
Scientific programming
Neural networks

Janos Török

Department of Theoretical Physics

May 31, 2023

Artificial neuron
I Biological neuron:

I Stimulus in dendrites
I Fire (activate axon) when stimulus is large enough

I Artificial neuron:
I Weighted sum of the input
I Output is a non-linear function of the input

Neural networks

I Input pattern
I Output pattern
I Adaptive weights
I Approximating non-linear

functions

I Pattern recognition
I Speech recognition
I Language models
I Pattern creation

Neural networks

I Input vector I
I Output vector O(I)

I Transition matrix W l
ij , bias b

l
i , bias in layer l

I Learning using a cost function
I Test goodness

Neural networks: Learning

I Supervised learning
I Data training
I Error (continuous):

E = (T (I)− O(I))2,

I Cross entropy (discrete) p ∈ {y , 1− y}, q ∈ {ŷ , 1− ŷ}:

H(p, q) = −y log ŷ − (1− y) log(1− ŷ)

where T (I) is the target vector for input I
I Minimize E or H for available set of {I , I (O)} pairs
I Deep learning: many layers of neurons in the neural network

I Test goodness:
I Use only part of {I , I (O)} pairs for learning, the rest is for

testing.

Neural networks: Learning

I Unsupervised learning: No fitness function
I Reinforcement learning: e.g. Q-learning

I Penalize wrong answers and reward good ones
I Used for playing games
I Further improve models

Deep learning: Classification, linear

Deep learning: Classification, linear

Deep learning: Kernel model

Make non-linear model linear

Deep learning: Feed forward

Deep learning: Feed forward

Fully connected neural networks

I Ideas from Piotr Skalski (practice), Pataki Bálint Ármin
(lecture) and HMKCode (lecture)

Fully connected neural networks

I Model:
I Inputs (xj) or for hidden layer l : Al−1

j

I Weight w l
ij

I Bias bli
I Weighted sum of input and bias: z li =

∑
j A

l−1
j w l

ij + bli
I Activation function (nonlinear) g : Al

i = g(z li)

Yang et el, 2000.

Deep learning: Activation function

−1

−0.5

 0

 0.5

 1

−1 −0.5 0 0.5 1
x

step(x)
sigmoid(3x)

tanh(x)
relu(x)

Feed forward

I Example

I We have an output, how to change weights and biases to
achieve the desired output?

I Error L

Backpropagation

I

∆W = −α ∂L

∂W

I W is a large three dimansional matrix
I Chain rule!

Backpropagation

I Chain rule

Backpropagation: Example

I From HMKCode
I Note that there is no activation function (it would just add

one more step in the chain rule)

Backpropagation: Example

I Weights

Backpropagation: Example

I Feedforward

Backpropagation: Example

I Error from the desired target

Backpropagation: Example

I Prediction function

Backpropagation: Example
I Gradient descent

Backpropagation: Example

I Chain rule

Backpropagation: Example

I Chain rule

Backpropagation: Example

I Chain rule

Backpropagation: Example
I Chain rule

Backpropagation: Example

I Summarized

Backpropagation: Example

I Summarized in matrix form

Backpropagation: Multiple data points

I Generally ∆ is a vector, with the dimension of the number of
training data points.

I The error can be the average of the error, so repeate the
equations below for all training points and average the changes
(the part after a)

I Fortunately numpy does not care about the number of
dinemsions, so insted of the multiplication in the right
matrices we can use dot product.

How many layers?

I Neural network with at least one hidden layer is a universal
approximator (can represent any function).

Do Deep Nets Really Need to be Deep? Jimmy Ba, Rich Caruana,

LeNet Architecture

Yann LeCun
I Convolution
I Non-linearity
I Pooling
I Classification

Author: ujjwalkarn

Convolution operator
I 2d matrix
I Example:

I Original image:

I Convolution matrix:

I Result:

Convolution operator
I 2d matrix
I Example:

I Original image:

I Convolution matrix:

I Result:

Convolution operator
I 2d matrix
I Example:

I Original image:

I Convolution matrix:

I Result:

Convolution operator
I 2d matrix
I Example:

I Original image:

I Convolution matrix:

I Result:

Convolution operator
I 2d matrix
I Example:

I Original image:

I Convolution matrix:

I Result:

Convolution operator
I 2d matrix
I Example:

I Original image:

I Convolution matrix:

I Result:

Convolution operator
I 2d matrix
I Example:

I Original image:

I Convolution matrix:

I Result:

Convolution operator
I 2d matrix
I Example:

I Original image:

I Convolution matrix:

I Result:

Convolution operator
I 2d matrix
I Example:

I Original image:

I Convolution matrix:

I Result:

Convolution operator

I The convolution operator is called filter or kernel
I The result of the convolution is feature map

Convolution operator: examples

Full convolution neural network

Examples of learned features
I MNIST example

https://adamharley.com/nn_vis/cnn/2d.html

https://adamharley.com/nn_vis/cnn/2d.html

Convolutional layers

I Number of parameters (200x200 RGB image):
I Fully connected layer to a layer of 300 nodes:

I Weights: (200 · 200 · 3) · 300
I Biases: 300
I Total: 36000300 ' 3.6 · 107

I Convolutional layer
I Weights per filter w · w · 3, where w is the width of the filters
I One bias
I Number of weights per filter w2 + 1
I For 300 filter (usually people use only a few dozens)
I Total: 300 · 10 = 3000

ChatGPT structure

