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Optimization
» General problem of finding the ground state
» Phase-space:

> Arbitrary number of dimensions
» Methods:

» Steepest Descent

> Stimulated Annealing

» Genetic algorithm
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Optimization

General problem of finding the ground state
Phase-space:

Arbitrary number of dimensions
Methods:
» Steepest Descent
» Stimulated Annealing
» Genetic algorithm
» Implementation
> C: GSL
» python: scipy.optimize
» Both are very flexible and can be used with numerical or
analytical derivatives
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Gradient based optimization

» Given f(x), with x = {x1,x2,...xn}

» Gradient Vf(x) = g(x) = {01, 0af,...0nf}

» Second order partial derivatives: square symmetric matrix
called the Hessian matrix:

OO f ... O10nf

V2f(x) = H(x) = : :

OOnf ... OnOnf
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General Gradient Algorithm

Test for convergence

Compute a search direction

Compute a step length
Update x

Ll A

[=1=R=
===
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Steepest descent algorithm
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1. Start from xg
. Compute g(xx) = VF(xk). If ||[g(xk)|| < g then stop,

otherwise, compute normalized search direction
Pr = —8(x)/llg(xk)ll

3. Compute ay such that f(xx + apg) is minimized
4. New point: Xx+1 = Xk + apk
5. Test for |f(xk+1 — F(xk))| < €2+ &/|f(xk)| and stop if fulfilled

in two successive iterations, otherwise go to 2.



Conjugate Gradient Method

» The iteration
Xnt1 = Xk — YnVF(Xk),

» We can select v such that if the function is quadratic in all
directions it goes immediately into the minimum

» Idea: almost all minima are quadratic close to the minimum

= (%0 — %n—1) T [VF(xn) = VF(x0-1)]|
" IVF(xn) = VF(xa-1)|[?
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Conjugate Gradient Method

1. Start from xg

2. Compute g(xx) = VF(xk). If ||g(xk)|| < eg then stop,
otherwise Go to 6

3. po = —go

4. Compute g(xx) = VF(xk). If ||g(xk)|| < eg then stop,
otherwise continue

5. Compute the new conjugate gradient direction
Pk = —8k + BkPk_1, where

52( el )
ekl

6. Compute ay such that f(xx + apg) is minimized

7. New point: Xx11 = Xk + apk

8. Test for |f(xk+1 — F(xk))| < ea+e/|f(xk)| and stop if fulfilled
in two successive iterations, otherwise go to 4.
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Conjugate Gradient Algorithm

e Steepest Descent

Conjugate Gradient
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Modified Newton's method

Second order method
1. Start from xg

2. Compute g(xx) = VF(xk). If ||g(xk)|| < eg then stop,
otherwise, continue

3. Compute H(xx) = V2f(xx) and the search direction
pk = —H gk

4. Compute ay such that f(xx + apg) is minimized

5. New point: xx41 = Xk + apk

6. Go to 2.
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Glassy behavior, frustration
> Model glass: spin glass:

1
H=-3 > JiSiS;
(i)
» where J;j are random quenched variables with 0 mean (e.g.
+J with probability half)

Spin Glass

Rugged energy landscape.
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Energy landscape

Ising vs. spin glass (X Axis: binary representation of number)
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Spin glass: Aging
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Heat up the sample where it equilibrates fast
Quench it below T,

Wait t,,

Measure a parameter q(ty, tw + t)

Often g is a covariance (X observable):

q(s; t) = E(XeXs) — E(X) E(X)

04 1 10 100 1000
t-t,(s)



Spin glass: Trap model (Bouchaud)
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» The evolution of the particle

system is represented by a
Markov process in a random
energy landscape

The process will spend most

time into deep valleys of lowest
energy where it will be trapped
The time spent in these valleys

is random and aging will appear
when the mean time spent in

these valleys diverges
Order parameter: the

magnetization and the two point
spin correlation between spins at
the same site in two different

replicas
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Rugged energy landscape

» Typical example NP-complete problems:
» Travelling salesman
» Graph partitioning
» Spin glass
» No full optimization is possible (do we need it?)
» Very good minimas can be obtained by stochastic optimization

» Simulated annealing
» Genetic algorithm
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Optimization

» General optimization
» Parameters of the system x (input)
» for networks: adjacency matrix, degree distribution
» for pattern recognition: data, or processed data (e.g Fourier
spectrum, etc.)
» Optimized property: y = f(x), we search for f(.) which gives
the desired y
» any measurable quantity
» classification of data (e.g. y =1 for cat, y = 2 for dog, etc.)
» Loss function, L(f), the quantity to be minimized
(Energy/Hamiltonian)
> Least square: L(f) = [y — f(x)]?
1 if f(x)=y

» Hamming distance: L(f) = 0 othorwi
otherwise
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Simulated annealing
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v

Loss function: e.g. energy E
Minimize energy like in a physical system

Vary parameter set w in an egodic way (all possible values
must be reachable)

