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Preferential attachment

I Start with a seed of small network (e.g. clique)
I Attach new nodes to the existing network.
I If attached randomly, random network with exponential degree

distribution
I Popular ones have higher chance to get new connections
I New ones attach with probability proportional to existing

degree
I This is preferential attachment
I In networks it is called the Barabási-Albert model
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Barabási-Albert model
I Probability that a node connects to a node is proportional to

the degree of the target node:

Π(i) =
ki∑
j kj

I Parameter m number of links the new node makes
I Published in 1999
I Extensive impact on science
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Barabási-Albert model

I Empirical degree distribution: power law
I Exponent independent of m
I γ = 3
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Barabási-Albert model: Degree distribution calculation
I Number of nodes in time t, N(t) = t

I Number of links at time t, L(t) = mt

I Average degree at time t, 〈k〉(t) = 2m/N
I Number of nodes with degree k at time t

N(k , t) = Np(k , t) = tp(k , t)

I Preferential attachment:

Π(k) =
k∑
j kj

=
k

2mt

I Number of links added to nodes of degree k after the arrival of
a new node

k

2mt︸︷︷︸
Preferential attachment

× tp(k , t)︸ ︷︷ ︸
Total number of k nodes

× m︸︷︷︸
New links

=
k

2
p(k , t)
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Barabási-Albert model: Degree distribution calculation

I Number of links added to nodes of degree k after the arrival of
a new node

k

2mt︸︷︷︸
Preferential attachment

× tp(k , t)︸ ︷︷ ︸
Total number of k nodes

× m︸︷︷︸
New links

=
k

2
p(k , t)

I Discrete time Master equation

(t + 1)p(k , t + 1)− tp(k , t) =
k − 1
2

p(k − 1, t)− k

2
p(k , t)
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Barabási-Albert model: Degree distribution calculation

I Discrete time Master equation

(t + 1)p(k , t + 1)− tp(k , t) =
k − 1
2

p(k − 1, t)− k

2
p(k , t)

I For k = m it is different, the gain term is the newly arriving
node:

(t + 1)p(m, t + 1)− tp(m, t) = 1− m

2
p(m, t)
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Barabási-Albert model: Degree distribution calculation

I We are interested in the steady state

lim
t→∞

p(k , t) = p(k)

I Steady state solution of the Master equation:

p(k) =
k − 1
2

p(k − 1)− k

2
p(k)

p(m) = 1− m

2
p(m)

I Recursive relations

p(k) =
k − 1
k + 2

p(k − 1) for k > m

p(m) =
2

m + 2
otherwise
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Barabási-Albert model: Degree distribution calculation

I Solution

p(k) =
2m(m + 1)

k(k + 1)(k + 2)

I Asymptotically
p(k) ∼ k−3

I Independent of m
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Initial Attractiveness Model
I Even nodes without connections can be popular
I Often cited example: Citation networks (paper with no

citation can be cited)

Π(ki ) =
A + ki

A +
∑

j kj

I Asymptotically p(k) ∼ k−γ

I γ = 2 + A/m tunable exponent

Dorogovtsev, Mendes, Samukhin, Phys. Rev. Lett. 85, 4633 (2000)
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Assortativity in Barabási-Albert model
No calculations here :-)
I Disassortative regime γ < 3, −m < A < 0:
I Neutral regime γ = 3, A = 0
I Weak assortative regime γ > 3, A > 0

100 101 102

k

101

102

kn
n
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Clustering in Barabási-Albert model

Calculations :-!
I Definition

C =
2N(∆)

k(k − 1)

I Probability that nodes i and j are connected: P(i , j)

I Probability that nodes i , j , l form a triangle

Nl(∆) =
∑
i ,j

P(i , j)P(j , l)P(l , i)

I We need to calculate P(i , j)

I For this we will need the time evolution of the degree of the
nodes
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Time evolution in Barabási-Albert model
I The time evolution of the degree of the nodes

∂ki
∂t
∝ Π(ki ) = m

ki∑
j kj

I Time is measured in units of nodes added, so at time t there
are N = t number of nodes and L = mt number of links

I So
∂ki
∂t
∝ ki

2t
I Solution

ki (t) = m
√

t/ti ∼ t1/2
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Time evolution in Barabási-Albert model

I The time evolution of the degree of the nodes

ki (t) = m
√

t/ti ∼ t1/2

I Advantage of the first comers!
I Very often one can take ti ≡ i
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Clustering in Barabási-Albert model

I Assume that ti < tj (i came first)

P(i , j) = mΠ(ki (tj)) =
mki (tj)∑

l kl
= m

ki (tj)

2mtj

I We know the time evolution of ki (tj)

ki (tj) = m
√

tj/ti

I From where we get

P(i , j) =
m

2
(ti tj)

