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Diffusion on networks

I Random walk
I On lattices we know how it works.
I In what sense will it be different?
I What are the relevant measure for the probability distribution

of the walker?
I Why is it important?
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Diffusion on one dimensional lattice

I Master equation, lattice and arbitrary coordinates:

P(i , t + 1) =P(i , t) +
1
2
P(i − 1, t) +

1
2
P(i + 1, t)︸ ︷︷ ︸

gain

−P(i , t)︸ ︷︷ ︸
loss

P(x , t + ∆t) =P(x , t)+

+ D
∆t

∆x2 [P(x −∆x , t)− 2P(x , t) + P(x + ∆x , t)]

I Continuum limit: diffusion equation

∂P(x , t)

∂t
= D

∂2P(x , t)

∂x2

I Solution
P(x , t) =

1√
4πDt

e−
x2
4Dt
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Diffusion on one dimensional lattice

I Continuum limit: diffusion equation

∂P(x , t)

∂t
= D

∂2P(x , t)

∂x2

I Solution
P(x , t) =

1√
4πDt

e−
x2
4Dt

I Moments of the coordinate

〈x〉 =

∫ ∞
−∞

xP(x , t)dx = 0

〈x2〉 =

∫ ∞
−∞

x2P(x , t)dx = 2Dt
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Random walk on lattice

I Moments of the coordinate

〈x〉 =

∫ ∞
−∞

xP(x , t)dx = 0

〈x2〉 =

∫ ∞
−∞

x2P(x , t)dx = 2Dt

I Probability to return to origin (Pólya theorem):

d pret
1 1
2 1
3 0.34
4 0.19
5 0.145

Page 5



Random walk on lattice

I Expected number of distinct sites visited by the random walk

d Dt

1 ∼
√
t

2 ∼ t/ log t
3 ≤ d ∼ t

I The trail of the random walk is a fractal with fractal dimension
d = 2

I In d = 1 the trail is self-overlapping
I In d = 2 it gradually fills the space
I In d > 4 the walk does not cross itself
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Random walk on graphs

I Distance is not as important of a quantity as in lattices
I Important quantities:

I Number of visited distinct sites
I Probability of return
I Probability of finding the walker on a given node
I Probability from going one node to the other
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Random walk on Watts-Strogatz graph

I p = 0: We have a one dimensional lattice
I p = 1: Random network is similar to trees upon trees, always

new regions are explored, or infinite dimension
I Interesting regime 0 < p � 1:

I Characteristic distance between two crosslink ending: ξ ∼ 1/p
I One dimensional system up to tξ ∼ ξ2
I Infinite dimension afterwards
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Random walk on Watts-Strogatz graph
I Interesting regime 0 < p � 1:
I Characteristic distance between two crosslink ending: ξ ∼ 1/p
I One dimensional system up to tξ ∼ ξ2
I Infinite dimension afterwards
I Number of visited distinct sites:

Dt =
√
tf (t/tξ) =

√
tf (tp2)

f (x) =

{
const if x � 1
√
x if x � 1
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Random walk on graphs
I Let r be the rate of leaving a site
I The walker at node i

I Moves randomly to any neighbour, with the same probability
I Nodes are characterized by their degree ki
I In order to land on a node with degree k from a node with

degree k ′ the latter must have a neighbour with degree k

I The probability of going from a node with degree k ′ to a node
with degree k is P(k ′|k)/k ′, where the former is the
probability of a node with degree k ′ have a neighbour with
degree k (assortativity)

I Master equation (nk(t) number of walkers on nodes with
degree k)

∂nk(t)

∂t
= −rnk(t) + rk

∑
k ′

P(k ′|k)nk ′(t)/k ′
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Random walk on graphs

I Master equation (nk(t) number of walkers on nodes with
degree k)

∂nk(t)

∂t
= −rnk(t) + rk

∑
k ′

P(k ′|k)nk ′(t)/k ′

I The first term is the loss term: walkers leave with rate r
I The gain term is proportional to

I Walking rate
I The degree of the node k (walkers may come in through k

links)
I The probability that it comes from a node with degree k ′
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Random walk on graphs

I Master equation (nk(t) number of walkers on nodes with
degree k)

∂nk(t)

∂t
= −rnk(t) + rk

∑
k ′

P(k ′|k)nk ′(t)/k ′

I For uncorrelated networks we have

P(k ′|k) =
k ′P(k ′)

〈k〉

I Which leads to

∂nk(t)

∂t
= −rnk(t) + r

k

〈k〉
∑
k ′

nk ′(t)
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Random walk on graphs

I Master equation on uncorrelated graphs

∂nk(t)

∂t
= −rnk(t) + r

k

〈k〉
∑
k ′

nk ′(t)

