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Graph measaures: Clustering coefficient

» Clustering coefficient: fraction of triangles realized out all
possible ones at node i

2nA7;
ki(ki — 1)’

where np ; is the number of triangles at node .
» Average clustering coefficient:

1 N
(C) = NZC,-
i=1

» Global clustering coefficient: fraction of triangles realized out
all possible ones.

C— {(i,J, k) circle, i # j # k}|
[{(i,j, k) path, i # j # k}|

3 x Numberoftriangles

G =

B Numberofconnectedtriples
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Graph measaures: Clustering coefficient
» Example from Barabasi's http://networksciencebook.com/

WHRX

C=1/2 C=
b.
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(C)= 4—?; =0.310
173 2/3
B
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5 1
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The latter is CAo = 6/16


http://networksciencebook.com/

Graph measaures: Clustering coefficient

V=32/2

3 5

The latter is CAo = 6/16
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Graph measaures: Conditional probability

» Conditional probability: P(x|c) normalized distribution of x
for cases when condition ¢ holds.
» Example: Clustering coefficient of nodes of degree k:

(= 3 Gk = 3 CP(ClK)
K ilk=k c

https://arxiv.org/pdf/0908.1143
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https://arxiv.org/pdf/0908.1143

Graph measaures: Pearson correlation coefficient

» Pearson correlation coefficient:

y = ET(X = px)(Y — py)l

)

OX0y

iz mean of Z

oz standard deviation of Z
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Graph measaures: Assortativity

» Assortativity: (kn,(k)) average degree of the neighbors of
nodes with degree k

» (knn(k)) increasing — assortative mixing

» (knn(k)) decreasing — disassortative mixing

> Assortativity coefficient: Pearson correlation coefficient of
degree between pairs of linked nodes, with r > 0 for
assortative and r < 0 for disassotative mixing.

assortative disassortative
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Graph measaures: Assortativity

» Assortativity: (kn,(k)) average degree of the neighbors of
nodes with degree k

» (knn(k)) increasing — assortative mixing

» (knn(k)) decreasing — disassortative mixing

> Assortativity coefficient: Pearson correlation coefficient of
degree between pairs of linked nodes, with r > 0 for
assortative and r < 0 for disassotative mixing.

Network n ¥
Physics coauthorship (a) 52909 0.363
Biology coauthorship (a) 1520251 0127
Mathematics coauthorship (b) 253339 0.120
Film actor collaborations (c) 449913 0.208
Company directors (d) 7673 0.276
Internet (e) 10697 —0.189
World-Wide Web (1) 269504 —0.065
Protein interactions (g) 2115 =156
Neural network (h) 307 —0.163
Marine food web (i) 134 —0.247
Freshwater food web (j) 92 —0.276
Random graph (u) 0
Callaway et al. (v) /(1 + 28)
Barabdsi and Albert (w) 0
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Erdés-Rényi model

» Creating networks from random model

» Most basic construction: Take N nodes and L links and place
the links randomly
» This is the Erd6s-Rényi model of random networks (1960)
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Erd6s-Rényi model, versions

» N nodes and L links placed randomly: (N, L)
» N nodes and links with probability p: (N, p)
» Number of links in a complete graph:

= (1) - M

2
» Relation between p and L:

5 7
®
() (&)

n ® (1
()

Page 10 N =12 p = 0.3788 p = 0.758 http://tetelwiki.mafihe.hu/


http://tetelwiki.mafihe.hu/

Erdés-Rényi: equivalence of different versions

» Equivalence of the two definition is only in ensemble average
> N=12, p=1/6,

1211
()= =1
®e
@ @
e @ @
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Erdés-Rényi: equivalence of different versions

Page 12

> How precisely can we get networks with L links?

» Number of different ways L links can be placed
(Lc = N(N — 1)/2 is number of links in the complete graph):

P(L, L) = <LLC>

» The probability of finding a graph with exactly L links using
probability p:

Pillpit) = (LLC)pL(l —p)t

» Binomial distribution



Erdés-Rényi: equivalence of different versions

» The probability of finding a graph with exactly L links using
probability p:

Pipit) = (7)ot -t

» Average number of links in a graph of (N, p)

Lc Le
=3y L(LLC> prl—ptt=>%" LL!(LiCi DA

L=1

=plc (L (ijl(_:)! 0 pri1—p) et =pl-1
L[=1
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Erdés-Rényi: equivalence of different versions

» Average number of links in a graph of (N, p): (L) = pL.