−1/2

I Huhh... It is symmetric in i and j!
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Clustering in Barabási-Albert model

I Back to the number of triangles:

Nl(∆) =
∑
i ,j

P(i , j)P(j , l)P(l , i) =

=
m3

8

∑
ti ,tj

(ti tj)
−1/2(tj tl)

−1/2(tl ti )
−1/2

=
m3

8l

N∑
ti=1

1
ti

N∑
tj=1

1
tj

I For large times N →∞

Nl(∆) =
m3

8l
log2 N
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Clustering in Barabási-Albert model

I So we have the number of triangles:

Nl(∆) =
m3

8l
log2 N

I We also know that

kl(t) = m
√

N/tl so kl(kl − 1) ' m2N/tl

I Finally the clustering coefficient is

C =
2m3

8l log2 N

kl(kl − 1)
=

m

8
log2 N

N

I For large networks N →∞ the clustering vanishes C → 0
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Clustering in Barabási-Albert model
I The clustering coefficient for BA networks

C =
m

8
log2 N

N
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Other models
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Gasometer Oberhausen
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Random graphs/networks
I Generative models

I randomly generating observable quantities
I known examples:

I Erdős-Rényi, or random graph model → no structure
I Watts–Strogatz model → small world property
I Configuration model → degree distribution

I Stochastic Block Models (SBM)

I will be detailed today
I community structure
I hierarchical structure

I Latent Space Models

I nodes live in a latent space
I link properties depend on

vertex-vertex proximity
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Random graphs/networks
I Growing networks

I networks change as function of time
I real life processes can be incorporated (realistic models)
I stationary state representative of network
I difficult to tune properties
I examples:

I Barabási-Albert model (preferential attachment)
I Kumpula model (will be detailed today)

Kumpula, Jussi M., et al. PRL 99 (2007): 228701.
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Block models

I Why?
I Adjacency matrix
I Communities
I Block structure
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Stochastic Block Models (SBM)
I Community structure

I Multi layer network (nodes are labeled)
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Multilayer, multiplex networks

Multiplex Multi layer

links are colored nodes are colored
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Multi layer representation

I Different layers (parents, children)
I Intra-layer links (parents – children)
I Pij depends on the layers
I Here Pij=1 special case

Page 27



Link probability Pij

I Intra-group links with high probability but not 1 (not
everybody knows each other

I Inter-group links with much lower probability
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Link probability Pij

I Groupwise (blockwise) probability (i , j refers to groups)
I Pii intra-group probability high
I Pij inter-group probability low
I Stochastic equivalence: Probabilities for all links within a block

are the same.
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Generative models

I Given N nodes
I Define probability distributions for P(G |θ), where

I G is a network instance
I θ set of parameters describing the edge configurations

I Generate:
I Given θ a network instance G can be generated

I Inference:
I Given a network G we identify θ that produces it

P(G |θ)︸ ︷︷ ︸
model

<=>[Generation][Inference] G = (V ,E )︸ ︷︷ ︸
data
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Notation

I Number of nodes: N
I Indexes for nodes: u, v
I Adjacency matrix: Auv

I Number of blocks: K
I Indexes for blocks: i , j
I Link probability between groups: Pij
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Stochastic Block Models (SBM)
Definition of θ:
I K : number of groups in the model
I z: a N dimensional vector indexing to which group a node

belongs to. E.g. z(i) ∈ [1,K ] gives the group index of node i .
I Pij : a K × K matrix describing the probability that a vertex of

group i is connected to a vertex of group j .
Note1:
Pii : gives the probability that vertexes of group i are connected.

Note2:
Graphs of all groups are Erdős-Rényi random graphs

Note3:
Alternative definition: θ = {K , z,Pij} ≡ {K , s,Pij}, where s is a

K dimensional vector with the size of the group as value. Of course

K∑
i=1

s(i) = N
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Example: N=50, K=5, s = {10, 10, 10, 10, 10}

Generation
Erdős-Rényi graph

All examples: Aaron Clauset: Network Analysis and Modeling,
CSCI 5352, Lecture 16
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Example: N=50, K=5, s = {10, 10, 10, 10, 10}
Erdős-Rényi graph

Communities
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Example: N=50, K=5, s = {10, 10, 10, 10, 10}

Assortative communities

Disassortative communities
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Example: N=50, K=5, s = {10, 10, 10, 10, 10}
Ordered communities

Core-periphery structure
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SBM: Degree distribution

I All groups are ER subgraph with Poisson degree distribution
I Resulting degree distribution is a mixture of Poissonians

E [n|z(n)=j ] =
K∑
i=1

s(i)Pij

The expected degree of a node n in group j .