I The stationary solution (left hand side vanishes):

nk =
k

〈k〉
n

N
,

where n is the number of walkers. Or with probability

pk =
k

〈k〉
1
N
,

where pk is the probability of finding the walker at a node with
degree k
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Random walk on graphs

I The probability of finding the walker at a node with degree k

pk =
k

〈k〉
1
N
,

I It is more likely to find the walkers at hubs than in a dead end
I There are more drunk people at Deák tér and at Nyugati than

e.g. at Gárdonyi tér.
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Diffusion equation on graphs

I Recall diffusion equation on 1d lattice:

Φ(x , t+∆t) = Φ(x , t)+D∆t[Φ(x−∆x , t)−2Φ(x , t)+Φ(x+∆x , t)]

I Which can be rewritten as

Φ(x , t + ∆t) = Φ(x , t) + dtDLΦ(x , t),

where

LΦ(x , t) =
∑

dx∈±∆x

Φ(x + dx)− Φ(x)
∑

dx∈±∆x

1

I Multiple dimensions:

LΦ(r, t) =
∑

dr∈nn.
Φ(r + dr)− Φ(r)

∑
dr∈nn.

1
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Diffusion equation on graphs

I Diffusion equation on lattices

LΦ(r, t) =
∑

dr∈nn.
Φ(r + dr)− Φ(r)

∑
dr∈nn.

1
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Diffusion equation on graphs
I Diffusion equation on lattices

LΦ(r, t) =
∑

dr∈nn.
Φ(r + dr)− Φ(r)

∑
dr∈nn.

1

I Laplace matrix has 1 values where the adjacency matrix would
also be 1 and apart from the diagonal is zero where the
adjacency matrix would be 0

I The diagonal is minus the degree of the node.
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Diffusion equation on graphs

I Diffusion equation on lattices

LΦ(r, t) =
∑

dr∈nn.
Φ(r + dr)− Φ(r)

∑
dr∈nn.

1

I Generalization to graphs

Lij = Aij − kiδij

I Valid also for directed graphs:
I Not symmetric
I In diagonal kout

i
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Spectral analysis
I Diffusion operator on graphs

Lij = Aij − kiδij

I Spectral analysis ∑
j

Lijuj = λiui

I Larges eigenvalue: 0, Eigenvector: (1, 1, 1, . . . ) with
multiplicity equals to the number of connected components

I Second largest eigenvalue shows how difficult it is to split the
graph into two large pieces. (How easy it is to reach all parts
of the network)

λ(2) = −n for an n-clique
λ(2) = −1 for a star
λ(2) = −2 + 2 cos(π/n) for an n-chain

I The last one goes to zero for n→∞
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Spectral analysis of the diffusion operator
I Diffusion equation on graph
I Eigenvalue distribution (average them over all node):

ρ(λ) =

〈
1
N

N∑
i=1

δ(λ− λ(i))

〉

I Initial condition: walker on node i0 at t=0
I Probability to be at node i at time t

∂p(i , t|i0, 0)

∂t
=
∑
j

Lijp(j , t|i0, 0)

I Laplace transform:

p̃i ,i0(s) =

∫ ∞
0

e−stp(i , t|i0, 0)dt
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Spectral analysis of the diffusion operator

I Diffusion equation on graph

∂p(i , t|i0, 0)

∂t
=
∑
j

Lijp(j , t|i0, 0)

I Laplace transform:

p̃i ,i0(s) =

∫ ∞
0

e−stp(i , t|i0, 0)dt

I From the diffusion equation

sp̃i ,i0 − δi ,i0 =
∑
j

Lij p̃j ,i0

I f ′(t) → Laplace transform → sF (s)− f (0+)
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Spectral analysis of the diffusion operator

I Laplace transform:

p̃i ,i0(s) =

∫ ∞
0

e−stp(i , t|i0, 0)dt

I From the diffusion equation

sp̃i ,i0 − δi ,i0 =
∑
j

Lij p̃j ,i0

I From where ∑
j

(sδi ,j − Lij)p̃j ,i0 = δi ,i0
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Spectral analysis of the diffusion operator

I Probability to return to the origin

p0(t) =

〈
1
N

∑
i0

p(i0, t|i0, 0)

〉

I Laplace transform

p̃0(s) =

〈
1
N

∑
i0

p̃(i0, t|i0, 0)

〉
=

〈
1
N

Trp̃(i0, t|i0, 0)

〉
=

=

〈
1
N

Tr (sδij − Lij)
−1
〉

=

〈
1
N

∑
i

1
s − λ(i)

〉
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Spectral analysis of the diffusion operator
I Probability to return to the origin

p0(t) =

〈
1
N

∑
i0

p(i0, t|i0, 0)