» Similar derivation (in the second round two terms:
L=(L-1)+1):

(L%) = p*LZ + p(1 - p)Lc

» Variance:
0% = (L%) — (L)* = Lep(1 — p)

» Relative variance:

a_\/ch<1—p)_\/(1—p>
(L p22 | plc

» Very sharp for large graphs

o:wl—puw—m
(L) pLle P N
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Erdés-Rényi: degree distribution

» Probability of a node to have k links:

P(k) = (N; 1>pk(1 _ )Nk

> Average degree:
(k) = p(N —1)
> Variance of node degree

o = p(l—p)(N —1) = (k)(1 - p)

» Relative variance

Ok _ (1-p) _ -1/2
O CED

» Narrow distribution

Page 15



Erdés-Rényi: degree distribution

» Poisson limit theorem, A = pN

- N\ & Nk _ A
N'i"oo<k>p(1 Py =

» Poisson distribution: mean: ), variance: \

0.3 \ \
N p

025 binom(10,x,0.4) —— 7

binom(20.x.0.2
= 02t binom(40, x,(il — ]

SN—
o 0.15 poisson(4,x) i
0.1 71
0.05 b
0
0 2 4 6 8 10
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Erdés-Rényi: degree distribution

» Poisson distribution: mean: X ~ (k), variance: \ ~ (k)

» In real life average degree seems to be the quantity that
characterizes best the network, so one can define an
Erdés-Rényi as (N, (k)).

0.3 \ \
N p
0.25 binom(10,x,0.4) —
Blnom %8 X, 8%
inom(40,x,0.1) ——
= 02 7
= A
A 0.15 poisson(4,x) i
0.1 71
0.05 b
0
0 2 4 6 8 10 12
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Erdés-Rényi: degree distribution
» Degree distribution of the large Erdés-Rényi graphs is narrow:

Tk -1/2
ok — o)
(k)

> |t attracts the main criticism points

> BUT

> Are networks really scale free for which the data looks so?
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Erdés-Rényi: degree distribution

» Empirical social network site degree distributions
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Degree distribution

« Flickr

= FriendFeed
Model
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Erdés-Rényi: degree distribution

> Test of scale freeness on ~ 1000 empirical networks

Not

(5]

‘Q Super-Weak | 484 (0.52)
i

3 Weakest 309 (0.33)

< Weak 224 (0.24)

98 (0.11)
Strongest @ 35 (0.04)

Strong

0.0 0.2 0.4 0.6 0.8

Broido and Clause (2018)
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Erdés-Rényi: degree distribution

» Some networks have indeed narrow degree distribution
- ~ )
C —
= ~ .
L4 | - 2
=3
g e 3
/ i
National Highway System (NHS)
* PI=] —— Eisanhowar intarstale System
Q% — Othar NHS
o o
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Erd6s-Rényi: degree distribution

» Some networks do not have narrow degree distribution




Erdés-Rényi: the null model
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» Some other measures can be of importance
» Erdés-Rényi graphs are truly random and uncorrelated
» Other quantities should show these baseline values

» This makes ER graphs a good basic null model candidate



Erdés-Rényi: clustering coefficient

Page 24

Clustering coefficient:

Let us consider two links of a node. The probability that it is a
triangle is proportional to the probability that the missing link

exists
Thus )
C = = —
P=N=1
In large ER graphs the clustering coefficient is almost zero

There are hardly any triangles in the ER graphs



Erd6s-Rényi: assortativity

» The Erd6s-Rényi graphs should be non-assortative:

» Reasoning: The link between nodes are established in an
independent way without any correlation so the actual node
with degree k randomly samples the graph, thus the average
degree of the friends is also k

» Funnily the probability to be connected to a node with degree
k is not proportional to k.

