Artificial intelligence in data science

Game models

Janos Torok

Department of Theoretical Physics

October 27, 2022

Learn to play games

» Rules

» Observables

» Possible moves
» Aim: choose best move from observables
>

Two methods:

» Genetic algorithm
» Reinforcement learning

Genetic algorithm

» Learn from nature
> Let the fittest to survive
» Fitness function, e.g. energy, length, etc.
Combine different strategies
State is represented by a vector (genetic code or genotype)
» Phasespace, city order, neural network parameters, etc.
» Offsprings have two parents with shared genetic code
Mutations
Those who are not fit enough die out
» Keep the number of agents fixed

vy

vy

Genetic algorithm: Reproduction

» Two parents and two children

Parents: Parents:
Crossover point CTOSSOVEr points

Chikdren: Chikdren:

with a probability of 0.5, children have
50% genes from first parent and 50% of
genes from second parent even with
randomly chosen crossover points,

Genetic algorithm terminology

» Chromosome: Carrier of the genetic representation

» Gene: Smallest units in the chromosome with individual
meaning

v

Parents: Pair of chromosomes, wich produce offsprings

» Population: Set of chromosomes from which the parents are
selected. Its size should be larger than the length of the
chromosome

» Selection principle: The way parents are selected (random,
elitistic)

» Crossover: Recombination of the genes of the parents by
mixing

» Crossover rate: The rate by which crossover takes place
(~90%)

» Mutatation: Random change of genes

v

Mutation rate: The rate by which mutation takes place (~1%)
» Generation: The pool after one sweep.

Genetic algorithm schema

1. Start with a randomly generated population

2. Calculate the fitnesses

3. Selection
» Random
> Best fitness (keep top 50% and generate new 50%)
> Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)

Parents

2 s Jso Js [[7 T8 [|

Genetic algorithm schema

—_

. Start with a randomly generated population

N

. Calculate the fitnesses

3. Selection
» Random
> Best fitness (keep top 50% and generate new 50%)
» Roulette (Monte-Carlo) selection
4. Crossover: offsprings must be viable (Sometimes difficult)
» One-point
» Two-point
> Uniform

» Mutation: small rate
[1 2 [e0Ja [5 6 [7 [a s]|

Genetic algorithm example

Reinforcement learning

v

Agent gathers information about environment (explores its
states): sp, s1,. ..

> Agent interacts with environment via actions tp, ti,...
> Agent gets reward depending on the actions ry, n,...
» Modify agent’s policy based on reward

> Agent moves to the next state

Ideas from: Fei-Fei Li, Justin Johnson, Serena Yeung

Q-value function

» Policy produces sample trajectories (or paths)
S0, 40, o, S1,4d1, 11 - - -

» How good is a state? Value function (fitness) V, cumulative
reward from a policy

» How good is a state-action pair? The Q-value function at
state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy. This is
a conditional expected value

Bellman equation

» The optimal Q-value function @* is the maximum expected
cumulative reward achievable from a given (state, action) pair:

t

Q*(s,a) = max,E (Z Yire|so = 5,30 = a,7r> ,

where 7 is the actual policy

> Q* satisfies the following Bellman equation:
Q*(s,a) =Eg . (r + ymaxy Q*(s', a')ls, a)

> if the optimal state-action values for the next time-step
Q*(s’, a’) are known, then the optimal strategy is to take the
action that maximizes the expected value of
r + ymaxy Q*(s’, ")

> iterative solution

Reinforcement learning algorithm

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity IV
Initialize action-value function ¢ with random weights
for episode = 1, M do
Initialise sequence s; = {x;} and preprocessed sequenced ¢; = ¢(s;)
fort=1,T do
With probability € select a random action a,
otherwise select a; = max, Q* (¢(s;),a;0)
Execute action a; in emulator and observe reward r; and image z;,
Set 841 = 81, at, Te+1 and preprocess ¢yi1 = G(Se+1)
Store transition (¢, at, ¢, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
r; for terminal ;1
r; + ymaxy Q(¢j11,a';0) for non-terminal ¢+,
Perform a gradient descent step on (y; — Q(¢;, a;;0))° according to equation 3
end for
end for

Sety; =

Reinforcement learning algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N <«—— Initialize replay memory, Q-network
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s, = {z;} and preprocessed sequenced ¢, = @(s;)
fort=1,7 do
With probability ¢ select a random action a;
otherwise select a; = max, Q*(¢(s;),a;0)
Execute action a; in emulator and observe reward r; and image z;;
Set 8441 = 84, ay, Ty and preprocess Ppi1 = G(S41)
Store transition (¢y, a;, Ty, ¢1+1) in D
Sample random minibatch of transitions (¢;, a;,7;, ¢;+1) from D
Tj for terminal ¢ ;41
r; +ymaxy Q(¢j+1,a’;0) for non-terminal ¢4,

Set yi = {

Perform a gradient descent step on (y; — Q(d;, a;; 6))* according to equation 3
end for
end for

Reinforcement learning algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N'
Initialize action-value function () with random weights

for episode = 1, M do <+—— Play M episodes (full games)
Initialise sequence s; = {1} and preprocessed sequenced ¢ = ¢(s1)
fort=1,T do

