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Boundary conditions

I Real boundary conditions
I Closed (nothing)
I Walls (with temperature)
I Substrate (often too expensive)

I Computer based boundary conditions
I Periodic boundary conditions
I Absorbing (whatever leaves is gone)
I Reflecting (everything is reflected back)
I Walls (some potential)
I Substrate (fixed basis)
I Wall with temperature
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Boundary conditions: Examples

I Periodic boundary conditions
I Walls (some potential)
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Boundary conditions: Examples

Periodic boundary conditions

Substrate (fixed basis)
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Periodic boundary conditions
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Periodic boundary conditions → contacts
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Periodic boundary conditions

I Infinitely many neighboring cells if long range interactions
I Possibility of self interaction (must be charge neutral)

I General solution: long range interactions are handled in
k-space

I Linear momentum is conserved
I Angular momentum is not conserved
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Periodic boundary conditions

Distance
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Periodic boundary conditions deformed box

I Box is tilted, positions of particles artificially moved
I Homogeneous shear
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Periodic boundary conditions deformed box

Distance

I Order matters
I Tilted: by Dxy , Dxz , Dyz
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Particle based simulation

I Molecular dynamics
I Event Driven Dynamics
I Contact Dynamics
I Kinetic Monte Carlo
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Molecular dynamics

MD: Molecular dynamics
DEM: Discrete element method
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Application of molecular dynamics

I Molecular systems (classic potentials, temperature)
I Biophysics
I Structural biology
I Glasses
I Amorphous materials
I Liquids

I Granular materials (hard core, dissipative)
I Stones, seeds, pills
I Railbed

I Pedestrians
I Astrological systems (conservative, large scale)
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Molecular dynamics

Simulate nature
I Solve Newton’s equation of motion

mi r̈i = fi = fexti +
∑
j

f intij , i , j = 1, 2 . . .N
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Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I Set temperature
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Forces

Internal forces
I Pair potential:

f intij = −f intji = −∇V (rij)

I Many body potentials (molecular bonds)

f intijk = F(ri , rj , rk)

I e.g. 3-body Stillinger-Weber potential:

I Friction forces (next slide...)
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Friction forces

I Moving:

I Stationary:
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Friction forces

I Position is not enough to set friction forces
I No movement → no friction forces
I Solution:

We need history:
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Contact history: spring dashpot model

I Position is not enough to set friction forces
I Normal force:

Fn = knδnij −meffγn∆vn

I Tangential force:

Ft = kt∆st + meffγt∆vt

∆st = nt
∫ t

tc

{
∆vt(t ′) + [ωi (t

′)ri − ωj(t
′)rj ]

}
dt ′

I Limit ∆st to satisfy |Ft | ≤ µFn
I k stiffness, γ damping (critical)
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Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I Set temperature
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Find pairs

Now we know how to calculate forces. How to get pairs?
I All pairs: ∼ N2 calculations. Only if there is no other way!
I Short range interactions: box method
I Long range interactions: k-space
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Cell list (Bucketing algorithm)
Finite interaction length L

I Grid with size L

I Grid of array with particle indexes in box
I Maximum number of neighbors or dynamic array
I If there is vmax then L′ = L + vmax∆t, then reset array every

∆t timesteps
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k-space solution

I Long reange interactions (e.g. Coulomb) cannot be cut off
I Often more periodic images are needed
I k-space (Fourier-transformation in 3d!)

I Solution of linear problems by Green’s-function
I Coulomb problem: in Fourier space → multiplication with

1/k2!
I Generally it is done by Ewalds summation
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Ewald summation
I The total electrostatic potential energy

W =
1

8πε0

∑
i 6=j

qiqj
|ri − rj |

I Factor 2 is for double counting all contacts
I For infinite system the expression does not converge
I Ewald’s idea:

1
r

=
erf(√ηr/2)

r
+

1− erf(√ηr/2)

r

I The first term goes to a constant for small r but has long
range interactions

I The second term has a singular behavior at r → 0 but vanishes
exponentially

I erfc(x) = 1− erf(x)
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Ewald summation
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I Thus the calculation of the electrostatic energy is

W =
1

8πε0

∑
i 6=j

qiqjerf(
√
η|ri − rj |/2)

|ri − rj |
+

+
∑
i 6=j

qiqjerfc(
√
η|ri − rj |/2)

|ri − rj |


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Ewald summation

I Thus the calculation of the electrostatic energy is

W =
1

8πε0

∑
i 6=j

qiqjerf(
√
η|ri − rj |/2)

|ri − rj |
+

+
∑
i 6=j

qiqjerfc(
√
η|ri − rj |/2)

|ri − rj |


I For an appropriate choice of η, the second term converges fast
I The first term is evaluated in the Fourier space

W1 =
4π
L3

∑
i 6=j

qiqj

(∑
k

e−ik·rij
1
k2

e−k
2/4η2

)

Page 26



Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I Set temperature
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Euler method

I Second order differential equation:

ÿ = f (ẏ(t), y(t), t)

I First velocity (v = ẏ)

vn+1 = vn + ∆t fn +O(∆t2)

I Then position

yn+1 = yn + ∆t vn +O(∆t3)

I Do not use it!
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Implicit Euler method (backward)

I Second order differential equation:

ÿ = f (ẏ(t), y(t), t)

I First velocity (v = ẏ)

vn+1 = vn + ∆t fn +O(∆t2)

I Then position

yn+1 = yn + ∆t vn+1 +O(∆t3)

I Surprisingly good!
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Euler

Euler
Iplicit Euler
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Verlet method

I Second order differential equation:

ÿ = f (y(t), t)

I From central difference

yn+1 = 2yn − yn−1 + ∆t2 fn +O(∆t4)

