Artificial intelligence in data science

High level neural network implementations

Janos Torok

Department of Theoretical Physics

October 8, 2020

Implementations

» SciKit-Learn

» Tensorflow

» Keras (Frontent for tensorflow and theane)
> pytorch

Differences

» SciKit-Learn
» Easy use
» Well integrated with other scientific methods
» Limited capabilities
» Tensorflow
» High performance
» Deep flexibility
» Can use multiple core and GPU
» hard
» very hard
» Keras (Frontent for tensorflow)
> Easy
» Supports tensorflow
> Very flexible
» pytorch
» Flexible
» Supports GPU
» complex

Overfitting

» Very often more parameters than data points

» Danger of overfitting (fits training perfectly but fails miserably
on test)

A =0.001

A=0.01

«O> «F>r «=>»

« =

DA

Regularization

» Do not allow weights to vary uncontrollably — add to the loss
function the sum of the square of the norm of the weight
matrix

1N, .
J(W.b) = — ; L(7.y)
after regularization:

A =0.001

1 A <&
i=1 =1
=001

A=0.1

DA

Loss function

» SciKit-Learn:
» Classification: Cross-Entropy

L(§,y, W) = —ylogy — (1 - y)log(1 -) + ol |W|]3
» Regression: Square Error
. 1.
L(g,y, W) = Sl = yIlz + ol WIi3

» Keras:

Loss function

» SciKit-Learn:

>
>

Classification: Cross-Entropy
Regression: Square Error

» Keras:

VVyVYVYYVYY

mean square error
mean absolute error
hinge

poisson
crossentropy

Optimizer

» SciKit-Learn:

» |bfgs: is an optimizer in the family of quasi-Newton methods.

» sgd: stochastic gradient descent

» adam: stochastic gradient-based optimizer proposed by
Kingma, Diederik, and Ba

P> Keras:

> sgd

» adam

» adagrad: adaptive gradient

> rmsgrad: E(g?): moving average of squared gradients

2
E(e%): = BE(g) 1 + (1 -) (oc)

ow

n 6C)
W= W, — (%
t t—1 E(g2)(aW

Batch, epoch

» Batch: part of the training data used in an epoch

» Gradient descent: batch = N
» Stochastic gradient descent: batch =1
» Batch gradient descent: 0 <batch< N

» Epoch: one training session (one or more backpropagation)

