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Literature

 Numerics: Computational Quantum Physics course at
ETH Zurich SS 2008, by P. de Forcrand & M. Troyer

- lecture notes online

e Quantum Scattering Theory: Any introductory Quantum
Mechanics book, e.g., Griffiths



1-dimensional Quantum Mechanics, brief reminder

ve packet, a=2, ko =4

state of particle: U(x)
complex valued wavefunction

position probability density: W ()|
expectation value of position:

(z) = /d:z: V()2 — /dx\ll(a;)*:n\lf(:c)
position operator: = z- TV(x) = 2V (x)
momentum: p=—thd, (p) = /dr\lf(a:)*ﬁ\lf(:p)
Hamiltonian = operator of total energy: 7 _ P LV

2m
time evolution, Schrodinger equation: 1ho U = HWU

2
iho W (x) = —zh—m(‘?i\lf(x,t) + V(z)U(x,t)




1-dimensional qguantum mechanics: eigenstates of
Hamiltonian, time-independent Schrodinger equation

2
ih0, U (x) = —;—magxp(x, D+ V(@) Uz, t)

time evolution, Schrodinger equation: 1hoy U = ﬁ\IJ

A

try it on eigenfunction i
ofythe ope?ator H: Hi(z) = Ey(x) — U(zr,t)=c¢ E/ht¢(x)

This W is a stationary state, position distribution |W(x,t)|? independent of time

Example:
. Some trajectories of a particle
bound states in in a box according to
a square well Newton's laws of
: classical mechanics (A), and
- according to the

Schrédinger equation of

i A quantum mechanics (B-F). In
Lv (B-F), the horizontal axis is
: -‘ ' position, and the vertical axis
A is the real part (blue) and

A

imaginary part (red) of the
wavefunction. The states
(B,C,D) are energy eigenstates
, but (E,F) are not.



https://en.wikipedia.org/wiki/Newton%27s_laws
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Wavefunction
https://en.wikipedia.org/wiki/Energy_eigenstate


Bound states in 1D have real-valued wavefunctions,
decrease fast enough as x— infty

2 mw2
particle
2m v lb( ) Ew(az) \Ij(x’t) x:;ooo does not

escape

First four harmonic oscillator
normalized wavefunctions
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http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/hosc5.html



Freely propagating particle: plane wave, wavepacket

\IJ(ZIZ, t) _ eika:—z'E/ht

Wavefunction not normalized for
probability but for particle current

(a)

State of actual particle: wavepacket

|





Real space - momentum space: Fourier transform
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Scattering states in 1D: incoming, reflected, transmitted
plane wave + something in the middle

_—H? V — B scattering state:
2m 29(@) + V()i (z) (@) - a solution of Schrodinger eqgn,
= eigenstate of H

- with no incoming wave from right (D=0)

— Away from scattering region (1,3):
superposition of plane waves
with wavenumber k|

]CO = \/QmE/ﬁ2

— In scattering region (2):
depends on potential

¢1 (£IJ) _ Aeikzgx + Be—ikox w?)(x) — Cez’kyoyc + De—z’kom

Solution over all x: fit solutions at a and -a:
reflection & transmission amplitudes:

Y1(—a) P2(a) = ¥3(a) B _C
r=—; t=—

1(—a) = ¢5(—a) y(a) = ¥(a) A A
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reflection & transmission probabilities: R = |7“|2| T = |7§|2



Example: scattering from Square barrier

Exactly solvable textbook problem (Griffiths Quantum Mechanics 2.6.,
or wikipedia, plane waves+fitting)

Solution simple in scattering region as well:

w2<x> — Feiklm _|_ Ge—’iklm

ki = /2m(E — Vp) /b2
ko == \/QTTLE/ﬁZ

o) a0 ()

wl (Zl?) _ Aeik}o:l: + Be—ikox 77D3(£B) _ Ceikox + De—z’k:o:c

Solution over all x;: fit solutions at a and -a:

reflection & transmission amplitudes:
v1(~a) ¥a(a) = vs(a) B ,_C

1(—a) = ¢5(—a) y(a) = ¥s(a) A A
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reflection & transmission probabilities: R = |7°|2| T = |7§|2



Transmission by tunneling and resonances
in square barrier

Tunneling across barrier in 1.04 '
classically forbidden regime:

classical | quantum
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Transmission resonances:
perfect transmission if 2a=n A,/ 2

7T2h2 5
n

sin? 2ksa

L+ mE=v

E, =Vy+

Sma?



