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Information

I Coordinates:
I Török János
I Email: torok.janos@ttk.bme.hu, torok72@gmail.com
I Consultation:

I F III building, first floor 6 (after the first stairs to the right, at
the end of the corridor), Department of Theoretical Physics

I Upon demand (Email)

I Webpage:
https://physics.bme.hu/BMETE15MF76_kov?language=en

I Homework: http://edu.ttk.bme.hu/

Page 2

https://physics.bme.hu/BMETE15MF76_kov?language=en
http://edu.ttk.bme.hu/


Requirements

I Signature
I 40% from each homework

I Exam: mark
I 50%: From homeworks (individual)
I 50%: From projects (individual, pairs) presented in the last

lecture, or exam
I Turn it in language: English, Hungarian, German, French
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Subjects
Lecture is based on the lectures of János Kertész
1. Complex Networks: graphs with non-trivial features, graph

theory
2. Basic andom network models (Erdős-Rényi, Watts-Strogratz)
3. Preferential attachment, scale free networks, configuration

model
4. Stochatic block model
5. Growth models and cascades
6. Temporal networks
7. Diffusion on networks
8. Robustness and spreading
9. Communities

10. Core-periphery
11. Hierarchy
12. Sampling
13. Navigation on networks
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Introduction

I Complex Networks: graphs with non-trivial features
I Networks: graphs, which are nodes and edges
I Graphs: Objects with interactions
I Hope: network structure can help us understand the system
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Example (my favourite)

I Hungarian company 3 bases

Maven 7 from networksciencebook.com by Barabasi.
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Example (my favourite)

I CEO (red), top managers (blue), Managers (magenta), group
leaders (orange)
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Example (my favourite)

I Biggest hub, and links at distance 1 and 2
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Complex networks

I Social connections
I IT connections

I Hardware
I WWW

I Biology
I Food web
I Metabolism
I Neural connections
I Species

I Economy
I Trade
I Travel
I Product chains

I Politics
I Voters
I Relations
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Complexity vs. Complex
Complicated Complex
Torsen differential Bird flock, lungs

Page 10



Lung

I Angle between child-parent and grandchild-grandparent
determines air flow

I Stop if pressure drops below certain value
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Complexity

I Complexity, a scientific theory which asserts that some systems
display behavioral phenomena that are completely inexplicable
by any conventional analysis of the systems’ constituent parts.
These phenomena, commonly referred to as emergent
behaviour, seem to occur in many complex systems involving
living organisms, such as a stock market or the human brain.

John L. Casti, Encyclopaedia Britannica
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Complexity

I Many interacting components
I Particles: 103 − 1023

I Brain: 103 − 1011

I Humans: 34− 109

I Computers: 1000− 109
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Complexity

I Many interacting components
I Emergence: occurs when an entity is observed to have

properties its parts do not have on their own

I More is different, P.W. Anderson
I Brain: neurons → thoughts
I Humans: people → society
I Technology: interconnected computers → WWW
I Particles: crystal structure
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Complexity

I Many interacting components
I Emergence
I Nonlinearity

I Brain: neurons
I Humans: Reactions
I Technology: virus spreading
I Particles: three planet problem
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Complexity

I Many interacting components
I Emergence
I Nonlinearity
I Spontaneous organization

I Brain: learning
I Humans: society
I Technology: Torrent community
I Particles: crystals
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Complexity

I Many interacting components
I Emergence
I Nonlinearity
I Spontaneous organization
I Diversity

I Brain: Different interactions (spontaneous, at will)
I Humans: society
I Technology: Torrent community
I Particles: Phase separation
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Networks

I Skeleton of complex systems (units and interactions)
I Underlying network
I Without apprehending this network we cannot understand the

complex system → Holistic approach

Holism: Looking at systems as a whole is needed for theirs
understanding
Reductionism: The precise understanding of the fine details will
finally lead to the complete picture
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Why now?

I Development of information technology
I Data gathered
I Detailed understanding of building blocks of many systems
I Digitalized world
I Interdisciplinary
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Network Science

I Citations per year

etworksciencebook.com by Barabasi.
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What can we learn
I Disease spreading

Brockmann-Helbing
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What can we learn
I Disease spreading
I Cascade effects
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What can we learn
I Disease spreading
I Cascade effects
I Signaling out terrorists
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What can we learn

I Disease spreading
I Cascade effects
I Signaling out terrorists
I System robustness
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What can we learn
I Disease spreading
I Cascade effects
I Signaling out terrorists
I System robustness
I System efficiency
I Trade efficiency (product suggestions, etc.)
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Graph Theory
I Königsberg (Kaliningrad) bridges
I Can we pass all the bridges exactly once?
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Graph Theory: Euler

I Euler’s theorem: An Eulerian path on a graph is possible if
there are no nodes with odd number of links or there are
exactly two such nodes

I A round trip (circle) is possible if there are no nodes with odd
number of links.