1002.04
1001.54

1001.04

E ['D[ | J‘;']

1000.5+

1000.04

999.5+

T T T T T
900 950 1000 1050 1100
D Noldus,Mieghem 2015
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Erd6s-Rényi: Percolation

Page 26

Connected components: There is a path between any two
node of a connected component.

Percolation: The network percolates if
lim |Seo|/N = lim Py >0,
N—o0 N—oo

where S is the largest connected component and |So| is its
size, and P, is the probability of node belonging to the largest
connected component.

Which means that macroscopic fraction of the nodes belongs
to the largest connected components.

Importance: functioning system cannot fall into (infinitely)
many pieces



Erdés-Rényi: Percolation

» Percolation transition: Analogous to thermodynamic phase
transition.

» Can be continuous (e.g. ER) or discontinuous (e.g.
interconnected networks)

> Susceptibility: diverges at the transition

» Susceptibility: average cluster size without the giant
component

(6)
() L ] (7

L]
() (8)

i) ® an
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Erd&s-Reényi: Percolation

1000

800

200

0.000 0.001 0.002 0.003 0.004 0.005

18

12

1.0
0.000 0.001 0.002 0.003 0.004 0.005
p
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Erdés-Rényi: Percolation threshold

» Where is the percolation threshold?

> u probability, that a node does not belong to the giant
component

» A node does not belong to the giant component if all its links
are either nonexistent (1 — p) or connect to a node not
belonging to the giant component (pu):

u=(1-p+pu)N?
logu= (N —1)log <1 - N<l:>1(1 - u))
log u~ —(k)(1—u)

» Probability for a node to be in the giant component:

Peo=1—u=1—exp(—(k)Px)
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Erdés-Rényi: Percolation threshold

» Where is the percolation threshold?

P =1—u=1—exp(—(k)Px)

1 ‘
[
1-exp(-0.5%x) ——
Y e LT8G ot —
: l1—exp(—2*x) ——
0.6 1
04 r
02 f -
0 2l I I I I
0 0.2 0.4 0.6 0.8
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Erdés-Rényi: Percolation threshold
» Where is the percolation threshold?

Peo=1—u=1—exp(—(k)Ps)

» Trivial solution at P,o =0
» Non-trivial solution if (k) > 1

1 \

Y | 1—exp(=0.5%x)
0.8 b 1-exp(=1*x
: 1—-exp(—2*x
0.6
04 r
02r
0 1 1 1 1
0 0.2 0.4 0.6 0.8
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Erdés-Rényi: Percolation threshold
» Where is the percolation threshold?
P =1—u=1—exp(—(k)Px)

» Trivial solution at P, =0
» Non-trivial solution if (k) > 1

dP 1 - exp(—(k)Pxo)] = 1
(k) exp(— (k) Poc) = 1

» At the transition P, =0, so (k). =1

y —exp( _0.5%%)
08 f f“ X
- —exp —2%X

0.6

041 e

|

0
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Erdés-Rényi: Percolation exponents

Page 33

» Control parameter k = (k) — (k) = (k) =1 < 1
(We are close to the transition)

» Order parameter
Py =1 —exp(—(k)Ps)
» We assume that exp(Ps) is small, so up to second order

1
Po=1—|1—(k)Ps + §<k>2P§O

1—(k)y=k=

Poo

N =

» This gives § =1



Erdés-Rényi: Pathlengths

» ER graphs have few circles
They can make paths shorter
Consider the worst case: no circles
The graph is a tree with average degree (k)
Note that k has a narrow distribution for large N
Assume a perfect tree, with degree exactly (k)
This is called a Cayley tree (Bethe lattice)

vVvvyvVvyyvyy

n

7 Q
L
. L0

Q
O
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Cayley tree
» Degree z = (k), generation n
» Number of nodes:
z(z—-1)"-1

N =
z—2

» Percolation threshold z = 2 (Note that there are more nodes
in the last layer with degree 1 then the rest)

o'.;
;\\
Q

A3
:

33

Q
.‘. o

O
.‘.