Observe detailed balance:

o1 it < E;
pli —=J) = .
exp[B(Ei — Ej)] otherwise

where  ~1/T

Slowly decrease T



Simulated annealing

Cool down the system slowly
Speed is crucial and many experiments are needed

No guarantee that we find something meaningful

vvyyy

Warm up and down if needed, if the system quenched into a
local minimum

v

One needs a Hamiltonian (or a fitness function) and an
elementary move

» Spin glass: Metropolis
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Hill climb

# 807m of 9530m (best: 807m)
= .

@ 558675

MERK FLIP




Travelling salesman

» N cities on the 2d space

v

Distance between the cities is the Euclidean distance (birds
flight)
The traveller must visit all cities once

vy

The trajectory is circular so the traveller must return to the
starting city
» The optimized quantity is the travelled distance
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Travelling salesman

» Minimal travelling path for visiting a number of cities

» Elementary move: swap two cities (T ~ alcohol)
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Genetic algorithm

» Learn from nature
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Genetic algorithm
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Learn from nature
Let the fittest to survive
» Fitness function, e.g. energy, length, etc.
Combine different strategies
State is represented by a vector (genetic code or genotype)
» Phasespace, city order, neural network parameters, etc.
Offsprings have two parents with shared genetic code
Mutations
Those who are not fit enough die out
» Keep the number of agents fixed




Genetic algorithm terminology
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Chromosome: Carrier of the genetic representation

Gene: Smallest units in the chromosome with individual
meaning

Fitness: The measure of the success of an individual with a
given chromosome

Population: Set of chromosomes from which the parents are
selected. Its size should be larger than the length of the
chromosome

Parents: Pair of chromosomes, wich produce offsprings
Selection principle: The way parents are selected (random,
elitistic)

Crossover: Recombination of the genes of the parents by
mixing

Crossover rate: The rate by which crossover takes place
(~90%)

Mutatation: Random change of genes

Mutation rate: The rate by which mutation takes place (~1%)
Generation: The pool after one sweep.



Genetic algorithm schema

1. Start with a randomly generated population

2. Calculate the fitnesses

3. Selection
» Random
> Best fitness (keep top 50% and generate new 50%)
> Roulette (Monte-Carlo) selection

Crossover: offsprings must be viable (Sometimes difficult)

Parents

2 s ¢ [s [ [ Te s |

e e [7 e s J& s [z [1 |
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Genetic algorithm: Reproduction

» Two parents and two children

Parents: Parents:

Crossover point CTOSSOVEr points

Chikdren: Chikdren:

parent: N ENHHIN NI ENEIE
1 Y Y Y I 1 B
‘With a probability of 0.5, children have
EEINEE TS P "
" 0% genes from first parent and 509 of

genes from second parent even with
randomly chosen crossover points,

Children:
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Genetic algorithm schema
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1. Start with a randomly generated population

. Calculate the fitnesses
. Selection

» Random
> Best fitness (keep top 50% and generate new 50%)
> Roulette (Monte-Carlo) selection

. Crossover: offsprings must be viable (Sometimes difficult)

» One-point
» Two-point
» Uniform

. Mutation: small rate



Genetic algorithm example
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Genetic algorithm for Travelling Salesman

» Natural storage: order of the towns, e.g. (1,7,4,2,3,5,6) not
suitable for crossover.

» Good encoding can be cut at any point.
» Solution: ordinal representation

> In representation / means take element i from the rest of the
list of cities.

Jean-Yves Potvin: Genetic algorithms for the traveling salesman problem,
Université de Montréal
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Ordinal representation: Example

» The city numbers are gradually taken from the standard list of
cities

» The code is the actual number in the maimed list

» Any number sequence with values ([1, N][1, N—1]---[1,2]1) is

valid
City order Maimed list Ordinal
152463 123456 1
152463 23456 14
152463 2346 141
152463 346 1412
152463 36 14122

152463 3 141221
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Ant colony optimization

» Once again learn from nature:

Page 31



Ant colony optimization

» Once again learn from nature:
» Ants explore
» Deposit pheromone
» Pheromone dissipates with time
» Shorter paths with more usage will prevail

Salesant
Problem

Come
P home >

> el ’

ok class listen up,
This problem might seem
second nature to you but in
some inferior species it is
called a "hard" problem
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Ant colony optimization: algorithm

6.

N ants

. Initialize pheromone concentration h which is between all city

paires by small random values

. Ants explore the cities:

» Ants may only go to unvisited cities
» Probability to go from city i to j is proportional to

pi ~ hg/df.

where dj; is the distance between cities i/ and j, «, 3 are
parameters

Ants deposit pheromone on their travelled paths. The amount
of deposited pheromone is 1/dj;

Pheromone decay: multiply all elements of the h matrix with
parameter v < 1

Repeat from 3

https://github.com/Akavall/AntColonyOptimization

Page 33



Ant colony optimization: assessment

» Advantages

» Inherent parallelization

» Generally rapid solution

» Very good for dynamic optimization
» Disadvantages

» Individual behaviour is stochastic and not representative
» Theory is kind of impossible
» Steady state is incertain
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