Artificial intelligence in data science Backpropagation

Janos Török
Department of Theoretical Physics

September 28, 2022

Fully connected neural networks

- Ideas from Piotr Skalski (practice), Pataki Bálint Ármin (lecture) and HMKCode (lecture)

Fully connected neural networks

- Model:
- Inputs (x_{j}) or for hidden layer I: A_{j}^{l-1}
- Weight $w_{i j}^{\prime}$
- Bias b_{i}^{l}
- Weighted sum of input and bias: $z_{i}^{\prime}=\sum_{j} A_{j}^{l-1} w_{i j}^{\prime}+b_{i}^{\prime}$
- Activation function (nonlinear) $g: A_{i}^{\prime}=g\left(z_{i}^{\prime}\right)$

Yang et el, 2000.

Feed forward

- Example

$$
\begin{gathered}
z_{0}^{[1]}=w_{0,0}^{[1]} x_{0}+w_{0,1}^{[1]} x_{1}+w_{0,2}^{[1]} x_{2}+b_{0}^{[1]} \\
a_{0}^{[1]}=g\left(z_{0}^{[1]}\right) \\
z_{1}^{[1]}=w_{1,0}^{[1]} x_{0}+w_{1,1}^{[1]} x_{1}+w_{1,2}^{[1]} x_{2}+b_{0}^{[1]} \\
a_{1}^{[1]}=g\left(z_{1}^{[1]}\right) \\
z_{0}^{[2]}=w_{0,0}^{[2]} a_{0}+w_{0,1}^{[2]} a_{1}+b_{0}^{[2]} \\
a_{0}^{[2]}=g\left(z_{0}^{[2]}\right)
\end{gathered}
$$

- We have an output, how to change weights and biases to achieve the desired output?
- Error L

Backpropagation

$$
\Delta W=-\alpha \frac{\partial L}{\partial W}
$$

- W is a large three dimansional matrix
- Chain rule!

Geoffrey Hinton

Emeritus Prof. Comp Sci, U.Toronto \& Engineering Fellow, Google Verified email at cs.toronto.edu - Homepage
machine learning neural networks artificial intelligence cognitive science computer science

TITLE

```
CITED BY YEAR
```

Learning internal representations by error-propagation
Parallel Distributed Processing: Explorations in the Microstructure of

Backpropagation

- Chain rule

$$
\begin{gathered}
a_{i}=g\left(z_{i}\right)=g\left(w_{i j} a_{j}+b_{i}\right) \\
\frac{\partial L}{\partial w_{i j}}=\frac{\partial L}{\partial a_{i}} \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial w_{i j}}=\frac{\partial L}{\partial a_{i}} g^{\prime}\left(z_{i}\right) a_{j} \\
\frac{\partial L}{\partial a_{i}}=\sum_{l \in L} \frac{\partial L}{\partial a_{l}} \frac{\partial a_{l}}{\partial z_{l}} \frac{\partial z_{l}}{\partial a_{i}}=\sum_{l \in L} \frac{\partial L}{\partial a_{l}} g^{\prime}\left(z_{l}\right) w_{l i}
\end{gathered}
$$

Backpropagation: Example

- From HMKCode
- Note that there is no activation function (it would just add one more step in the chain rule)

Backpropagation: Example

- Weights

Backpropagation: Example

- Feedforward

input layer

Hidden Layer
output layer

Backpropagation: Example

- Error from the desired target

Backpropagation: Example

- Prediction function

$$
\begin{aligned}
& \text { prediction }= \frac{\text { out }}{} \\
& \text { prediction }= \frac{\left(h_{1}\right) w_{5}+\left(h_{2}\right) w_{6}}{\text { prediction }=}= \\
&\left(\begin{array}{l}
\left(i_{1} w_{1}+i_{2} w_{2}\right) w_{5}+\left(i_{1} w_{3}=w_{3}+i_{2} w_{1}+w_{4}\right) w_{2} \\
\left.h_{2}=i w_{3}+w_{4}\right)
\end{array}\right. \\
& \begin{array}{l}
\text { to change prediction value, } \\
\text { we need to change weights }
\end{array}
\end{aligned}
$$

Backpropagation: Example

- Gradient descent

$$
{ }^{*} W_{6}=W_{6}-\mathrm{a}\left(\frac{\partial E r r o r}{\partial W_{6}}\right)
$$

