
Computer simulations in Physics
Agent Based Modelling

Janos Török

Department of Theoretical Physics

May 18, 2023

Page 1



Self-Organized Criticality

I Critical state: inflection point in the critical isotherm
I Power law functions of correlation length, relaxation time
I Control parameter, generally temperature
I Critical point as an attractor?
I Why? Power law: We see many cases

I 1/f noise (music, ocean, earthquakes, flames)
I Lack of scales (market, earthquakes)

I Underlying mechanism?
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Bak-Tang-Wiesenfeld model

I Originally a sandpile model
I Better explained as a Lazy

Bureaucrat model:
I Bureaucrats are sitting in a

large office in a square lattice
arrangement

I Occasionally the boss comes
with a dossier and places it on
a random table

I The bureaucrats do nothing
until they have less than 4
dossiers on their table

I Once a bureaucrat has 4 or more dossiers on its table starts to
panic and distributes its dossiers to its 4 neighbors

I The ones sitting at the windows give also 1 dossier to its
neighbors and throw the rest out of the window.
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Bak-Tang-Wiesenfeld model

I Originally a sandpile model
I Better explained as a Lazy

Bureaucrat model:
I Best application: Spring block

model of earthquakes:
I Masses sitting on a frictional

plane in a grid are connected
with springs to eachother and
to the top plate

I Top plate moves slowly, increasing the stress on the top
springs slowly and randomly

I If force is large enough masses move which increases the stress
on the neighboring masses

Page 4



Bak-Sneppen model of evolution
I N species all depends on two other (ring geometry)
I Each species are characterized by a single fitness
I In each turn the species with the lowest fitness dies out and

with it its two neighbors irrespective of their fitness
I These 3 species are replaced by new ones with random fitness
I Inital and update fitness is uniform between [0, 1]

Page 5



Bak-Sneppen model of evolution: Results

I Steady state with avalanches
I Avalanches start with a fitness f > fc ' 0.66
I Avalanche size distribution power law
I Distance correlation power law
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Bak-Sneppen model of evolution an application: Granular
shear

I Fitness → Effective friction coefficient
I Specimen with lowest fitness dies out → block is sheared at

weakest position (shear band)
I Neighbors, related species die out and replaced by new species
→ structure gets random around the shear band.
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Traffic models
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Nagel–Schreckenberg model

I Periodic 1d lattice (ring) Autobahn
I discretized in space and time
I Cars occupying a lattice moving with velocities

v = 0, 1, 2, 3, 4, 5
I Remark, if max speed is 126 km/h, then lattice length is 7 m,

a very good guess for a car in a traffic jam
I It uses parallel update: at each timestep all cars move v sites

forward
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Nagel–Schreckenberg model

I Algorithm:
1. Acceleration: All cars not at

the maximum velocity
increase their velocity by 1

2. Slowing down: Speed is
reduced to distance ahead (1
sec rule)

3. Randomization: With
probability p speed is reduced
by 1

4. Car motion: Each car moves
forward the number of cells
equal to their velocity.
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Emergence of traffic jams
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Nagel–Schreckenberg model

I Transition from free-flow to jammed state
I Jammed state is a phase-separated phase
I Without randomization a sharp transition

I Had been used in NRW to predict traffic jams
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Three-phase traffic theory
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Predator prey model

I N(t) number of predators
I E (t) number of prey
I Model (Lotka 1925, Volterra 1926):

Ė (t) = βEE (t)− [µEN(t)]E (t)

Ė (t) = [βNE (t)]N(t)− µNN(t) (1)

I Solution Ė = Ṅ = 0:

N = E = 0
N = βE/µE , E = νN/βN (2)
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Predator prey model

I Solution Ė = Ṅ = 0:

N = E = 0
N = βE/µE , E = νN/βN (3)

I Numerical solution:
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Predator prey model
I Numerical solution:

I Reality:
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Other agent based models

I Agents are nodes
I Interactions through links
I Any network:

I Lattices
I Random networks
I Scale-free
I Fully connected graphs

I Examples:
I Opinion models (not this time)
I Minority models
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Flocking Model
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Flocking model

I Birds move with constant velocity (v0)
I Align themselves to neighbors
I Some noise due to inaccurate averaging
I Differential equation

θi (t + ∆t) = 〈θ(t)〉|ri−rj |<R + ξ

I Upgrade position:

ri (t + ∆t) = ri (t) + v0e(θi (t))∆t

where e(θ) is a unit vector in the direction of θ.
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Flocking model

I Birds move with constant velocity (v0)
I Align themselves to neighbors
I Some noise due to inaccurate averaging
I Phase diagram 1d:
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Flocking model

I Birds move with constant velocity (v0)
I Align themselves to neighbors
I Some noise due to inaccurate averaging
I Non-physicist model:
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Minority models

