
Simulations in Statistical Physics
Course for MSc physics students

Janos Török

Department of Theoretical Physics

April 17, 2023

Page 1



Ising-model

I Spins
I Interact with external field hi
I Interact with neighbors with coeff. Jij

I The Hamiltonian:

H(σ) = −
∑
〈i j〉

Jijσiσj − µ
∑
i

hiσi

I Order parameter magnetization

M =
∑
i

σi
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Variants

I Potts model:
I Spin is two dimensional unit vector with q possible values at

angles

θn =
2πn
q

I Hamiltonian (vector, or clock model):

Hc = Jc
∑
〈ij〉

cos(θi − θj)

I Hamiltonian (standard):

Hp = −Jp
∑
〈ij〉

δ(si , sj)

I Results in two dimensions (J>0):
I First order phase transition for q > 4
I Second order phase transition for q <= 4
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Variants
I Classical XY model

I Spin is two dimensional unit vector with θi angle

si = (cos θi , sin θj)

I Hamiltonian:
HXY =

∑
〈ij〉

Jijsi sj

I Results in two dimensions (J>0):
I Nearest neighbor interaction: No phase transition in 2d
I Long range interaction (Jij ∼ |ri − rj |−α)

I No phase transition
I Kosterlitz-Thoughless transition: Correlation finctuion decays

exponentially or as a power law
I Second order phase transition in 3d
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Variants

I Classical Hamilton model
I Spin is three dimensional unit vector with θi angle
I Hamiltonian:

HH =
∑
〈ij〉

Jijsi sj

I Similar results to XY model
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Standard opinion models

I Would vote for democrats/republicans
I Can be represented by a spin
I One takes the opinion of the neighborhood majority
I Plus some noise
I This the Ising model
I More opinions than this is the Potts model with Hamming

distance instead of cos
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Voter model

I Spins/agents on a lattice (can be network)
I Spin can have q different values
I Interaction: copy one of the neighbors opinion
I Similar as Ising-model at temperatures slightly below the

transition
I Note, that in social science nearest neighbors are the 8

surrounding sites
I Only domain boundaries are active
I Steady state a homogeneous system
I Convergence is slow T (N) ∼ N logN in d = 2 and T (N) ∼ N

in d > 2
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Majority model

I Spins/agents on a lattice (can be network)
I Spin can have q different values
I Interaction: Select r neighbors (from 8 neighbors)
I If there is a majority opinion copy that
I Similar to Voter model
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Synchronization
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Synchronization
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Kuramoto model

I Oscillator with angle θi

dθi
dt

= ωi +
K

N

N∑
j=1

sin(θj − θi )

I Two phases: Phase locking and random
MOVIE Wikipedia
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Kuramoto model for 2 oscillators
I Two oscillators with own frequency ω1, ω2
I In general:

dφ1

dt
= ω1 + H12(φ1, φ2)

dφ2

dt
= ω2 + H21(φ2, φ1)

I Kuramoto model:

H12(φ1, φ2) = K
2 sin(φ2 − φ1)

H21(φ2, φ1) = K
2 sin(φ1 − φ2)

}
d∆φ

dt
= ∆ω − K sin ∆φ

with
∆φ = φ2 − φ1 ∆ω = ω2 − ω1

I Stationary solution:

sin ∆φ =
∆ω

K

for ∣∣∣∣∆ωK
∣∣∣∣ ≤ 1
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Synchronization
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Schelling model
I Schelling model of segregation:

1. Segregated neighborhoods reflect ethnic preferences of
individuals

2. Individual preferences reflect ethnic segregation.
3. Is the answer “the chicken and the egg”?
4. Or are both sides wrong?
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Schelling model
I Two equal-sized ethnic groups randomly distributed on a

regular lattice
I Each agent has 8 neighbors 15% of cells are vacant
I If dissatisfied, agents pick the closest vacant slot that is

satisfactory
I Dissatisfaction means that the fraction of alike neighbors is

less than a parameter T
I Nobel prize in 2005
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Schelling model

I In principle Ising model with conserved
magnetization

I Only surface is important for the
dynamics.