f

<
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Cayley tree

» Average path length (s) ~ 2n
> n~loghN

» The length of the average path increases logarithmically:
Small world

T,

—."' ]
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Erd6s-Rényi: Summary

Page 37

vVvvyVvYVYyyypy

Ensemble of random graphs

No correlations

Sharp degree distribution (Poisson)
Small clustering coefficient
Non-assortative

Percolation threshold at (k) =1

Small world



Small World

» Karinthy: A fascinating game grew out of this discussion. One
of us suggested performing the following experiment to prove
that the population of the Earth is closer together now than
they have ever been before. We should select any person from
the 1.5 billion inhabitants of the Earth — anyone, anywhere at
all. He bet us that, using no more than five individuals, one of
whom is a personal acquaintance, he could contact the
selected individual using nothing except the network of
personal acquaintances.

» Six degrees of separation
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Small World

» Stanley Milgram experiment:

» |etters addressed to a Boston broker
» People in the Midwest were selected randomly and the packet

was sent to them with instructions
» Letters mast have had to pass on to someone with whom the

recipient was on a first-name basis

O\
assachusetts |\ '\ Mano
North Dakota \
Minnesota \
Wisconsin
South Dakota Jew York .
Michigan (o)
\ g Rtode isian
o s Ponns fiina, Gonnacticy
Ohio. \
- llinois ggBana \Nwmm
< \\ Delawan
Kanese Missouri
" VO Marylane
T West Virgini
- arolina 1,/
Oklahoma o South
Carolina
Alabama,
Mississiopi Gaooe
Toras
Lousiana
Florida:
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Small World

Page 40

» Stanley Milgram experiment:

>
>

>

Letters addressed to a Boston broker

People in the Midwest were selected randomly and the packet
was sent to them with instructions

Letters mast have had to pass on to someone with whom the
recipient was on a first-name basis

64 of 296 arrived at the destination

Average number of hops was between 5.5 and 6




Small World
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» Second experiment

> 24 out of 160 arrived

> Letters reached fast the location
» Then circled around

> Picture below is wrong

D
Kansas.

Wost Vi
Towessos O,

Oklahoma | oo

Alabam;
Mississippi

A\

J”WQ
v




Small World

| 2

vVvVvyyVvyy
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Modern version: Duncan J. Watts

Send emails, same rules

~ 60000 emails were sent

37% arrived

The average number of hops was 4.01

They corrected for incomplete chains and found number of
hops between 5 and 7

Correction was needed due to bad representation of long chains

B 150

12 3 45 6 7 8 9 10

15000 -
= 10000
S A~

5000

TS

12 3 4 5 6 7 8 98 10
L



Small World

» What about facebook?

» It can be easily measured (by facbook only argh...)

2008

5.28 hops

Page 43

4.74 hops



Small World

» What about facebook?

2008

5.28 hops

@ 5 3 N
g 3 8 &

Facebook users (millions)

N
5

29 31
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4.74 hops

i
| Mean = 3.57
|

33 35 37 39 4
Average degrees of separation

2016 o




Small World and clustering

» Erdés-Rényi networks are small words with low clustering
> Triangle lattices are large words with high clustering

(NONONCNN
INONINININON
NANNANN/
INONONIN/N/N
\VAVAVAVAVAV
INONONININ/N
NANNINN/

\VAVAVAVAV
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Watts-Strogatz model
» Take a lattice with high clustering
» Introduce shortcuts (rewire)
» Parameter p fraction of rewired links

a. b. c.
REGULAR SMALL-WORLD  RANDOM

Increasing randomness

1 @ TTeTe 88T, &
L o

o8 * o ]
. (Clp)y

06| {Clo]» ¥ ]

04 [ s o ]

02 dil/dlol ®

0 I L I b
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Watts-Strogatz model

> Take a lattice with high clustering

» Introduce shortcuts (rewire)

» Parameter p fraction of rewired links
» Can be high clustering and small world

d.