Example for wide distribution
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Generation
I Analyze parameter space
I Test for desired quantities, e.g. degree distribution, modularity,

assortativity.
I Run parameter scan, and measure quantities
I Draw a phase diagram
I For practical use choose desired parameters
I Nowdays: Estimate it with neural network

e.g. Adaptive coevolutionary networks:

T Gross, B Blasius - Journal of the Royal Society Interface, 2008
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SBM: Inference

I How to guess θ if we want to model a system with given
characteristics?

I To be determined: K , s, Pij . Total:

1︸︷︷︸
K

+ (K − 1)︸ ︷︷ ︸
s

+K (K − 1)/2︸ ︷︷ ︸
Pij , i 6=j

+ K︸︷︷︸
Pii

= K (K + 3)/2

I Brute force will not work
I Maximum likelihood estimation

I estimate the parameters of a stochastic model such that they
maximize the likelihood of obtaining the predefined
observations.

I given the value K the task is to estimate the values of z, and
Pij
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Maximum likelihood: Example

I We have four nodes and the network is a square

I We want to use the Erdős-Rényi model
I What is p for which we get the square with the maximum

likelihood?
I Obviously it is p=2/3. But we can get anything like:
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SBM: Maximum likelihood

I Likelihood function: Calculate the probability of having an
edge between nodes u, v if there was an edge, or the
probability of not having an edge if there was none:

L(G |M, z) =
∏

(u,v)∈E

P[(u, v)|θ]
∏

(u,v) 6∈E

{1− P[(u, v)|θ]},

where P[(u, v)|θ] is the probability of generating an edge
between nodes u, v .

I The number of possible links between groups:

Nij =

{
si sj if i 6= j

si (si − 1)/2 if i = j

I Expected number of links between groups is denoted by Eij
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SBM: Maximum likelihood

It is obvious that the maximum is when Pij = Eij/Nij :

L(G |M, z) =
∏

(u,v)∈E

P[(u, v)|θ]
∏

(u,v) 6∈E

{1− P[(u, v)|θ]}

=
∏
i ,j

(
Eij

Nij

)Eij
(
1−

Eij

Nij

)Nij−Eij

It is customary to calculate the log:

logL(G |M, z) =
∑
ij

[Eij log Eij + (Nij − Eij) log(Nij − Eij)− Nij logNij ]

I What does L mean?
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SBM: Likelihood example

L(G |M, z) =
∏
i ,j

(
Eij

Nij

)Eij
(
1−

Eij

Nij

)Nij−Eij

=

(
3
3

)3(
1− 3

3

)0

︸ ︷︷ ︸
=1

·
(
1
9

)1(8
9

)8

· 13 00︸︷︷︸
=1

= 0.0433...
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SBM: Likelihood meaning

I Lgood ' 177 · Lbad: The good partition is 177 times more
likely to generate the original data than the bad one.
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SBM: Optimizing the likelihood

I For given K we may optimize the partition, see below.
I Optimizing K : problem → with increasing K the number of fit

parameters increase as well → better fit
I Limiting case K = N, Pij = Aij , → perfect fit, and L = 1
I Some knowledge is required from the system to estimate K

Page 45



SBM: Problems

I SBM: Nodes in one block have similar degrees
I Good example: egocentric network

I Bad example: Zachary karate club
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SBM: Zachary karate club

I Social partition, vs. SBM partition

I Likelihood values

I SBM is 108 times more likely!
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Degree corrected SBM: null model

I Logarithm of likelihood, leaving out constant factors:

log L̃ =
∑
ij

Eij log
Eij

κiκj

where κi is the number of stubs in group i

I Similar to the definition of modularity.
I Null model is not Erdős-Rényi but a network with the expected

degree sequence.
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Degree corrected SBM: Results

Zachary karate club

SBM degree corrected SBM
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Degree corrected SBM: Algorithm

I In principle: Given K , calculate L̃ for all possible divisions and
select the one with the largest value.

I This is impossible ∼
(N
K

)
I Optimization in a multi dimensional space
I Separate field of research
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Optimization
Methods:
I Gradient (greedy):

I Always decrease the path length
I Fast, but gets trapped in a local minimum

I Simulated annealing:
I define elementary step
I decrease temperature slowly
I if energy is decreased by move → do it
I allow for increase of energy with probability proportional to

P ∼ exp(−∆E/T )
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Simulated annealing for SBM

Elementary step
I Ergodic: able to reach all states, time and ensemble averages

are the same

ErgodicNon ergodic Ergodic

I e.g. transfer a node from block i to j

I long self averaging times (middle example)
I clever choice of elementary step

Other name: Markov Chain Monte Carlo
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Simulated annealing for SBM

Elementary step
I Transfer a node u from i to j , (k is a randomly chosen block)

p(i → j |k) =
Nik + ε

Nk + εK

where Nik is the number of links between groups i and k and
Nk the links in block k . ε > 0 a free parameter. This tests
how much u is attached to k

