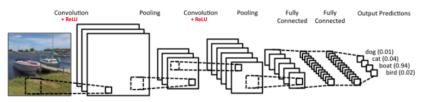
Artificial intelligence in data science Convolutional neural networks

Janos Török


Department of Theoretical Physics

October 13, 2022

LeNet Architecture

Yann LeCun

- Convolution
- ► Non-linearity
- Pooling
- Classification

Author: ujjwalkarn

- 2d matrix
- Example:

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Original image:

1	0	1
0	1	0
1	0	1

Convolution matrix:

1,	1,	1,	0	0
0,	1,	1,0	1	0
0,1	0,	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

4

Convolved Feature

- 2d matrix
- **Example:**

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Original image: 0 1 1 0 0

1	0	1
0	1	0
1	0	1

Convolution matrix:

1	1,	1,0	0,	0
0	1,0	1,	1,0	0
0	0,,1	1,,	1,	1
0	0	1	1	0
0	1	1	0	0

Image

4 3

Convolved Feature

- ▶ 2d matrix
- **Example:**

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Original image: 0 1 1 0 0

1	0	1
0	1	0
1	0	1

Convolution matrix:

1	1	1,	0,,0	0,
0	1	1,0	1,	Q
0	0	1,	1,,	1,
0	0	1	1	0
0	1	1	0	0

Image

4 3 4

Convolved Feature

- ▶ 2d matrix
- **Example:**

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Original image: 0 1

1	0	1
0	1	0
1	0	1

Convolution matrix:

1	1	1	0	0
0,,1	1,0	1,	1	0
0,0	0,1	1,,	1	1
0,,	0,	1,	1	0
Λ	1	1	0	Λ

Image

4 3 4

Convolved Feature

- ▶ 2d matrix
- Example:

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Original image: 0 1 1 0 0

1	0	1
0	1	0
1	0	1

Convolution matrix:

1	1	1	0	0
0	1,	1,,	1,	0
0	0,0	1,	1,0	1
0	0,,1	1,0	1,	0
0	1	1	0	0

Image

4 3 4

Convolved Feature

- 2d matrix
- Example:

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Original image: 0 1 1 0 0

1	0	1
0	1	0
1	0	1

Convolution matrix:

1	1	1	0	0
0	1	1,	1,0	Q
0	0	1,8	1,,1	1,
0	0	1,	1,,	Q
0	1	1	0	0

Image

Convolved Feature

- ▶ 2d matrix
- **Example:**

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	n

Original image: 0 1 1 0 0

1	0	1
0	1	0
1	0	1

Convolution matrix:

1	1	1	0	0
0	1	1	1	0
0,1	0,0	1,	1	1
0,0	0,1	1,,	1	0
^	1	1	0	0

Image

4	3	4
2	4	3
2		

Convolved Feature

- ▶ 2d matrix
- **Example:**

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Original image: 0 1 1 0 0

1	0	1
0	1	0
1	0	1

Convolution matrix:

1	1	1	0	0
0	1	1	1	0
0	0,1	1,,	1,	1
0	0,	1,	1,,	0
_	4	4	_	_

Image

Convolved Feature

- 2d matrix
- **Example:**

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

Original image: 0 1 1 0

1	0	1
0	1	0
1	0	1

Convolution matrix:

1	1	1	0	0
0	1	1	1	0
0	0	1,	1,,	1,
0	0	1,	1,	Q
٥	1	1	0	Λ

Convolved Feature

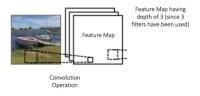
Image

- ► The convolution operator is called *filter or kernel*
- ► The result of the convolution is *feature map*

Operation	Filter	Convolved Image
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

Convolution operator: examples, emboss

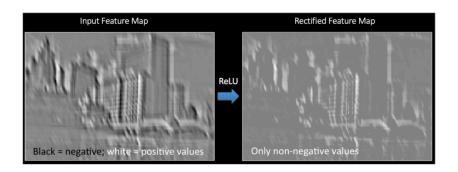
$$\begin{pmatrix} -2 & -1 & 0 \\ -1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$



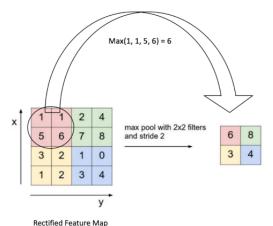
Convolution operator: application


- ▶ Depth: number of color chanels
- ► Stride: number of pixels a filter moves each time
- ► Padding: What to do with the borders (zero-padding or no padding

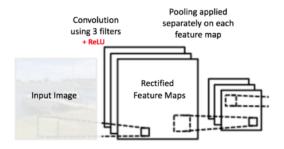
Introduce non-linearity


- ► Results of convolution can be negative
- ► Introduce non-linearity
- most common is relu

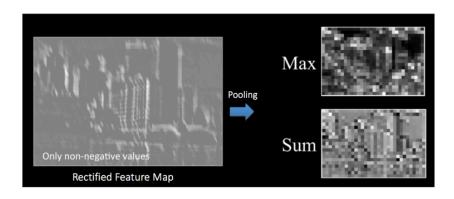
Output = Max(zero, Input)


Introduce non-linearity

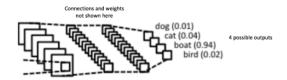
- Results of convolution can be negative
- Introduce non-linearity
- most common is relu, (sigmoid, tanh, etc.)



Pooling


- Downsampling
- Parameter reduction
- Important for overfitting and running time
- ► Generally keep the maximun insode a square region

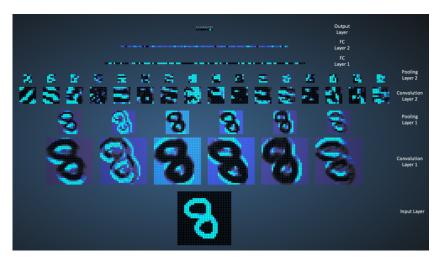
Pooling on the Rectified Feature Map



Pooling on the Rectified Feature Map

Classification layer

- Feedforward neural network
- Very often dropout: randomly setting a fraction rate of input units to 0 at each update during training time



Full convolution neural network

Examples of learned features

MNIST example https://adamharley.com/nn_vis/cnn/2d.html

Convolutional layers

- Number of parameters (200x200 RGB image):
 - ► Fully connected layer to a layer of 300 nodes:

► Weights: (200 · 200 · 3) · 300

▶ Biases: 300

► Total: $36000300 \simeq 3.6 \cdot 10^7$

Convolutional layer

- \blacktriangleright Weights per filter $w \cdot w \cdot 3$, where w is the width of the filters
- One bias
- Number of weights per filter $w^2 + 1$
- For 300 filter (usually people use only a few dozens)
- ► Total: 300 · 10 = 3000