Backpropagation: Example

- Chain rule

Backpropagation: Example

- Chain rule

$$
{ }^{*} W_{6}=W_{6}-\mathrm{a} \Delta \mathrm{~h}_{2}
$$

Backpropagation: Example

- Chain rule

$$
{ }^{*} W_{6}=W_{6}-\mathrm{a} \Delta \mathrm{~h}_{2}
$$

$$
{ }^{*} W_{5}=W_{5}-\mathrm{a} \Delta \mathrm{~h}_{1}
$$

Backpropagation: Example

- Chain rule

$$
\begin{aligned}
& \frac{\partial \text { Error }}{\partial W_{1}}=\frac{\partial \text { Error }}{\partial \text { prediction }} * \frac{\text { dprediction }}{\partial h_{1}} * \frac{\partial h_{1}}{\partial W_{1}} \longleftarrow \quad \text { chaín rule } \quad \text { Error }=\frac{1}{2}(\text { prediction }- \text { actual })^{2} \\
& \text { prediction }=\left(h_{1}\right) w_{5}+\left(h_{2}\right) w_{6} \\
& \frac{\partial \text { Error }}{\partial W_{1}}=\frac{\partial \frac{1}{2}(\text { predictoin-actula })^{2}}{\partial \text { prediciton }} * \frac{\partial\left(\mathrm{~h}_{1}\right) w_{5}+\left(\mathrm{h}_{2}\right) w_{6}}{\partial \boldsymbol{h}_{1}} * \frac{\partial \mathrm{i}_{1} \mathrm{w}_{1}+\mathrm{i}_{2} \mathrm{~W}_{2}}{\partial \boldsymbol{w}_{1}} \\
& \frac{\partial \text { Error }}{\partial W_{1}}=2 * \frac{1}{2}(\text { predictoin }- \text { actula }) \frac{\partial(\text { predictoin-actula })}{\partial \text { prediciton }} *\left(w_{5}\right) *\left(i_{1}\right) \\
& \frac{\partial \text { Error }}{\partial W_{1}}=(\text { predictoin }- \text { actula })^{*}\left(W_{5} i_{1}\right) \\
& \frac{\partial \text { Error }}{\partial W_{1}}=\Delta w_{5} i_{1}
\end{aligned}
$$

Backpropagation: Example

- Summarized

$$
\text { updated weights } \quad\left\{\begin{array}{l}
* w_{6}=w_{6}-\mathrm{a}\left(\mathrm{~h}_{2} \cdot \Delta\right) \\
{ }^{w_{5}}=w_{5}-\mathrm{a}\left(\mathrm{~h}_{1} \cdot \Delta\right) \\
{ }^{w_{4}}=w_{4}-\mathrm{a}\left(\mathrm{i}_{2} \cdot \Delta w_{6}\right) \\
{ }^{*} w_{3}=w_{3}-\mathrm{a}\left(i_{1} \cdot \Delta w_{6}\right) \\
{ }^{w_{2}}=w_{2}-\mathrm{a}\left(\mathrm{i}_{2} \cdot \Delta w_{5}\right) \\
{ }_{2}=w_{1}-\mathrm{a}\left(\mathrm{i}_{1} \cdot \Delta w_{5}\right)
\end{array}\right.
$$

Backpropagation: Example

- Summarized in matrix form

$$
\begin{aligned}
& {\left[\begin{array}{l}
w_{5} \\
w_{6}
\end{array}\right]=\left[\begin{array}{l}
w_{5} \\
w_{6}
\end{array}\right]-a \boldsymbol{\Delta}\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=\left[\begin{array}{l}
w_{5} \\
w_{6}
\end{array}\right]-\left[\begin{array}{c}
\mathrm{ah}_{1} \boldsymbol{\Delta} \\
\mathrm{ah}_{2} \boldsymbol{\Delta}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
w_{1} & w_{3} \\
w_{2} & w_{4}
\end{array}\right]=\left[\begin{array}{ll}
w_{1} & w_{3} \\
w_{2} & w_{4}
\end{array}\right]-\mathrm{a} \boldsymbol{\Delta}\left[\begin{array}{l}
i_{1} \\
i_{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
w_{5} & w_{6}
\end{array}\right]=\left[\begin{array}{ll}
w_{1} & w_{3} \\
w_{2} & w_{4}
\end{array}\right]-\left[\begin{array}{lll}
a i_{1} \boldsymbol{\Delta} w_{5} & \text { a } i_{1} \boldsymbol{\Delta} w_{6} \\
\mathrm{a}_{2} \boldsymbol{\Delta} w_{5} & \mathrm{ai}_{2} \boldsymbol{\Delta} w_{6}
\end{array}\right]}
\end{aligned}
$$

Backpropagation: Multiple data points

- Generally Δ is a vector, with the dimension of the number of training data points.
- The error can be the average of the error, so repeate the equations below for all training points and average the changes (the part after a)
- Fortunately numpy does not care about the number of dinemsions, so insted of the multiplication in the right matrices we can use dot product.

$$
\begin{aligned}
& {\left[\begin{array}{l}
w_{5} \\
w_{6}
\end{array}\right]=\left[\begin{array}{l}
w_{5} \\
w_{6}
\end{array}\right]-a \boldsymbol{\Delta}\left[\begin{array}{l}
h_{1} \\
h_{2}
\end{array}\right]=\left[\begin{array}{l}
w_{5} \\
w_{6}
\end{array}\right]-\left[\begin{array}{c}
a h_{1} \boldsymbol{\Delta} \\
a h_{2} \boldsymbol{\Delta}
\end{array}\right]} \\
& {\left[\begin{array}{ll}
w_{1} & w_{3} \\
w_{2} & w_{4}
\end{array}\right]=\left[\begin{array}{ll}
w_{1} & w_{3} \\
w_{2} & w_{4}
\end{array}\right]-a \boldsymbol{\Delta}\left[\begin{array}{l}
\mathrm{i}_{1} \\
\mathrm{i}_{2}
\end{array}\right] \cdot\left[\begin{array}{ll}
w_{5} & w_{6}
\end{array}\right]=\left[\begin{array}{ll}
w_{1} & w_{3} \\
w_{2} & w_{4}
\end{array}\right]-\left[\begin{array}{lll}
\mathrm{ai}_{1} \boldsymbol{\Delta} w_{5} & \text { a i } \boldsymbol{\Delta} w_{6} \\
\mathrm{ai}_{2} \boldsymbol{\Delta} w_{5} & \text { a i } \boldsymbol{\Delta} w_{6}
\end{array}\right]}
\end{aligned}
$$

How many layers?

- Neural network with at least one hidden layer is a universal approximator (can represent any function).

Do Deep Nets Really Need to be Deep? Jimmy Ba, Rich Caruana,

