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Temporal data

» Most of the data is sequential, can be ordered
> Very often time orders the data
» Prediction is very important
» For this we need history
Source: Akshay Sood
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Recurrent Neural Networks (RNN)

» Qutput depends on previous state and current output
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Recurrent Neural Networks (RNN)

» Output depends on previous state and current output
» Feedback loops
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Training RNNs

» Backpropagation through time
» Regular (feedforward) backprop applied to RNN unfolded in
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Training RNNs

» Backpropagation through time

» Regular (feedforward) backprop applied to RNN unfolded in
time

» Problem: can't capture long-term dependencies due to
vanishing/exploding gradients during backpropagation




Training RNNs

» Problem: can't capture long-term dependencies due to
vanishing/exploding gradients during backpropagation




Long Short-Term Memory networks (LSTM)

» A type of RNN architecture that addresses the
vanishing/exploding gradient problem and allows learning of
long-term dependencies

> Recently risen to prominence with state-of-the-art performance
in speech recognition, language modeling, translation, image

captioning
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Long Short-Term Memory networks (LSTM)

» Memory cell (block): maintains its state over time
» Gating units: regulate the information flow into and out of the

memory
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LSTM Memory Cell
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LSTM Cell state vector (C)

» Memory of the LSTM

» State can be changed by forgetting (x) and addition of new
data (+)

» Linear changes



LSTM Forget Gate

» Controls what remains of the previous memory

fr = o(Wexe + Urhe—1 + by)




LSTM Input Gate

» Controls what what new information is added to the memory
ir = o(Wix¢ + Uiht—1 + bj)
ft = tanh( Wexe + Uche—1 + bc)
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LSTM Memory update

> Aggregation 5
Co=fexCGa+irxC
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LSTM Output gate

» Conditionally decides what to output from the memory
O = O'( WoXt + Uoht_]_ + bo)
hy = o * tanh(C;)




LSTM Memory Cell Summary
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Inputs: utputs: Monlinearities: Vector sperations: T o
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LSTM Training

» Number of parameters:

» n number of LSTM units

» m parameters in the input data

» Dimension of U is n x m

» Dimension of W is n x n

» Dimension of b is n

» There are four gates in an LSTM cell

number of parameters = 4(nm 4 n? + n)

fi = o(Wexe + Urhi—1 + byr)

ir = o(Wix¢ + Uihi—1 + bj)

Ci = tanh(Wexe + Uchi—1 + bc)
Co=fox Co1+irx G

ot = o(Woxt + Uosht—1 + bo)

hy = o * tanh(C)



LSTM Training

» Backpropagation Through Time (BPTT) most common

> Weights: Gates, input tanh layer
» Output:

» One output at each timestep
» Single output for the whole task

| Logistic regression |
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