Wikipedia
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Graph Theory: Basics

I Graph:
G ≡ {V ,E}

where
V : vertices (nodes) (i , j , k, . . . )
E : edges (links) (eij , . . . )
I Network: graph of a system
I Representation:
Nodes: dots
Links: lines between dots
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Graph Theory: Types
I Loops: edge starting/ending on the same node: graph 6/Z
I Multiple edges: graph 7/eSQ , ePR
I Directed: graph 8
I Wighted: graph 9,10
I Simple graphs: no loop, no multiple edges, graph 1,2,3,4,5,9
I Bipartite graph: G = {U,V ,E}, eij ∈ E , i ∈ U, j ∈ V

http://techieme.in/graph-theory/
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Graph: Adjacency matrix

I Matrix Aij the number of links between nodes i and j

A5 =


P Q R S T

P 0 1 0 1 0
Q 1 0 1 0 0
R 0 1 0 1 0
S 1 0 1 0 1
T 0 0 0 1 0

 A6 =


W X Y Z

W 0 0 1 0
X 0 0 1 0
Y 1 1 0 1
Z 0 0 1 2



A7 =


P Q R S T

P 0 0 2 0 0
Q 0 0 1 2 0
R 2 1 0 0 1
S 0 2 0 0 1
T 0 0 1 1 0

 A8 =


0 1 0 0 0 1
0 0 0 0 0 0
0 1 0 0 0 1
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 1 0


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Graph Theory: Weighted graphs

I Weight matrix:

W9 =


u v w x y

u 0 2 0 1 0
v 2 0 3 0 0
w 0 3 0 4 0
x 1 0 4 0 5
y 0 0 0 5 0


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Graph data
I Adjacency matrix: only in memory for small or sparse ones

A =


1 2 3

1 0 1 1
2 0 0 1
3 1 1 0



I Edges list: database, data file
1 2
1 3
2 3

I Adjacency list: generally the most compact, bonus: easy
neighbor search
1 2 3
2 1 3
3 1 2

I Multiline adjacency list: Only for datafile, same but easier to
parse
1 2
2
3
2 3
1
3
3 2
1
2
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Graph Theory: paths

I Walk: sequence of adjacent nodes (connected with edges),
e.g. PRQRQST

I Trail: sequence of adjacent nodes (connected with edges)
where all edges are distinct, e.g. SQSTRPRQ

I Path: sequence of adjacent nodes (connected with edges)
where all nodes are distinct, e.g. SQRP

I Circle: a closed path
I In directed network, the path can follow only the direction of

an arrow.
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Graph Theory: paths

I Distance: The length of the shortest path between two nodes.
Length is measured in steps

I There can be more than one shortest paths
I Example:

I d(4, 6) = 2
I d(6, 4) = 1
I d(3, 2) = 1
I d(2, 3) =∞

Page 34



Graph Theory: components

I Components, clusters: Set of nodes, with at least one path
between any pair of them. (An isolated node is also considered
as a component.)

I A graph is connected if it consists of only one component
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Graph Theory: components

I Component is not trivial for directed graph
I Strongly connected: path in both direction between all pair

of nodes.
I Weakly connected: the undirected version is connected
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Graph Theory: subgraphs

I Subgraph: G ′ = {V ′,E ′} is subgraph of G = {V ,E} if
V ′ ⊆ V , E ′ ⊆ E and all endpoints of E ′ are in V ′

I Spanning subgraph: V ′ = V

I Tree: A graph where no circles are possible
I Spanning tree: A spanning subgraph with no circles
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Graph Theory: degree

I Degree: The degree of a node is the number of links of a
node: ki = |{eij ∈ E}|

I In Degree: In directed graphs: ki = |{eji ∈ E}|
I Out Degree: In directed graphs: ki = |{eij ∈ E}|
I Example:

Graph 5: kP=2, kQ=2, kR=2, kS=3, kT=1
Graph 6: kW=1, kX=1, kY=3, kZ=3
Graph 7: kP=2, kQ=3, kR=4, kS=3, kT=2
Graph 8: In: k1=1, k2=2, k3=0, k4=2, k5=1, k6=2
Graph 8: Out k1=2, k2=0, k3=2, k4=1, k5=1, k6=2
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Graph Theory: degree distribution

I Moments: mean, variance
I Distribution: which function fits it most, where is its maxima,

etc.
I Degree distribution:

I n(k), number of nodes with degree k
I P(k), probability that a node has degree k , NP(k) ≡ n(k)

I Average degree:

〈k〉 = 1
N

N∑
i=1

ki =
N∑
i=1

kP(k)

I For directed graphs, of course, we have 〈k in〉 and 〈kout〉
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Graph Theory: average degree

I Complete graphs: L = N(N − 1)/2, (A link gives two
contacts!)