I The transition probability is thus:

w(u, i → j) = min

{
e−β∆ log L̃

∑
k p

u
kp(i → j |k)∑

k p
u
kp(j → i |k)

, 1
}

where β = 1/T inverse temperature, puk is the fraction of
neighbors of node u belonging to block k .
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Simulated annealing for SBM

Elementary step
I Transfer a node u from i to j , (k is a randomly chosen block)

p(i → j |k) =
Nik + ε

Nk + εK

I The transition probability is thus:

w(u, i → j) = min

{
e−β∆ log L̃

∑
k p

u
kp(i → j |k)∑

k p
u
kp(j → i |k)

, 1
}

I β =∞: greedy algorithm.
I Slowly increase β: simulated annealing
I An efficient C++ implementation of the algorithm described

here is freely available as part of the graph-tool Python library
at http://graph-tool.skewed.de (Peixoto, 2014)
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SBM: Optimal selection for K
I L̃ grows with K
I asymptotic increase log L̃ ∼ (K − 1)2

I Use logL∗ = log L̃ − (K − 1)2 which is expected to become a
constant for large K

I e.g.: simulated data s = (250, 250, 250, 250), pk ∝ k−1.1, for
k ∈ [kmin, kmax]

I Graph B ≡ K
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SBM: Optimal selection for K

L controls the precision of
the likelihood function
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SBM: Summary

I Very flexible, generative method to model
I Communities, but also arbitrary mixing patterns, including, for

example, bipartite, and core-periphery structures;
I Able to separate noise from structure;
I No resolution limit
I Generalization to directed, weighted networks possible.
I Structure detection is converted to parameter inference
I Increasingly efficient algorithms
I Can be used to detect communities

Page 57



SBM: Suggested reading

I B. Karrer and M. E. J. Newman, Degree-corrected block
modeling, Physical Review E 83, 016107 (2011)

I T.P. Peixoto, Efficient Monte Carlo and greedy heuristic for
the inference of stochastic block models, Physical Review E 89
(1), 012804 (2014)

I T.P. Peixoto, Hierarchical Block Structures and
High-Resolution Model Selection in Large Networks, Physical
Review X 4, 011047 (2014)
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Growing networks
I Simulate real life
I Use minimal elements
I Do not incorporate effect what one wants to recover
I Example: simulate social network (modular)
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Growth models

I Barabási-Albert model: Simple growth mechanism, preferential
attachment, model for Internet

I More complicated systems?
I Two version of a simple model for social networks
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Social networks

I Human relation
I Very complicated dynamics
I Not really a growth model, more a dynamics steady state
I Observations:

I Weighted network
I Large clustering coefficient (friend of friends usually know each

other)
I Not scale free
I Small world
I Granovetter: Strength of the weak ties
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Granovetter: Strength of the weak ties
I Human groups are strongly connected
I There are weak connections connecting the groups
I These weak connections mean sproadic meeting
I Important for information flow
I Example: Find a job
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Kumpula model

I N nodes (originally unconnected)
I (a) Randomly meet someone (low probability) global

attachment
I (b) Two friends of someone get to know each other, cyclic

closure
I (c) An already present triangle gets strengthened

(a) (b) (c)

Page 63



Kumpula model
I N nodes (originally unconnected)
I (a) (with prob. pr ) random link to an unconnected node. Link

weight w0
I (with prob. pd) i selects friend j with prob. proportional to the

link weight. j selects friend k similarly. Both links are
strengthened by δ. Two cases:
I (b) There is no link between i and k : create a link with p∆

with weight w0
I (c) There is a link between i and k : strengthen by δ

I (d) (with prob. pd) clear the links of a node (enforce steady
state, there are more realistic versions)

(a) (b) (c)
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Kumpula model: results (δ = 0, 0.1, 0.5, 1.0)
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Kumpula model: results

Page 66



Kumpula model: results
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Kumpula model: results

I Very simple assumptions
I Emergence of community structure (depending on parameters)
I Good to test effects of elementary processes on global

structure
I Not apt for recovering well defined structures
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Multiplex networks: Social networks
Communication channel Social context

(a) (b)
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Multiplex model of social networks

I Peaple have F social features with
q values each

I Ego first selects feature (s)he wants
to do some social action

I (S)he can do it only with people
with matching the specific feature

I Random connection, rare
I Triangles: common

I Link selection proportional to
weight

I Link establishment with some
probability and strengthening
participating links

I Link aging

ji

i

i

j

j

k
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Multiplex social model: egocentric networks
F

=
4,

q
=
7

F
=
4,

q
=
4

F
=
4,

q
=
20

F
=
4,

q
=
4
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Multilayer social model: Phase diagram
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