With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;),a;)
Execute action g, in emulator and observe reward r, and image z; 1
Set 5,41 = 5,0y, Te41 and preprocess ¢ry = G(s41)
Store transition (@, a;, ¢, ¢+1) in D
Sample random minibatch of transitions (¢;, a;,7;, ¢;4+1) from D
s _.] 75 for terminal ¢; 1
ety; = £ 4
7; +ymax, Q(@j1+1,a';0) for non-terminal ¢, 4,
Perform a gradient descent step on (y; — Q(¢;, a;;6))* according to equation 3
end for

end for

Reinforcement learning algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {1} and preprocessed sequenced ¢; = ¢(s;) <*+—— Initialize state

fort =1,T do (starting game
With probability € select a random action a; screen pixels) at the
otherwise select a, = max, Q" (¢(s,), a;) beginning of each

Execute action a; in emulator and observe reward r; and image z;;
Set 8,11 = Sy, @y, T4 and preprocess ¢yo1 = G(8¢41)
Store transition (@, ar, 71, ¢¢41) in D
Sample random minibatch of transitiens (¢;,a;,7;, ¢;41) from D
T; for terminal ¢ ;.1
7 +ymaxy Q(¢j41,a’;6) for non-terminal ¢;1
Perform a gradient descent step on (y; — Q(¢;, a;; 6))? according to equation 3
end for
end for

episode

Set Y= {

Reinforcement learning algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s1)
fort =1,T do <+———— Foreach timestep |
With probability € select a random action a; of the game
otherwise select a; = max, Q*(¢(s;),a;6)
Execute action a,; in emulator and observe reward r; and image ;4
Set 8441 = 54, g, Ty and preprocess ¢p1 = G(S¢41)
Store transition (¢, az, ¢, ¢111) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;41) from D
Tj for terminal ¢;4,
i+ ymaxy Q(¢j11,a’;6) for non-terminal ¢,

Set y; = {

Perform a gradient descent step on (y; — Q(&;, a;; 6))* according to equation 3
end for
end for

Reinforcement learning algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z,} and preprocessed sequenced ¢; = ¢(s;)

fort=1,T do
With probability e select a random action a, ~<— With small probability
otherwise select a; = max, Q*(¢(s;),a;0) select a random
Execute action a; in emulator and observe reward r; and image x;, action (explore),
Set s¢41 = 81, Ay, Zy41 and preprocess gpq = B(se41) otherwise select

Store transition (¢, a;, 7y, @¢+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ®;+1) from D greedy action from

current policy

Sogainl] T for terminal ¢;.1
Yi = r; 4+ ymaxy Q(¢j+1,a;0) for non-terminal ¢,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))? according to equation 3
end for

end for

Reinforcement learning algorithm

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {x} and preprocessed sequenced ¢; = ¢(s1)
fort=1,Tdo
With probability e select a random action a;
otherwise select a; = max, Q*(d(s;),a;0)
Execute action @, in emulator and observe reward r, and image
Set 8441 = 81, g, Tr41 and Preprocess Gi1 = B(se+1)
Store transition (¢, az, 7, ¢141) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;4+1) from D

Sl T for terminal ¢ 1
Yi=\ 7 +vymaxy Q(¢41,a';6) for non-terminal ¢+,
Perform a gradient descent step on (y; — Q(&;,a;; 0))? according to equation 3
end for

end for

Take the action (a,
and observe the
reward r, and next
state s,

Reinforcement learning algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function) with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s1)
fort=1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s;),a;6)
Execute action a,; in emulator and observe reward r; and image ;4
Set 8441 = 8¢, Ay, Ty and preprocess ¢y = G(Se41) S
Store transition (¢, ay, 71, ¢¢.1) in D (<+——— Storetransition in
Sample random minibatch of transitions (¢;,a;,7;, ¢j41) from D replay memory
Tj for terminal ¢;;
i+ ymaxy Q(¢j11,a’;6) for non-terminal ¢,

Set y; = {

Perform a gradient descent step on (y; — Q(&;, a;; 6))* according to equation 3
end for
end for

Reinforcement learning algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢, = ¢(s1)
fort=1,Tdo
‘With probability € select a random action a,
otherwise select a; = max, Q*(¢(sy),a;0)
Execute action ¢, in emulator and observe reward 7, and image ;.
Set 8,41 = S, @y, Ty and preprocess ¢y = H(se41)
Store transition (¢¢, @y, ¢, ¢¢+1) in D .
Sample random minibatch of transitions (¢;,a;,7;, ¢;j4+1) fromD ——— Experience Replay:

Sotnjt T for terminal ¢;.1 Sample a random
L= r; +ymaxy Q(¢j+1,a’;0) for non-terminal ¢; 4, minibatch of transitions
Perform a gradient descent step on (y; — Q(4;, a;;0))” according to equation 3 from replay memory
end for and perform a gradient

end for descent step

Reinforcement learning scoring

Ball

distance Number of

: Distance to Number scores
Field ball of kicke to opp.
goal

distribution

