Computer simulations in Physics Segmentation

Janos Török

Department of Theoretical Physics

September 13, 2023

Segmentation

- Aim: Determine objects in an image
- Methods: Thresholding, clustering
- Methods (not covered): edge detection, convolutional neural networks

When to use traditional segmentation

- Small sample size
- Equipment based dataset
- Low resources
- Good algorithms

Threshold based methods

- Problem: Image has three variables: red, green, blue
- Solution grayscale
- Formula:

$$
\text { gray }=0.3 r+0.59 g+0.11 b
$$

source: https://www.tutorialspoint.com/dip/grayscale_to_rgb_ conversion.htm

Threshold based methods

- Threshold T

$$
g(x, y)= \begin{cases}1 & \text { if } f(x, y) \geq T \\ 0 & \text { otherwise }\end{cases}
$$

- How to get the threshold T
- median
- find a nice valley
- Otsu's method

Otsu's method

- approximate the intensity distribution by the sum of two Gaussian distribution and minimize the within-class variance!

Otsu's method

- approximate the intensity distribution by the sum of two Gaussian distribution and minimize the within-class variance!

$$
\sigma_{w}^{2}(T)=n_{a}(T) \sigma_{a}^{2}(T)+n_{b}(T) \sigma_{b}^{2}(T)
$$

where n_{a}, n_{b} is the number of pixels in group a, b, and σ_{a}, σ_{b} are the variances of the given group.

- Between variance:

$$
\sigma_{B}^{2}(T)=\sigma^{2}-\sigma_{w}^{2}(T)=n_{a}(T)\left(\mu_{a}(T)-\mu\right)^{2}+n_{b}(T)\left(\mu_{b}(T)-\mu\right)^{2}
$$

where μ is the mean. So

$$
\sigma_{B}^{2}(T)=n_{a}(T) n_{b}(T)\left[\mu_{a}(T)-\mu_{b}(T)\right]^{2}
$$

- One has to maximize $\sigma_{B}^{2}(T)$

Threshold based methods

gray, mean, Otsu

Other threshold methods

- Kapur (Graph. Models Image Process., 29 (1985), pp. 273-285)
- Rosin (Pattern Recognition, 34 (2001), pp. 2083-2096)
- Medina-Carnicer (Pattern Recognition, 41 (2008), pp. 2337-2346)

k-means clustering

- Cut the system into exactly k parts
- Let μ_{i} be the mean of each cluster (using a metric)
- The cluster i is the set of points which are closer to μ_{i} than to any other μ_{j}
- The result is a partitioning of the data space into Voronoi cells

k-means clustering, standard algorithm:

- Define a norm between nodes
- Give initial positions of the means m_{i}
- Assignment step: Assign each node to cluster whoose mean m_{i} is the closest to node.
- Update step: Calculate the new means of the clusters
- Go to Assignment step.

k-means clustering: Major usage

- Detection of connected parts in images
- Use the Red, Green, Blue value of each pixel
- Put them on a 3d space
- Find relevant clusters

k-means clustering: Image color segmentation
- Detection of connected parts in images
- Use the Red, Green, Blue value of each pixel
- Put them on a 3d space
- Find relevant clusters
- Use the center instead of each color
- Define connected clusters as objects on image

k-means clustering: Problems

- k has to fixed beforhand
- Fevorizes equal sized clusters:

Different cluster analysis results on "mouse" data set:

Original Data

k-Means Clustering

EM Clustering

- Very sensitive on initial conditions:

- No guarantee that it converges

K-means clustering

gray, Otsu, k-means

K-means clustering

gray, k-means 2, k-means 3

Connected components

- We have a segmented image
- Find connected components \rightarrow image segments
- Decide whether there is a background
- Zillions of algorithms
- Once the patch is found work with it:
- rotate if necessary
- pattern matching
- feed it to neural network

Other methods

- complete thresholding with region growing
- Edge detection

$$
\left(\begin{array}{ccc}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right)
$$

- Find lines on edges
- Domain filling with edges

Pattern/template matching

- Have a pattern
- Size and orientation MUST match
- Sweep through the image and calculate correlations (f image, g template)
- Correlation (problem with intensity

$$
C_{x y}=\sum_{i j} f(x+i, y+j) g(i, j)
$$

- Correlation zero mean template

$$
C_{x y}=\sum_{i j}(f(x+i, y+j)-\bar{f})(g(i, j)-\bar{g})
$$

- Sum of Squared Differences

$$
C_{x y}=\sum_{i j}[f(x+i, y+j)-g(i, j)]^{2}
$$

Template matching