I Tolerance parameter sets minimal surface
curvature (acts as surface tension)

I Surface curvature defines also
volume/surface ratio which diverges easily
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Percolation
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Percolation

Behavior of connected cluster
I Site percolation
I Bond percolation
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Percolation model

I Random environment
I With probability p site vacant (conducts)
I Two states: percolates or not!
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Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Mean cluster size (without the infinite one)?
4. Cluster size distribution

Answers:
1. Above a critical density with probability 1 below it with

probability 0
2. Only 1!
3. Decreases as a power low away from the critical density
4. Power law
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Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Cluster size distribution (ns)
4. Mean cluster size (without the infinite one)? (S =

∑
s s

2ns)
Answers:
1. if p > pc then yes, otherwise no
2. Only 1!
3. ns ∼ s−τ

4. S ∼ |p − pc |−γ

Like a second order phase transition in a geometric system!
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Percolation model
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Percolation model
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Percolation model
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Percolating cluster
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I Largest cluster
I fractal with fractal dimension of df

I S∞ ∼


ξdf log(N/ξd) p < pc

Ndf /d p = pc

NP∞(p) p > pc

I Largest not infinite cluster: size ∼ |p − pc |−ν
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Percolation theory: Importance
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Percolation theory: Importance

I COFFEE!!!!
I Non-equilibrium statistical physics
I Image analysis
I Percolation on networks: Phase transitions
I Percolation on networks: robustness, fragility
I Flooding
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Percolation model

Bond [site] percolation
I Let us have a lattice (network)
I Each bond [site] is occupied with probability p

I (unoccupied with probability 1− p)
I A cluster is a set of sites connected by occupied bonds

[A cluster is a set of occupied sites]
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Hoshen-Kopelman Algorithm

I Numerical task: find clusters
I Identify clusters
I Visit all sites
I Mark them with numbers
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Hoshen-Kopelman Algorithm

I Site percolation
I Open boundary conditions
I Go through site in typewriter style
I Check left and above
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Hoshen-Kopelman Algorithm

link[1]=1 link[1]=1

link[2]=21 1

12 2 2

I Go through sample in typewriter style
I If site is occupied, look left and up

I if no neighbour → new number
I if only one is occupied → inherit number
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Hoshen-Kopelman Algorithm

link[1]=1

link[2]=11 1

12 2 2

2 2 2 1

link[1]=1

link[2]=1

link[4]=4

link[3]=1

1 1

12 2 2

2 2 2 1

1 1

1 11

1

4

3

I . . .
I If site is occupied, look left and up

I . . .
I if both sites are occupied → then link the two

I a link which points to itself is a root link
I find the root of both sites
I connect the larger to the smaller
I use this number
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Hoshen-Kopelman Algorithm
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Hoshen-Kopelman Algorithm

I Site percolation
I Helical boundary conditions (rolled up ont dimensional lattice)
I Go through site in typewriter style
I Check left and above (as before)
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Hoshen-Kopelman Algorithm

I Site percolation
I Periodic boundary conditions
I Go through site in typewriter style
I Check left and above (as before)
I After each line if first and last site is occupied link them
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Hoshen-Kopelman Algorithm, Periodic BC
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Result
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Practice: Hoshen-Kopelman Algorithm

I Fill a square lattice by 1 with probability p and by 0 otherwise
I Create a large enough array where link[i]=i
I Write a root finding function which recursively sets

i ←link[i] until i == link[i]
I Go through the lattice in a typewriter style
I If the site is not empty check the sites to the top and left (if

they exist)
I if both neighbors are empty → assign it a new label (you can

keep the labels in the original array)
I if only one neighbor is empty → assign it the root label of the

neighbor
I if both neighbors are occupied → search for the root labels of

the sites connect the larger to the smaller and assign this value
to this site

I (Bonus): Measure the distribution of the size of the clusters,
or the size of the largest as function of p, etc.
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Practice

Simulate the Schelling model
I There are three parameters: L, T , fraction of vacant sites
I Start from random configuration
I Agents have 8 neighbors
I Identify dissatisfied agents (empty houses does not count!)
I Move dissatisfied agents to a random empty space
I Stop if everybody is satisfied or enough time is lapsed
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