1 «3 TOT8 6 85 0
ogL * 2

. b
0.6 [ {Clol»

®
0.4 [ .
o2 del/dlo] * |
@ ® -
0 ! i
0.0001  0.001 0.01

networksciencebook.com
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Watts-Strogatz model

» Degree distribution: shifted Poisson
» This is the major criticism towards the model

» On the other hand tunable randomness.

d.
| R R Q T
o8[ * ® ]
. Clph .
0.6 [ (Clo)y Ny
)
0.4 [ " 2
ozf dbl/all *
* . 4 |
0 1 1 | o
0.0001 0.001 0.01 0.1 1
0
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Scale-free function

Page 49

v

What does it mean?
Must not have scale included

Problem: most mathematical functions require dimensionless
arguments, e.g. exp(x/xp), log(x/x0), sin(x/x0)
Single exception: power law x®

Mathematically: scale invariance
f(ax) = o f(x)

Solution:
f(x) = Ax*



Scale-freeness
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P(x) ~x7

What does it mean?

Normalization? Must have minimum, or maximum value
depending on 7 (or both!)

Very uneven distribution: High probability of small value, but
very large values are also possible

Few very rich and a lot of poor

Origin? Bible: Matt. 25:29, For whoever has will be given

more, and they will have an abundance. Whoever does not
have, even what they have will be taken from them.



Power law distribution

P(x) = Cx™7

> Two cutoffs: x € [a, b], C is set to

/ab P(x)dx =1

» Cumulative distribution:

C
v—1

x— (1)

b
P(xX' > x) = / P(x")dx =

» The cumulative distribution decays with a smaller v — 1
exponent
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Scale-freeness

» Economic inequality, Pareto (1890) distribution P(x) ~ x~¢

Page 52

a~2.5
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Scale-freeness

» Pareto principle: 20-80 rule:

» 80% of wealth is in the hands of 20% of the population
» 80 % of land is owned by 20% of people

» 80% of the sales is due to 20% clients
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Scale-freeness

> Views of youtube videos

2 2 10
.g W o A°;> . + One day
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5 x  YouTube Sci (V=250K) E YouTube Sci videos
> 10 X 0O S 0
2 Z 10
0 2 4 6 0 2 4 6 8
do. 19 U 18, 10 10 10 10 10
Views Views

Cha et al. 2009

Page 54



Scale-freeness

> WWW page popularity

» Exponents are i, ~ 2.1 ot =~ 2.45

networksciencebook.com
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Scale-freeness

» Number of sexual partners in Sweden
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Power law: plotting

Page 57
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Pareto principle

» Cumulative distribution is:

P-(x) = /XOO P(x)dx' = <X;<in> —y+1

» For v > 2 the fraction of wealth larger than x is

JEXP(Xdx fox T 1=2
22 x'P(x')dx’

Xmin

W(x) =

Xmin

19

08

06

fraction of wealth W

0 02 04 0.6 08 1

fraction of population P
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Zipf plots

» George K. Zipf linguist

» Ordered the words according to their occurrence frequency
(1935)

> Plotted the frequency against the rank
> Zipf plot
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Zipf plots
» George K. Zipf linguist
» Ordered the words according to their occurrence frequency
(1935)
> Plotted the frequency against the rank
» Zipf plot (Wikipedia)

Zipf's law
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Zipf plots

» George K. Zipf linguist
» Ordered the words according to their occurrence frequency

(1935)

» Plotted the frequency against the rank

» Zipf plot (Wikipedia)

100000
1egeq |

1608 |
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Zipf plots

Page 62

» Meaning of Zipf plot
> Rank n with frequency f(n) = n=#
» There are n more frequent words than £~1(n)

> In other words f~1(n) is equivalent to the cumulative
frequency distribution 8 = 1/(y — 1)

oo oo R




Hungarian cities

Tucityhist.dat" —+—
2e7/x"%2 ——

freq

0.001

0.0001

1e-05 L L L L h
10 100 1000 10000 100000 le+06 le+07

size

le+07 T T

“Cityzipf.dat" —i—
1 8e5/x10.9 ——
1e+06 P

100000
& 10000
]

1000

1 10 100 1000 10000
rank

Page 63



Inhomogeneities in networks

@ POISsON b.

Most nodes have
| the same number

/ of links

No highly
, connected nodes

Number of nades with k links

Number of links (k]

€. POWERLAW d.

