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Learn to play games

I Rules
I Observables
I Possible moves
I Aim: choose best move from observables
I Two methods:

I Genetic algorithm
I Reinforcement learning



Genetic algorithm
I Learn from nature
I Let the fittest to survive

I Fitness function, e.g. energy, length, etc.
I Combine different strategies
I State is represented by a vector (genetic code or genotype)

I Phasespace, city order, neural network parameters, etc.
I Offsprings have two parents with shared genetic code
I Mutations
I Those who are not fit enough die out

I Keep the number of agents fixed



Genetic algorithm: Reproduction

I Two parents and two children



Genetic algorithm terminology
I Chromosome: Carrier of the genetic representation
I Gene: Smallest units in the chromosome with individual

meaning
I Parents: Pair of chromosomes, wich produce offsprings
I Population: Set of chromosomes from which the parents are

selected. Its size should be larger than the length of the
chromosome

I Selection principle: The way parents are selected (random,
elitistic)

I Crossover: Recombination of the genes of the parents by
mixing

I Crossover rate: The rate by which crossover takes place
(∼90%)

I Mutatation: Random change of genes
I Mutation rate: The rate by which mutation takes place (∼1%)
I Generation: The pool after one sweep.



Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)



Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)
I One-point
I Two-point
I Uniform
I Mutation: small rate



Genetic algorithm example



Reinforcement learning

I Agent gathers information about environment (explores its
states): s0, s1, . . .

I Agent interacts with environment via actions t0, t1, . . .
I Agent gets reward depending on the actions r0, r1, . . .
I Modify agent’s policy based on reward
I Agent moves to the next state

Ideas from: Fei-Fei Li, Justin Johnson, Serena Yeung



Q-value function

I Policy produces sample trajectories (or paths)
s0, a0, r0, s1, a1, r1 . . .

I How good is a state? Value function (fitness) V , cumulative
reward from a policy

I How good is a state-action pair? The Q-value function at
state s and action a, is the expected cumulative reward from
taking action a in state s and then following the policy. This is
a conditional expected value



Bellman equation

I The optimal Q-value function Q∗ is the maximum expected
cumulative reward achievable from a given (state, action) pair:

Q∗(s, a) = maxπE

(∑
t

γtrt |s0 = s, a0 = a, π

)
,

where π is the actual policy
I Q∗ satisfies the following Bellman equation:

Q∗(s, a) = Es′∼ε
(
r + γmaxa′Q∗(s ′, a′)|s, a

)
I if the optimal state-action values for the next time-step

Q∗(s ′, a′) are known, then the optimal strategy is to take the
action that maximizes the expected value of
r + γmaxa′Q∗(s ′, a′)

I iterative solution



Reinforcement learning algorithm
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Reinforcement learning scoring


