Artificial intelligence in data science Game models

Janos Török
Department of Theoretical Physics

November 9, 2023

Learn to play games

- Rules
- Observables
- Possible moves
- Aim: choose best move from observables
- Two methods:
- Genetic algorithm
- Reinforcement learning

Reinforcement learning

- Agent gathers information about environment (explores its states): s_{0}, s_{1}, \ldots
- Agent interacts with environment via actions t_{0}, t_{1}, \ldots
- Agent gets reward depending on the actions r_{0}, r_{1}, \ldots
- Modify agent's policy based on reward
- Agent moves to the next state

Ideas from: Fei-Fei Li, Justin Johnson, Serena Yeung

Q-value function

- Policy produces sample trajectories (or paths) $s_{0}, a_{0}, r_{0}, s_{1}, a_{1}, r_{1} \ldots$
- How good is a state? Value function (fitness) V, cumulative reward from a policy
- How good is a state-action pair? The Q-value function at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy. This is a conditional expected value

Bellman equation

- The optimal Q-value function Q^{*} is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$
Q^{*}(s, a)=\max _{\pi} \mathbb{E}\left(\sum_{t} \gamma^{t} r_{t} \mid s_{0}=s, a_{0}=a, \pi\right)
$$

where π is the actual policy

- Q^{*} satisfies the following Bellman equation:

$$
Q^{*}(s, a)=\mathbb{E}_{s^{\prime} \sim \varepsilon}\left(r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right) \mid s, a\right)
$$

- if the optimal state-action values for the next time-step $Q^{*}\left(s^{\prime}, a^{\prime}\right)$ are known, then the optimal strategy is to take the action that maximizes the expected value of
$r+\gamma \max _{a^{\prime}} Q^{*}\left(s^{\prime}, a^{\prime}\right)$
- iterative solution

Reinforcement learning algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode = \(1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition \(\left(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\right)\) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Reinforcement learning algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N \quad \longleftarrow \longleftarrow\) Initialize replay memory, Q-network
    Initialize action-value function \(Q\) with random weights
    for episode \(=1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Reinforcement learning algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode =1, \(M\) do
                Play M episodes (full games)
            Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Reinforcement learning algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode = \(1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Reinforcement learning algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode = \(1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Reinforcement learning algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode = \(1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Reinforcement learning algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode \(=1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```


Reinforcement learning algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode = \(1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition ( \(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\) ) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D}\)
```

Store transition in replay memory

```
Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3 end for
end for
```


Reinforcement learning algorithm

```
Algorithm 1 Deep Q-learning with Experience Replay
    Initialize replay memory \(\mathcal{D}\) to capacity \(N\)
    Initialize action-value function \(Q\) with random weights
    for episode \(=1, M\) do
        Initialise sequence \(s_{1}=\left\{x_{1}\right\}\) and preprocessed sequenced \(\phi_{1}=\phi\left(s_{1}\right)\)
        for \(t=1, T\) do
            With probability \(\epsilon\) select a random action \(a_{t}\)
            otherwise select \(a_{t}=\max _{a} Q^{*}\left(\phi\left(s_{t}\right), a ; \theta\right)\)
            Execute action \(a_{t}\) in emulator and observe reward \(r_{t}\) and image \(x_{t+1}\)
            Set \(s_{t+1}=s_{t}, a_{t}, x_{t+1}\) and preprocess \(\phi_{t+1}=\phi\left(s_{t+1}\right)\)
            Store transition \(\left(\phi_{t}, a_{t}, r_{t}, \phi_{t+1}\right)\) in \(\mathcal{D}\)
            Sample random minibatch of transitions \(\left(\phi_{j}, a_{j}, r_{j}, \phi_{j+1}\right)\) from \(\mathcal{D} \longleftarrow\) Experience Replay:
            Set \(y_{j}= \begin{cases}r_{j} & \text { for terminal } \phi_{j+1} \\ r_{j}+\gamma \max _{a^{\prime}} Q\left(\phi_{j+1}, a^{\prime} ; \theta\right) & \text { for non-terminal } \phi_{j+1}\end{cases}\)
            Perform a gradient descent step on \(\left(y_{j}-Q\left(\phi_{j}, a_{j} ; \theta\right)\right)^{2}\) according to equation 3
        end for
    end for
```

Experience Replay:
Sample a random minibatch of transitions from replay memory and perform a gradient descent step

Reinforcement learning scoring

Proposed way of evolution

Reinforcement learning rewards

- Instantaneous, the move is scored by a global function
- Cumulative, sum up the points along the actions
- Cumulative with forget rate.