Many nodes
> withonly a fewlinks

A few hubs with
targe number of links

Number of nodes with k links

fo-t L
N AAr YT

Number of links (k)

networksciencebook.com

Page 64




Scale free networks

Metabolic network
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Organisms from all three domains of life are
scale-free networks!

H. Jeong, B. Tombor, R. Albert, ZN. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)
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Scale free networks

Page 66

Network N L (k) |(kin2)|(kout2)| (k2) yin yout Y
Internet 192244  609066| 6.34/- - 240.1 E - 3.42*
wWww 325729 1497134] 4.6] 1546 482.4)- 2| 2.31] E
Power Grid 4941 6594 2.67|- - 10.3] B - Exp.
Mobile-Phone Calls 36595 91826/ 2.51 12| 11.7- 4.69%  5.01* E
Email 57194| 103731] 1.81] 94.7| 1163.9 3.43%  2.03% E
Science Collaboration 23133 93437 8.08- - 178.2 E - 3.35%
Actor Network 702388| 29397908| 83.71- - 47353.7 E 4 2.12*
Citation Network 449673 4689479 10.43| 971.5 198.8- 3.03%  4.00% E
E. Coli Metabolism 1039 5802| 5.58| 535.7| 396.7- 2.43%  2.90% E
Protein Interactions 2018 2930 2.9- - 32.3 E - 2.89%-




Scale free networks: moments

» Moments of power law distribution
(k™) = / k™P(k)dk
kmin

» Normalization (v > 1)

> Moments, if 1 +m < v:

(km> — kr,r?m(l _;)

» If m >~ — 1 the moment diverges
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Scale free networks: moments

> Moments diverge for m > v — 1
» v <2 — No average
» v < 3 — No variance
» Many networks fall in this category
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Network

N L (k) |(kin2)|(kout2)| (k2) yin yout Y
Internet 192244 609066 6.34|- - 240.1] B - 3.42%
WWW 325729 1497134| 4.6] 1546 482.4- 2| 2.31] -
Power Grid 4941 6594 2.67|- - 10.3] - - Exp.
Mobile-Phone Calls 36595 91826| 2.51 12 11.7)- 4.69% 5.01% E
Email 57194] 103731 1.81] 94.7| 1163.9- 3.43*%  2.03* -
Science Collaboration 23133 93437| 8.08- - 178.2 E - 3.35%
Actor Network 702388| 29397908 83.71)- - 47353.7 B - 2.12%
Citation Network 449673 4689479 10.43| 971.5] 198.8- 3.03*%  4.00%* -
E. Coli Metabolism 1039, 5802| 5.58] 535.7| 396.7|- 2.43*%  2.90* E
Protein Interactions 2018 2930 2.9- - 32.3] - 5| 2.89%




Distances in scale free networks
Average distance scale with node number N as

» (I) ~ const. for v = 2 Size of the biggest hub is of order O(N)

> (I) ~ ﬁ log log N for 2 < v < 3. Path length increases
slower than logarithmically, ultra-small world

» (/) ~log N/loglog N for v = 3. Some key models produce
v=3

» (/) ~log N for v > 3. The second moment of the degree
distribution is finite, similar to random network. Small world.

Network N L (k) |(kin2)|(kout2)| (k2) yin yout Y
Internet 192244  609066| 6.34/- - 240.1 E - 3.42%
wWww 325729 1497134 4.6] 1546 482.4|- 2 2.31 B
Power Grid 4941 6594 2.67|- - 10.3] E - Exp.
Mobile-Phone Calls 36595 91826/ 2.51 12| 11.7- 4.69%  5.01* E
Email 57194/ 103731] 1.81] 94.7| 1163.9- 3.43%  2.03% B
Science Collaboration 23133 93437| 8.08- - 178.2 E - 3.35%
Actor Network 702388) 29397908| 83.71- - 47353.7 E 4 2.12%
Citation Network 449673| 4689479 10.43| 971.5 198.8- 3.03%  4.00% B
E. Coli Metabolism 1039 5802| 5.58| 535.7| 396.7- 2.43*  2.90% E
Protein Interactions 2018 2930 2.9- - 32.3 E 5| 2.89%-
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