
Computer Simulations in Physics
Course for MSc physics students

Janos Török

Department of Theoretical Physics

March 2, 2023

Page 1



Information

I Coordinates:
I Török János
I Email: torok.janos@ttk.bme.hu, torok72@gmail.com
I Consultation:

I F III building, first floor 6 (after the first stairs to the right, at
the end of the corridor), Department of Theoretical Physics

I Teams or Meet
I Upon demand (Email)

I Webpage:
http://physics.bme.hu/BMETE15MF74_kov?language=en

I Homework: http://edu.ttk.bme.hu/

Page 2

http://physics.bme.hu/BMETE15MF74_kov?language=en
http://edu.ttk.bme.hu/


Required knowledge

I Knowledge of basic statistical physics
I Knowledge of basic quantum mechanics
I C, C#, C++ or python language
I If you use C# please submit only the code part!

Page 3



Potential skills earned

I Learn simulation methods
I Implementing models
I Optimization
I Use chatGPT

Page 4



Programming environment

I Basic
I Editor (not notepad!)
I Compiler (gcc recommended)

I Advanced
I Developer environment
I Integrated developer environment (also compiles)

I Super advanced
I ChatGPT, use it and show how it can be used what are the

limitations etc.

Page 5



Integrated developer environment

I Visual studio (old version can be downloaded from
http://software.eik.bme.hu only from bme.hu domain)

I Eclipse
I Netbeams
I CodeLite
I pyCharm
I Anaconda
I Google colab
I etc.

Page 6

http://software.eik.bme.hu


Install compiler

I Linux
I Install development package, usually not installed when

desktop installation was selected (libgcc-version-dev, plus any
-dev packages you want)

I Windows
I Visual studio
I cygwin+gcc http://preshing.com/20141108/

how-to-install-the-latest-gcc-on-windows/
I Eclipse+gcc (eclipse does not come with a C compiler)

http://www.dcs.vein.hu/bertok/oktatas/cpp_by_
eclipse/eclipse_for_cpp_on_windows.html

I Anaconda
https://www.anaconda.com/products/individual

I Linux in Virtualbox

Page 7

http://preshing.com/20141108/how-to-install-the-latest-gcc-on-windows/
http://preshing.com/20141108/how-to-install-the-latest-gcc-on-windows/
http://www.dcs.vein.hu/bertok/oktatas/cpp_by_eclipse/eclipse_for_cpp_on_windows.html
http://www.dcs.vein.hu/bertok/oktatas/cpp_by_eclipse/eclipse_for_cpp_on_windows.html
https://www.anaconda.com/products/individual


Random numbers

I Gnu Scientific library
I variable: gsl_rng *r;
I reading environment variables GSL_RNG_TYPE and

GSL_RNG_SEED: gsl_rng_env_setup
I gsl_rng_default=gsl_rng_mt19937 Mersenne twister

algorithm period: 219937 − 1
I Set seed: gsl_rng_set(r,seed);
I Integer random numbers between gsl_rng_max(r) and

gsl_rng_min(r): unsigned long gsl_rng_get(r);
I double random numbers from 0 to 1 (0 included, 1 excluded)

gsl_rng_uniform(r);

Page 8



Requirements

I Minimum requirements
I 5 homeworks submitted and accepted (> 50%)
I Presented and accepted project

I Exam: mark
I 500 point: 5 homeworks (deadlines are soft!)
I 400 points: Small (30 min) test (individual) (must pass!) or 4

extra homeworks
I 900 points: From projects (pairs/groups) presented at the

end of the course.
I 20-50 points/piece extra: practice exercises can earn you 20

extra points each. Deadlines are hard!
I The marks will be calculated using the 1800 point threshold
I Upon request please, be ready for a code checkup to verify

ownership. During this check you will be shown parts of your
code and you are supposed to explain wht it was meant to do.

I Turn it in language: English, Hungarian, German, French

Page 9



Requirements
I Homeworks

I Individual work. You can use the Internet or chatGPT, but
then explain what part of the code came where and what
modifications were needed. A good comparison of a chatGPT
code with an improved own one earns you extra points

I Documented working codes (no extra libraries except for gsl,
numpy, scipy)

I Always include an image from the results or some
documentation.

I Please combine all files in a zip/rar/tgz/etc. archive and
upload a sinlge file

I Python notebooks are also accepted, please do not clear the
results from the notebook!

I Using fancy visualization techniques does not improve the
mark which is given for the algorithm, the efficiency of the
code and the solution of the problem

I Please, keep in mind that I do not have time to compile and
run your code. Make it human readable!