"It is not worth an intelligent man’s time to be in the majority. By
definition, there are already enough people to do that."
Godfrey Harold Hardy
"Csak a döglött hal úszik az árral" - "Only dead fish swim with the
tide"
I El Farol Bar problem
I Irish Music Thursdays
I Music is unenjoyable if more than 60 people go
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Minority models

I El Farol Bar problem
I Irish Music Thursdays
I Music is unenjoyable if more than 60 people go
I After a transient attendance fluctuates around 60%
I In late stages regularities (cycles) are arbitraged away
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Memory
I Intentionalism: I know that he know that I know what he . . .
I Intelligent animals: 2 levels
I Children: 2 levels
I Strong authists: 1 level
I Humans 5-7 levels
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El Farol problem, strategy

I Attendance was: 44 78 56 15 23 67 84 34 45 76
I Should I stay or should I go now?
I N agents with strategies
I Agents change their strategy with respect to performance
I Similar problems:

I Traffic decisions
I Animals food/water
I Shopping times
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Minority model

I N players (odd for simplicity)
I Each player has S ≥ 2 strategies
I Action of player i at time t is ai (t) = {+1,−1}
I Total action: A(t) =

∑
i ai (t)

I Payoff: pi (t) = −ai (t)g [A(t)], g(a) is an odd function, e.g.
sign(x)

I Information: W (t + 1) = g [A(t)] = sign[A(t)]

I Memory: limited to the last m values of W
I Strategy: A table from the 2m possible inputs to the

corresponding output
I Agent evaluates its strategies and plays the best one

Esteban Moro: The Minority Game: an introductory guide
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Minority model: strategy

I Memory: limited to the last m values of W
I Strategy: A table from the 2m possible inputs to the

corresponding output

input output
−1 −1 −1 −1
−1 −1 +1 +1
−1 +1 −1 +1
−1 +1 +1 −1
+1 −1 −1 +1
+1 −1 +1 −1
+1 +1 −1 +1
+1 +1 +1 −1
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Random strategy
I Having N agents, the probability of having n +1 follows a

binomial distribution

P(n) =

(
N

n

)
pn(1− p)N−n

I Average: 〈n〉 = pN, 〈n〉(p = 1/2) = N/2
I Variance: σ2 = Np(1− p), σ2(p = 1/2) = N/2
I Minority game:
I Average: 〈A(t)〉 = 0
I Variance: σ2/N is function of α = 2m/N with

lim
α→∞

σ2/N = 1/4

So the strategy with infinite memory becomes random
I At low values of α the variance increases as a power law
σ2/N ∼ α−1
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Minority model: variance
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Minority model: order parameter

I Can we predict the sign of A(t)?
I α < αc : No, we have not enough information, agents are

random
I α > αc : Yes, strong dependence, in market this can be

exploited (arbitrage)

I Order parameter: information

H =
1
2m
∑
ν

〈W (t + 1)|W (t) = ν〉
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Minority model: variance
I Can we predict the sign of A(t)?

I α < αc : No, we have not enough information, agents are
random

I α > αc : Yes, strong dependence, in market this can be
exploited (arbitrage)
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Bounded confidence opinion model: Deffuant model

I Agents have opinion xi
I if |xi (t)− xj(t)| < ε then

I xi (t + 1) = xi (t)− µ[xi (t)− xj(t)]
I xj(t + 1) = xj(t) + µ[xi (t)− xj(t)]

I µ compromise parameter µ = 1/2 complete compromise
I ε tolerance parameter
I Methods:

I Monte-Carlo simulation
I Master equation:

∂P(x , t)

∂t
=

∫
|x1−x2|<ε

dx1dx2P(x1, t)P(x2, t)×

×
[
δ

(
x − x1 + x2

2

)
− δ(x − x1)

]
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Deffuant model: Opinion groups (fully connected graph)
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Deffuant model: Bifurcation diagram

∆ = 2/ε, µ = 1/2
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Application to Wikipedia edit wars
I Article has an opinion bieas A
I People who do not like the bias may edit the article
I Editors argue for a while then simply revert the other edits
I expeiremce of the editor helps to distinguish between edit war

and vandalism

Benjamin Franklin Israel and the apartheid analogy
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Controversial words in article titles in 2009
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Bounded confidence model for Wikipedia

I Agents have opinion xi , Article A
I if |xi (t)− A(t)| < εA then

I xi (t + 1) = xi (t) + µA[A(t)− xi (t)]

I Article bias is close to the editor’s no edit but agent is a bit
influenced by the article

I if |xi (t)− A(t)| < εA then
I Article bias is far from the editor’s edit!
I A(t + 1) = A(t) + µA[xi (t)− A(t)]

I µA article weight (probably amount of content or reasoning)
I εA tolerance parameter
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Results of the Wikipedia model
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Results of the Wikipedia model
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Practice: Minority game

I (If you find it too difficult you can choose any other model)
I
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