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Literature

 Numerics: Computational Quantum Physics course at
ETH Zurich SS 2008, by P. de Forcrand & M. Troyer

- lecture notes online

e Quantum Scattering Theory: Any introductory Quantum
Mechanics book, e.g., Griffiths



Wavepackets in momentum representation

Wavepacket: normalized superposition i

of plane waves /\
0.2 / \
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Reverse engineer amplitudes of plane waves by Fourier transform:
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Gaussian wavepackets are simple and minimum-
uncertainty wavepackets

momentum 0.4 1
boosted by k|
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Free time evolution of wavepackets is easy to compute in
the momentum representation
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Gaussian wavepackets propagate with group
velocity v, twice faster than the waves they are
composed of
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Gaussian wave packet, a=2, kg =4

Gaussian wavepackets spread out in time,
for t>>1 ballistic spread
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heavier particle = slower spread
tighter wavepacket — faster spread





For time evolution of wavepacket with some Hamiltonian,
need to deconstruct wavepacket into eigenstates.
Simple with discrete spectrum...
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with energy E=E_ V272

Obtain a set of eigenstates  f7n) = £, |n)  —  |n(t)) = e En/ht|p)
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For time evolution of wavepacket with some Hamiltonian,
need to deconstruct wavepacket into eigenstates.
For continuous spectrum, need dk, dx

Start with a wavepacket with energy E=E

Obtain a dense enough set of |y (1)) = E.|U(k s WL () = e iER/Nt )y
eigenstates of H around E=E WR)) o (R)) Ti(t)) = e Vi)

Eigenstates indexed by continuous parameter k, sampled at intervals dk

Real-space wavefunction sampled at intervals dx
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Example: scattering from Square barrier

Exactly solvable textbook problem (Griffiths Quantum Mechanics 2.6.,
or wikipedia, plane waves+fitting)

Solution simple in scattering region as well:
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Solution over all x;: fit solutions at a and -a:

reflection & transmission amplitudes:
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reflection & transmission probabilities: R = |7°|2| T = |7§|2



You can try this with scattering states for the square
potential barrier!

1) Decide momentum and size of incident wavepacket (should be broad
enough so energy well defined & slower spread)

2) Take long enough leads, obtain a dense enough set of scattering states
with E=E

3) Decompose incident wavepacket at t=0 into scattering states

4) Build up time evolution of wavepacket



Expected plots:

scattering resonances from last week:
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This spectral decomposition method is expensive if
potential is time-dependent

Obtain a dense enough set of

g —iE, /ht
eigenstates of H around E=E Hln) = Enln)  —  [n(t)) =e / n)



Best approach for time dependent potential: split
operator method

ihoy|U) = H(t)|T) Ay=t/N  H;=H(j-1/2)A)

Formal solution of Schrodinger equation'
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If Hamiltonian is sum of kinetic and potential energy: ﬁ(t) _ —h—282 V(2 t)

1) Starting idea: T and V separately are diagonal in momentum/real space basis.
Fast Fourier Transform is cheap, O(N log(N) ) way to switch back and forth.

Therefore, should use ) ) )

2) Only = because T and V don’t commute. Improve error term by Strang splitting:
e—mtﬁ/h _ e—iAtV/(Qh)6—iAtT/h€—iAtV/(2h) 4 O(Af)

can check by series expansion of exponentials



Explicit calculation of why Strang splitting is good



Split operator method, recipe

single timestep:
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last step should be
replaced by:

VN (:C) _ e—z’AtV(:c,t:NAt)/2\Ij2N (ZC)



Implement split operator method and debug by
comparing scattering wavepackets to Numerov

Homework: scattering resonances
measured
by wavepacket transmission:
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Exercises for today and homework

1) Calculate scattering of a wavepacket of energy 2.5 eV, width in
energy 0.5 eV, from a square potential barrier by the split operator
method. Plot snapshots of wavepacket before/during/after scattering.

Barrier parameters: height 2 eV, size 1nm

if you feel extra enthusiastic: Same as above, but by decomposing the
initial wavepacket into a superposition of scattering states (obtained by
analytical solution).

1) Measure transmission as a function of energy (2.1 eV— 5 eV ) using
time evolution of wavepackets, for a square potential barrier, using the
split operatorspectral method. Barrier parameters: height 2 eV, size
1nm. Compare with analytical curves.

+) if you feel extra enthusiastic: Same as above, but by decomposing the
initial wavepacket into a superposition of scattering states (obtained by
analytical solution).
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