  0.0468
SBM division, In £ = —179.39




Degree corrected SBM: null model

» Logarithm of likelihood, leaving out constant factors:
) Eii
log £ = Z Ejlog Y

RiKj
y "

where k; is the number of stubs in group i
» Similar to the definition of modularity.

» Null model is not Erd8s-Rényi but a network with the expected
degree sequence.

Page 48



Degree corrected SBM: Results

Zachary karate club

degree corrected SBM

SBM
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Degree corrected SBM: Algorithm

» In principle: Given K, calculate £ for all possible divisions and
select the one with the largest value.

» This is impossible ~ (}/\é)
» Optimization in a multi dimensional space

» Separate field of research
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Optimization
Methods:

> Gradient (greedy):
» Always decrease the path length
» Fast, but gets trapped in a local minimum

» Simulated annealing:
» define elementary step
» decrease temperature slowly
> if energy is decreased by move — do it
» allow for increase of energy with probability proportional to

P~ exp(—AE/T)

%3 256D
Temperature
4

t » Time
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Simulated annealing for SBM

Elementary step

» Ergodic: able to reach all states, time and ensemble averages
are the same

Non ergodic Ergodic Ergodic

» e.g. transfer a node from block i to j
» long self averaging times (middle example)
» clever choice of elementary step

Other name: Markov Chain Monte Carlo
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Simulated annealing for SBM

Elementary step

» Transfer a node u from i to j, (k is a randomly chosen block)

Nix + €

p(i — jlk) = Ne + cK

where Ny is the number of links between groups i and k and
N the links in block k. € > 0 a free parameter. This tests
how much v is attached to k

» The transition probability is thus:

e—ﬁmogizkpﬁp("—UIk) 1}
T
>k PP — ilk)

where 3 = 1/T inverse temperature, p; is the fraction of
neighbors of node u belonging to block k.

w(u,i—>j):min{
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Simulated annealing for SBM

Elementary step

» Transfer a node u from i to j, (k is a randomly chosen block)

Ny + ¢

p(i — jlk) = Ne 12K

» The transition probability is thus:

e—ﬁAIogﬁZk pip(i — jlk) 1}

(o1 +5) = min{ > PLPG = iR’

» 3 = oo: greedy algorithm.
» Slowly increase 3: simulated annealing

» An efficient C++ implementation of the algorithm described
here is freely available as part of the graph-tool Python library
at http://graph-tool.skewed.de (Peixoto, 2014)
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http://graph-tool.skewed.de

SBM: Optimal selection for K

> [ grows with K

> asymptotic increase log £ ~ (K — 1)?

> Use log £* = log £ — (K — 1)? which is expected to become a
constant for large K

» e.g.: simulated data s = (250, 250, 250, 250), px oc k11, for
k € [kmina kmax]

» Graph B=K

—8.4
—8.6
—8.8
-9.0
-9.2
—9.4
-9.6

=
!

2
|

&
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SBM: Optimal selection for K

x10°

_84 (— T T T T T
. -s6}
? -8.8+
m 90T L controls the precision of
= 9.2t - .
& o4l the likelihood function

—9.6 |
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SBM: Summary

v

Very flexible, generative method to model

v

Communities, but also arbitrary mixing patterns, including, for
example, bipartite, and core-periphery structures;

Able to separate noise from structure;

No resolution limit

Generalization to directed, weighted networks possible.
Structure detection is converted to parameter inference

Increasingly efficient algorithms

vVvyvyVvVvyy

Can be used to detect communities
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SBM: Suggested reading

> B. Karrer and M. E. J. Newman, Degree-corrected block
modeling, Physical Review E 83, 016107 (2011)

» T.P. Peixoto, Efficient Monte Carlo and greedy heuristic for
the inference of stochastic block models, Physical Review E 89
(1), 012804 (2014)

» T.P. Peixoto, Hierarchical Block Structures and
High-Resolution Model Selection in Large Networks, Physical
Review X 4, 011047 (2014)
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Growing networks

» Simulate real life

» Use minimal elements

» Do not incorporate effect what one wants to recover

» Example: simulate social network (modular)
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Growth models

» Barabasi-Albert model: Simple growth mechanism, preferential
attachment, model for Internet

» More complicated systems?
» Two version of a simple model for social networks
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Social networks

» Human relation
» Very complicated dynamics
> Not really a growth model, more a dynamics steady state

» Observations:

» Weighted network

> Large clustering coefficient (friend of friends usually know each
other)

> Not scale free

» Small world

» Granovetter: Strength of the weak ties
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Granovetter: Strength of the weak ties

» Human groups are strongly connected

» There are weak connections connecting the groups
» These weak connections mean sproadic meeting

» Important for information flow

» Example: Find a job
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Kumpula model

» N nodes (originally unconnected)

» (a) Randomly meet someone (low probability) global
attachment

» (b) Two friends of someone get to know each other, cyclic
closure

» (c) An already present triangle gets strengthened
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Kumpula model

» N nodes (originally unconnected)
» (a) (with prob. p,;) random link to an unconnected node. Link
weight wy
» (with prob. py) i selects friend j with prob. proportional to the
link weight. j selects friend k similarly. Both links are
strengthened by 6. Two cases:
» (b) There is no link between i and k: create a link with pa
with weight wg
» (c) There is a link between i and k: strengthen by ¢
» (d) (with prob. py) clear the links of a node (enforce steady
state, there are more realistic versions)
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Page 65

Kumpula

model: results (0 =0, 0.1, 0.5, 1.0)



http://yohm.github.io/p5js_simulations/wsn/

Kumpula model: results

FIG. 3: Ry—4 (O) and {n,) (A) as a function of 4. Results
are averaged over 10 realizations of N = 5 x 10" networks.
Error bars are measured standard deviations.
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Kumpula model: results
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0.25 05 075

FIG. 3: Ry—4 (O) and (n,} (A) as a function of §. Results
are averaged over 10 realizations of N = 5 x 10? networks.
Error bars are measured standard deviations.

10°

b)

Py (K)

d)

mv




Kumpula model: results

» Very simple assumptions
» Emergence of community structure (depending on parameters)

» Good to test effects of elementary processes on global
structure

» Not apt for recovering well defined structures
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Multiplex networks: Social networks
Communication channel
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Social context




Multiplex model of social networks

» Peaple have F social features with I:I
q values each

» Ego first selects feature (s)he wants @ ---@

to do some social action l J

» (S)he can do it only with people
with matching the specific feature @ ----@
» Random connection, rare i K J
» Triangles: common
» Link selection proportional to ’
weight
» Link establishment with some
probability and strengthening i j
participating links !
» Link aging N
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Multiplex social model: egocentric networks
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bl
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Multilayer social model: Phase diagram
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http://yohm.github.io/p5js_simulations/wsn_homophily/
http://yohm.github.io/p5js_simulations/wsn_homophily/

