
Artificial intelligence in data science
High level neural network implementations

Janos Török

Department of Theoretical Physics

October 7, 2021

Implementations

I SciKit-Learn
I Tensorflow
I Keras (Frontent for tensorflow and theano)
I pytorch

Differences
I SciKit-Learn

I Easy use
I Well integrated with other scientific methods
I Limited capabilities

I Tensorflow
I High performance
I Deep flexibility
I Can use multiple core and GPU
I hard
I very hard

I Keras (Frontent for tensorflow)
I Easy
I Supports tensorflow
I Very flexible

I pytorch
I Flexible
I Supports GPU
I complex

Overfitting

I Very often more parameters than data points
I Danger of overfitting (fits training perfectly but fails miserably

on test)

Regularization
I Do not allow weights to vary uncontrollably → add to the loss

function the sum of the square of the norm of the weight
matrix

J(W , b) =
1
m

m∑
i=1

L(ŷ , y)

after regularization:

J(W , b) =
1
m

m∑
i=1

L(ŷ , y) +
λ

2m

L∑
l=1

||w l ||2

Loss function

I SciKit-Learn:
I Classification: Cross-Entropy

L(ŷ , y ,W) = −y log ŷ − (1− y) log(1− ŷ) + α||W ||22

I Regression: Square Error

L(ŷ , y ,W) =
1
2
||ŷ − y ||22 + α||W ||22

I Keras:

Loss function

I SciKit-Learn:
I Classification: Cross-Entropy
I Regression: Square Error

I Keras:
I mean square error
I mean absolute error
I hinge
I Poisson
I crossentropy
I . . .

Optimizer

I SciKit-Learn:
I lbfgs: is an optimizer in the family of quasi-Newton methods.
I sgd: stochastic gradient descent
I adam: stochastic gradient-based optimizer proposed by

Kingma, Diederik, and Ba
I Keras:

I sgd
I adam
I adagrad: adaptive gradient
I rmsgrad: E (g2): moving average of squared gradients

E (g2)t = βE (g2)t−1 + (1− β)
(
∂C

∂W

)2

Wt = Wt−1 −
η√

E (g2)

(
∂C

∂W

)
I . . .

Batch, epoch

I Batch: part of the training data used in an epoch
I Gradient descent: batch = N
I Stochastic gradient descent: batch = 1
I Batch gradient descent: 0 <batch< N

I Epoch: one training session (one or more backpropagation)