〉

I Laplace transform

p̃0(s) =

〈
1
N

∑
i0

p̃(i0, t|i0, 0)

〉
=

〈
1
N

∑
i

1
s − λ(i)

〉

I Transfer back

p0(t) =

∫
ets
〈

1
s − λ(i)

〉
ds =

〈
1
N

∑
i

eλ
(i)t

〉

p0(t) =

∫ 0

−∞
etλρ(λ)dλ

Page 24



Spectral analysis of the diffusion operator

I Probability to return to the origin

p0(t) =

∫ 0

−∞
etλρ(λ)dλ

I The shape of the spectrum thus determines the return
probability

I Example: Watts-Strogatz small world

p0(t)− p0(0) ∼

{
t−d/2 if t � tξ

exp
(
−(p2t)1/3) if t � tξ

I The spectrum of the Laplacian is related also to the
community structure of the network

I The largest eigenvalue describes the stationary state.
I The second largest is related to processes longest time scales.
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Transition probability
I Transition probability from node i to j .
I We can exit node i an any of its link
I We can enter node j only of there is a connection

Pij =
Aij

ki

I The probability of going from i to j in t steps is:

Pi→j(t) =
∑
k

Pik

∑
l

Pkl

∑
m

Plm · · ·
∑
v

PsvPvj =
(
Pt
)
ij

I Pt is the tth power of the P matrix
I Distance measure

rij(t) =

√√√√ N∑
l=1

(Pt
il − Pt

jl)
2

kl
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Temporal networks

I Links are not always present
I Examples:

I Communication networks
I Public transportation
I Company contracts/orders
I Spreading
I Time evolution of the network

I If timescales separate we can study temporal events over a
static networks

I Aggregate network: all links and nodes ever present
MOVIE
Peter Holme - Jari Saramäki (2011) Arxiv:1108.1780
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Network definition

I Static network: G = {V ,E}
I Temporal network: T = {V ,S}, where V is the set of vertices

and S is the set of event sequences (can be directed)
I For sij ∈ S

sij =
{
t

(1)
ij , τ

(1)
ij ; t

(2)
ij , τ

(2)
ij ; . . .

}
I where event r between node i and j begins at t(r)

ij and lasts

τ
(r)
ij

I τ
(r)
ij can often be neglected

I Adjacency index

A(i , j , t) =

{
1 if i → j is active at time t

0 otherwise
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Adjacency index

I Adjacency index

A(i , j , t) =

{
1 if i → j is active at time t

0 otherwise

I Adjacency index for instantaneous events

A(i , j , t,∆t) =

{
1 if i → j is active between time t and t + ∆T

0 otherwise

I Conditional aggregate networks: A(i , j , t,∆t)
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Temporal networks: path, journey

I Path: series of distinct edges visiting distinct nodes
I Journey: a time respecting path, time window (tmin, tmax)

J1→n = {t12, t23, . . . , tn−1,n|tij ∈ S , tmin ≤ t12 ≤ · · · ≤ tn−1,n ≤ tmax}

I Reachibility: i is reachable from j , if there exists a journey
from i to j

I Set of influence: all nodes which are reachable from i

Ii (t) = {∀j |j ∈ V , ∃Ji→j}

I Source set: all nodes from which i is reachable

Si (t) = {∀j |j ∈ V ,∃Jj→i}
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Temporal networks: visualization
I Journeys are non-transitive: ∃JA→B and ∃JB→C , but @JA→C

I IA = {B,C}, SA = {B,C ,D}
I IC (t ∈ [5, 10]) = {B,D}, SC (t ∈ [5, 10]) = {A,B,D}
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Temporal networks: reachability
I Journeys with maximal waiting times: a time respecting

path, with limited event separation
J∆t
1→n = {t12, . . . , tn−1,n|tij ∈ S , t12 ≤ · · · ≤ tn−1,n; ti+1 − ti < ∆t}

I Reachability ratio: average fraction of nodes reachable from
each node

r∆t(t) =
1
N

∑
i

|I∆t
i (t)|

phone call airlinePage 32



Temporal networks: reachability
phone call airline
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Static motifs

Page 34



Action triggers

I Detect causal chains of
events

I Measure typical reaction
time

I Measure waiting time
between incoming and
outgoing calls

I Make histogram from it
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Action triggers histogram
I Maximum occurs at 17 seconds for returned calls
I Maximum occurs at 25 seconds for calls to a new person
I SMS peaks are typically 20-24 seconds later
I You need that much time to read and write an SMS
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Temporal motifs

I Now we know the relevant timescales
I We detect topological objects within the defined time window
I Sliding window over the whole data
I Null model: Shuffled time reference