I Leapfrog

yn+1 = yn + ∆t vn+ 1
2

vn+ 1
2

= vn+ 1
2

+ ∆t fn

I None of them is used
I Velocity dependent forces are difficult to add

Page 31



Velocity Verlet method

I The one actually used in all codes:

yn+1 = yn + ∆t vn +
1
2

∆t2fn

vn+1 = vn +
1
2

∆t(fn + fn+1)

I Implementation
1. vn+1/2 = vn + 1

2 fn∆t
2. yn+1 = yn + ∆t vn+1/2
3. Calculate forces
4. vn+1 = vn+1/2 + 1

2 fn+1∆t
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Energy comparison

Euler
Verlet

Velocity Verlet
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Error

Method Error Cumulative error
Euler: ∆t3 ∆t
Runge-Kutta: ∆t5 ∆t4

Verlet: ∆t4 ∆t2

Leapfrog: ∆t4 ∆t2
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Symplectic integrator

I Energy (slightly modified) is conserved
I Time reversibility

I Verlet
I Leapfrog

I Most molecular dynamics methods use Verlet!
I Forces are calculated once per turn
I Microcanonical (NVE) modelling can be only done with these
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Multiple time scale integration

I Different force range
I Short range change fast
I Long range change slowly

I Recalculate long range forces only in every nth times-step
I Forces are calculated once per turn

I Typical examples:
I Intramolecular forces: strong, high frequency
I Intermolecular forces (e.g. Lennard-Jones, Coulomb) slow

I Similar technic: coupling to fields
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Molecular dynamics

Program:
I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I Set temperature
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Temperature

Definition:
I Encyclopedia Britannica, Wikipedia:

"A temperature is a numerical measure of hot or cold."
I Manifestation of thermal energy
I Thermodynamics:

Second law of thermodynamics & Carnot engine

δQ = TdS

ηmax = ηCarnot = 1− TC/TH

I Statistical physics:

β ≡ 1
kB

(
∂S

∂E

)
V ,N

=
1

kBT
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Definition of temperature

Temperature is a measure of the random submicroscopic motions
and vibrations of the particle constituents of matter.

The average kinetic energy per particle degrees of freedom is

Ē =
1
2
kBT

Molecular dynamics conserves only the total energy!

Task: Control kinetic energy!
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Setting temperature

I Experiment
I Environment
I Mixing → uniform temperature

I Simulation
I Control the kinetic energy (velocities)
I Mixing → Maxwell-Boltzmann distribution
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Nosé-Hoover thermostat

I Original Hamiltonian

H0 =
∑
i

p2i
2mi

+ U(q)

I Heatbath in the Hamiltonian:

Hn =
∑
i

p′2i
2mi

+ U(q′) +
p2s
2Q

+ gkBT log(s)

I Extra degree of freedom s.
I Q "mass" related to s → controls the speed of convergence
I g = 3N the number degrees of freedom
I p′ and q′ are virtual coordinates
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Nosé-Hoover thermostat
I Virtual coordinates, vs. original ones:

p = p′/s
q = q′

t =

∫
1
s
dt ′

I Solution of the new Hamiltonian:

ξ = ṡ/s = ps/Q

q̇′ =
p′

m

ṗ′i = −∂U
∂q′i
− ξp′i

ξ̇ =
1
Q

(∑
i

ṗ′
2
i

mi
− gkBT

)
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Molecular dynamics

I Create sample
I Crystal
I Random deposition
I Distorted crystal
I Simulation

I Temperate sample
I Make test
I Collect data

I Data size: e.g. N = 104, t = 106 small simulation:
I 1 hour on 1 core PC
I 3 doubles/atom → 24 bytes/atom/timesteps
I Result 2.4 1011 bytes = 240 Gigabytes
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Units

I Computer stores only numbers
I We have to keep in mind the units
I Better to facilitate our life
I e.g. Damped harmonic oscillator

m∂2t x + γ∂tx + kx = 0

I Units/values:

m = m′ · [m], x = x ′ · [x ], t = t ′ · [t]

where [.] is the unit of the quantity
I SI units: kg, m, s
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Units

I Parameters:

[m] = [m], γ =
[m]

[t]
, [k] =

[m]

[t]2

I Boundary conditions

[x0] = [x ], [v0] =
[x ]

[t]

I Possible choice

[m] = m, [x ] = x0, [t] =
√
m/k

I This gives
m′ = 1, x ′0 = 1
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Units

I Dimensionless equation:

∂2t′x
′ +

γ√
km

∂t′x
′ + x ′ = 0

I This gives us two control parameters:

Γ =
γ√
km

, v ′0 =
v0
x0

√
m

k
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Units: example
I Gravitational potential

V (r) = −αm
r

I Parameters:

[m] = [m], [α] =
[x ]3

[t]2
, [x0] = [x ], [v0] =

[x ]

[t]

I Natural units

[m] = m, [x ] = x0, [t] =

√
x30
α

I Control parameter:

v ′0 = v0
[t]

[x ]
= v0

√
x0
α
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Practice

I Oscillator (10 points): Solve numerically the following
differential equation, starting from x(0) = 0, ẋ(0) = 1

ẍ = −γx

Use the integrators: Euler, implicit Euler, velocity Verlet.
Measure the total energy of the system!

I Solar system (30 points): Simulate and artificial solar
system, with a Sun, Earth and a Moon. Set the following
units: gravitational constant, mass of Earth, starting velocity
and distance of the Earth to Sun, are all unity. Set the other
parameters (mass of Sun and Moon, relative velocity and
distance of Moon to Earth) such that you have a stable
system. (+10 points if ME = 1, DES = 1, γ = 1)
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