What is fundamental in quantum mechanics,
what is only for square barrier?
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Formulas also hold for transmission across square well,
transmission resonances

As before, with V <O0.
1.'-"(-*)

Transmission across square well
is always classically allowed:

1

T =

V2 .
1+ 4E(EO_VO) sin® 2k a

No transmission for E—0

Vo=-33 2a=10
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E( A?)
22
7“h
E,=Vy+ -n’
83ma

What about a transmission resonance
at O energy?



What happens to transmission resonances in smooth

- T resonances, as E is tuned

2h2 2

2ma,2

E, =Vy+

2 3 4 5 6
energy E

- T resonances at E=0, as VO is tuned?
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Numerov: finite-difference method to solve

Schrodinger equation (like Runge-Kutta)

() + V(zb(a) = Bv(a)

discretize position: . =N =z,

Taylor expand :

Ax?
] 'I-| — .'I-| Sy .'.1Ir -
Vpse1 = Uy = Az, +

L Ax? Az?

:{."i}??, 6 [ 2 4: mn

Use a trick to get rid of all odd order derivatives:

(Az)” (@)
Tk

e s = g N
Un+1 T Wp—1 = 2"&'—’” s (&I) W o5

Approximate 4t derivative as a finite difference:

“_1” /s I I.",-”
(@) _ Y+ ¥no1 — 20
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Numerov method, summarized

h2

—5.-00(2) + V(2)¥(2) = Ed(z)

2m 7

dimensionless variables:

(z) + k(z)y(z) =0

here, k(x) is short for
_ 2m(E - V(x))

k2(£13) T ]';LQ

(14

(Az)?
12

Jlﬁﬂ—l—l) (*'?f{-"n—l—l

2<1
(1+

5(Ax)?
12

(Az)?
12

ll:n ) ('I'.I,'i"n

knl) ’{fi’n—l + O(/_\rh)

locally accurate to 5% order



To calculate with Numerov method, need initial
conditions: 2 neighboring values, to iterate

If potential is finite range, V(x) = O for |x|>a
— use plane wave/decaying form

Y(-a) =1

(bound state at -E):

Y(—a — Ax) = exp(Aaz\/ZmE/h)

scattering state at +E:

V(—a — Az) = exp(FiAz/2mE/h)



Scattering problem by Numerov algorithm

Yr(x) = Aexp(—iqx) + Bexp(iqx) Yr(x) = Cexp(—iqr)

e Set (' = 1 and use the two points @ and a + Az as starting points for a Numerov
integration.

e Integrate the Schrodinger equation numerically — backwards in space, from a to
0 — using the Numerov algorithm.

e Match the numerical solution of the Schrodinger equation for & < 0 to the free
propagation ansatz (3.11) to determine A and B.

=

[BI*/|AF
T = 1/|AP



Choosing the right dimensionless variables is important
before numerical work

commonly used Atomic Units:

® action h = 1.05 e-34 kgm"2/s

® chargee=16¢e-19C

¢ |ength: Bohr radius: a = 52.9 pm
® mass: m, = 9.11 e-31 kg

We find out the unit of energy by expressing
h?

mea

~ = 1Ey =27.2¢V

Better for us to measure energy in eV:

® action i = 1.05 e-34 kgm"2/s
® mass: M, =9.11 e-31 kg

e energy: Ep =16V shorthand k(x) in Numerov

becomes:
giving us as unit of time and length, ”k(a:)” = k2 (513) = 2[E — V(CL‘)]

e time: 7y = h/eV = 6.58 e-16 sec = 0.658 femtosec

e length: /g = 4 f’Egrg,me = 0.276 nm



Exercises for today

e Calculate scattering from a square potential barrier by
integration of Schrodinger equation using Numerov

- Plot transmission as a function of energy, for
a barrier height 2 eV, size 1nm

 Compare with analytical curves

e Calculate scattering from a Gaussian potential barrier by
the same method

- Plot transmission as before, with a barrier height 2eV, size
1nm

- What happened to the transmission resonances?



Homework: what happens to transmission resonances in
smooth potentials?

potential V

0 1.00
I_
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Homework exercises

e Calculate scattering from a square potential well by integration of
Schrodinger equation using Numerov

- Plot transmission as a function of energy, for
a well depth 2 eV, size 2a=1nm.

» Also plot analytical curves

- Plot transmission as a function of well depth (4 eV— 0 eV ),
at energy 0.1 eV, well size a=0.5 nm

* Change the shape of the potential well to Gaussian. What
happens to the resonances in the two cases above?

- Plot transmission as a function of energy, for
a well depth 2 eV, size a=0.5nm

- Plot transmission as a function of well depth (4 eV—> 0 eV),
at energy 0.1 eV, well size a=0.5nm
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