Page 37



Temporal motifs: occurrence of triangles
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Temporal motifs: occurrence of triangles

I Without order
I Horizontal line: time shuffled reference
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Temporal motifs: occurrence of ordered sequences

Most frequent ones Least frequent ones
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Example of temporal effects
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Spreading on temporal networks

I Links are not always present
I This definitely slows down the spreading
I This effect can be considerable
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Importance of different effects in temporal spreading

I Original data: time ordered sequence of call events
I It contains information about the underlying network
I Correlations:

I D: daily pattern
I C: community structure
I W: weight-topology
I B: bursty single-edge dynamics
I E: event-event

Karsai et al. PRE 2011
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Link shuffling

I Select random pairs of link sequences and exchange them
I Destroys topology-weight and link-link correlation
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Time shuffling

I Destroys burstiness (and link-link correlations)
I Keeps weight and daily pattern
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Importance of different effects in temporal spreading

I Original data: time ordered sequence of call events

Event sequence D C W B E 25%
Original X X X X X 33.7
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Importance of different effects in temporal spreading

I Configuration model: Network is rewired, community structure
destroyed

I Event times are shuffled: Bursty dynamics destroyed

Event sequence D C W B E 25%
Original X X X X X 33.7
Config. model X × × × × 16.4
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Importance of different effects in temporal spreading

I Configuration model: Network is rewired, community structure
destroyed

I Event times are kept Bursty dynamics kept

Event sequence D C W B E 25%
Original X X X X X 33.7
Config. shuffle X × × × × 16.4
Config. keep X × × X × 23.8
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Importance of different effects in temporal spreading

I Time shuffled event sequence
I Bursty dynamics destroyed
I Community and weight topology correlations kept

Event sequence D C W B E 25%
Original X X X X X 33.7
Config. shuffle X × × × × 16.4
Config. keep X × × X × 23.8
Orig. shuffle X X X × × 22.9
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Importance of different effects in temporal spreading

I Link sequence shuffled
I Link-link and weight topology is destroyed
I Bursty dynamics and community structure is kept

Event sequence D C W B E 25%
Original X X X X X 33.7
Config. shuffle X × × × × 16.4
Config. keep X × × X × 23.8
Orig. shuffle X X X × × 22.9
Shuffle. keep X X × X × 27.5
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Importance of different effects in temporal spreading

I Equal-weight link-sequence shuffled: Whole single-link event
sequences are randomly exchanged between links having the
same number of events

I Only link-link correlation is destroyed

Event sequence D C W B E 25%
Original X X X X X 33.7
Config. shuffle X × × × × 16.4
Config. keep X × × X × 23.8
Orig. shuffle X X X × × 22.9
Shuffle. keep X X × X × 27.5
W keep sh.,keep X X X X × 35.3

Page 51



Importance of different effects in temporal spreading
I Long time behaviour:
Event sequence D C W B E 25%
Original X X X X X 33.7
Config. shuffle X × × × × 16.4
Config. keep X × × X × 23.8
Orig. shuffle X X X × × 22.9
Shuffle. keep X X × X × 27.5
W keep sh.,keep X X X X × 35.3
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Importance of different effects in temporal spreading
I Everything slows down the spreading
I Burstiness has higher impact than topological structures
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Interevent time

I Time interval between successive events τ
I Distribution of τ is P(τ)

I Distribution is characterized by the average 〈τ〉 and the
variance σ

I Burstiness:
B =

σ − 〈τ〉
σ + 〈τ〉

I (a) B = −1: deterministic, (b) B = 0: Poisson, (c) B = 1:
bursty
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Bursty examples:

I Response times for letters

A. Vázquez PRE 2006

Page 55



Reason of bursty behavior

I Highly concentrated events
I If you pick up phone you complete more tasks
I If an old friend called you it is more probable that you call him

back soon
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Seasoning
I Problem with day/week/year
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Deseasoning

I Rescedule the events to be periodic over a period T

I Let i be an individual
I ni (t) = 1 if there is an event ni (t) = 0 if there is not

si (t) =
t∑

t′=0

ni (t
′)

I Strength of node i over the observation period
I For a set of people Λ, the number of events at time t

nΛ(t) =
∑
i∈Λ

ni (t)

Jo et al., Circadian pattern and burstiness in mobile phone communication (2011)
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Deseasoning
I Rescaled event rate

ρΛ,T (t) =
T

sΛ

Tf /T∑
k=0

nΛ(t + kT ) sΛ =

Tf∑
t=0

nΛ(t)

τ∗ = t∗(tj+1)− t∗(tj) =
∑

0≤t′<t

ρΛ,T (t ′)
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