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Temporal data

> Most of the data is sequential, can be ordered
> Very often time orders the data

» Prediction is very important

» For this we need history

Source: Akshay Sood
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Recurrent Neural Networks (RNN)

» Output depends on previous state and current output
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Recurrent Neural Networks (RNN)

» Output depends on previous state and current output
» Feedback loops
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Training RNNs

» Backpropagation through time
» Regular (feedforward) backprop applied to RNN unfolded in
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Training RNNs

» Backpropagation through time

» Regular (feedforward) backprop applied to RNN unfolded in
time

» Problem: can't capture long-term dependencies due to
vanishing/exploding gradients during backpropagation




Training RNNs

» Problem: can't capture long-term dependencies due to
vanishing/exploding gradients during backpropagation




Long Short-Term Memory networks (LSTM)

> A type of RNN architecture that addresses the
vanishing/exploding gradient problem and allows learning of
long-term dependencies

» Recently risen to prominence with state-of-the-art performance
in speech recognition, language modeling, translation, image

captioning
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Long Short-Term Memory networks (LSTM)

» Memory cell (block): maintains its state over time
» Gating units: regulate the information flow into and out of the
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LSTM Memory Cell
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LSTM Cell state vector

» Memory of the LSTM
» Can be changed by forgetting (x) and addition of new data

(+)



LSTM Forget Gate

» Controls what remains of the previous memory

fe = o(Wr - [he—1,xt] + br)




LSTM Input Gate
» Controls what what new information is added to the memory
i = o(W; - [he—1,xt] + bj)
C; = tanh(Wc - [he—1, x¢] + bc)
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LSTM Memory update
> Aggregation
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LSTM Output gate
» Conditionally decides what to output from the memory
or = o(Wo - [ht—1,Xx¢) + bo)
hy = o % tanh(G)




LSTM Memory Cell Summary
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LSTM Training

» Backpropagation Through Time (BPTT) most common

> Weights: Gates, input tanh layer
» Output:

» One output at each timestep
» Single output for the whole task

| Logistic regression |
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