〈k〉 = lim
N→∞

(N − 1) =∞

I Spanning tree: L = N − 1 (circle minus 1 link),

〈k〉 = lim
N→∞

2(N − 1)/N = 2
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Graph Theory: Sparse-dense graphs

I L ∝ Nλ, for large N
I λ = 1: Sparse graph
I λ = 2: Dense graph

I 〈k〉 ∝ Nµ, for large N
I µ = 0: Sparse graph
I µ = 1: Dense graph

I Almost all real graphs are sparse
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Graph Theory: Adjacency matrix and degree
I Degree: Undirected, symmetric matrix

ki =
N∑
j=1

Aij ≡
N∑
j=1

Aji

I Degree: directed, non-symmetric matrix

k ini =
N∑
j=1

Aij

kouti =
N∑
j=1

Aji (1)
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Graph Theory: Powers of the adjacency matrix
I (An)ij number of n-step walks between nodes i and j

I Proof: Induction. For n = 1 trivially true. Assume it is true
for n − 1. All n-walks to j come from n − 1 walks to a
neighbor k of j , provided there is a link from k to j .

A6 =


W X Y Z

W 0 0 1 0
X 0 0 1 0
Y 1 1 0 1
Z 0 0 1 2

 A2
6 =


W X Y Z

W 1 1 0 1
X 1 1 0 1
Y 0 0 3 2
Z 1 1 2 5


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Graph measaures: Average distance

I Defined for a single component: average distance between all
node pairs:

〈d〉 = 2
N(N − 1)

∑
i 6=j

dij

I Diameter of a network:

δ = max
ij

dij

I Usually For large N, 〈d〉 ∼ δ ∼ Nλ

I If λ = 0 (equiv. logarithmic increase): Small world
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Graph measaures: Average distance

I Average distance:

〈d〉 = 1
5(5− 1)

(1+ 2+ 1+ 2︸ ︷︷ ︸
u

+ 1+ 1+ 2+ 3︸ ︷︷ ︸
v

+19) = 1.6

I Diameter of a network:

δ = max
ij

dij = 3
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Graph measaures: Clustering coefficient
I Average distance: fraction of triangles realized out all

possible ones at node i

Ci =
2n∆,i

ki (ki − 1)
,

where n∆,i is the number of triangles at node i .
I Average clustering coefficient:

〈C 〉 = 1
N

N∑
i=1

Ci

I Global clustering coefficient: fraction of triangles realized out
all possible ones.

C =
|{(i , j , k) circle, i 6= j 6= k}|
|{(i , j , k) path, i 6= j 6= k}|

C =
3×Numberoftriangles

Numberofconnectedtriples
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Graph measaures: Clustering coefficient
I Example from Barabasi’s http://networksciencebook.com/
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Graph measaures: Conditional probability
I Conditional probability: P(x |c) normalized distribution of x

for cases when condition c holds.
I Example: Clustering coefficient of nodes of degree k :

〈Ck〉 =
1
nk

∑
i |ki=k

Ci (k) =
∑
C

CP(C |k)

https://arxiv.org/pdf/0908.1143
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Graph measaures: Pearson correlation coefficient

I Pearson correlation coefficient:

rX ,Y =
E [(X − µX )(Y − µY )]

σXσY

µZ mean of Z
σZ standard deviation of Z
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Graph measaures: Assortativity
I Assortativity: 〈knn(k)〉 average degree of the neighbors of

nodes with degree k
I 〈knn(k)〉 increasing → assortative mixing
I 〈knn(k)〉 decreasing → disassortative mixing
I Assortativity coefficient: Pearson correlation coefficient of

degree between pairs of linked nodes, with r > 0 for
assortative and r < 0 for disassotative mixing.
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Graph measaures: Assortativity
I Assortativity: 〈knn(k)〉 average degree of the neighbors of

nodes with degree k
I 〈knn(k)〉 increasing → assortative mixing
I 〈knn(k)〉 decreasing → disassortative mixing
I Assortativity coefficient: Pearson correlation coefficient of

degree between pairs of linked nodes, with r > 0 for
assortative and r < 0 for disassotative mixing.
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