Page 10



Literature

I There used to be a list of outdated books here.
I I will try to give you material on subject basis: For this one:
I http:

//www.lce.hut.fi/teaching/S-114.1100/lect_8.pdf
I https://arxiv.org/pdf/1005.4117.pdf
I https://www.ks.uiuc.edu/Services/Class/PHYS498NSM/

Page 11

http://www.lce.hut.fi/teaching/S-114.1100/lect_8.pdf
http://www.lce.hut.fi/teaching/S-114.1100/lect_8.pdf
https://arxiv.org/pdf/1005.4117.pdf
https://www.ks.uiuc.edu/Services/Class/PHYS498NSM/


Subjects
1. Random numbers
2. Molecular dynamics
3. Other particle based methods
4. Percolation, Fractals
5. Ising, Schelling
6. Schrödinger equation
7. Quantum scattering
8. Optimization (annealing, genetic)
9. Complex networks

10. Clustering, community detection
11. Algorithmically defined models
12. Neural networks
13. Game models
14. Presentation

Page 12



Discrete element methods

Page 13



Percolation, Fractals

Page 14



Ising, Heisenberg model

Page 15



Optimization

Page 16



Complex networks

Page 17



Clustering

Page 18



Algorithmically defined models

Page 19



Neural networks

Page 20



Game models

Page 21



Simulations
Experiments Simulations
Principle of measurement Algorithm
Apparatus Program + Hardware
Calibration Calibration + Debugging
Sample Sample
Measurement Run

Data collection
Analysis

Page 22



Programming languages
Simulations codes
I System size must be large

I Phase transition ξ →∞
I Real systems N ∼ 1023 (memory < 1012)

I Simulation time should be long
I Relaxation time
I Interesting phenomena take long
I Separation of time scales

Must be efficient!
It is not bad if program is readable and extensible...

Sample preparation
I Sometimes it is also a simulation

Data analysis
I Anything may happen

Page 23



Programming languages

Problem to solve:
I Fill an array with product of two random numbers
I Calculate the average of them

python
c

Page 24



Programming languages

6.9s 3.46s
4.51s 3.29s

Page 25



Optimization

I Programming language
I In example C is 1.3-2 times faster than python
I Matlab can be very efficient, but it is proprietary
I Matlab, Maple, Mathematica are expensive
I All clusters have C, and C++, and python

I Optimization
I Parallelization
I Indexing, careful usage of pointers
I Reformulate operations
I Does not always worth the pain
I gprof

Page 26



gprof

Page 27



Simulations

I Do what nature does
I Molecular dynamics
I Hydrodynamics

I Make use of statistical physics
I Monte-Carlo dynamics
I Simulate simplified models
I Much smaller codes!

Page 28



Random numbers
I Why?

I Ensemble average:
〈A〉 =

∑
i

AiP
eq
i

Random initial configurations
I Model: e.g. Monte-Carlo
I Fluctuations
I Sample

I How?

Page 29



Generate random numbers

I We need good randomness:
I Correlations of random numbers appear in the results
I Must be fast
I Long cycle
I Cryptography

Page 30



Random number generators

I True (Physical phenomena):
I Shot noise (circuit)
I Nuclear decay
I Amplification of noise

I Atmospheric noise
(random.org)

I Thermal noise of resistor
I Reverse biased transistor
I Lava lamps

I Limited speed
I Needed for cryptography

I Pseudo (algorithm):
I Deterministic

I Good for debugging!
I Fast
I Can be made reliable

Page 31



Language provided random numbers

It is good to know what the computer does!
I Algorithm

I Performance
I Precision
I Limit cycle
I Historically(?) a catastrophe

Page 32



Language provided random numbers

It is good to know what the computer does!

Page 33



Language provided random numbers

It is good to know what the computer does!

Random php rand() on Windows

Page 34



Language provided random numbers

It is good to know what the computer does!
I Algorithm

I Performance
I Precision
I Limit cycle
I Historically a catastrophe

I Seed
I From true random source
I Time
I Manual

I Allows debugging
I Ensures difference

First only uniform random numbers

Page 35



Seed

I From true random source
I Time
I Manual

Random number generator of Python with different seeds:

Page 36



Seed
I Ensemble average: Include in the code if possible instead of

restarting it with different seeds!

Page 37



Multiplicative congruential algorithm

I Let rj be an integer number, the next is generated by

rj+1 = (arj + c)mod(m),

I Sometimes only k bits are used
I Values between 0 and m − 1 or 2k − 1
I Three parameters (a, c ,m).
I If m = 2X is fast. Use AND (&) instead of modulo (%).
I Good:

I Historical choice:
a = 75 = 16807, m = 231 − 1 = 2147483647, c = 0

I gcc built-in (k = 31):
a = 1103515245, m = 231 = 2147483648, c = 12345

I Bad:
I RANDU: a = 65539, m = 231 = 2147483648, c = 0

Page 38



Tausworth, Kirkpatrick-Stoll generator

I Fill an array of 256 integers with random numbers

J[k] = J[(k − 250)&255]ˆJ[(k − 103)&255]

I Return J[k], increase k by one

I Can be 64 bit number
I Extremely fast, but short cycles for certain seeds

XOR function
ˆ 1 0
1 0 1
0 1 0

Page 39



Tausworth, Kirkpatrick-Stoll generator corrected by Zipf

The one the lecturer uses
I Fill an array of 256 integers with random numbers

J[k] = J[(k − 250)&255]ˆJ[(k − 103)&255]

Increase k by one

J[k] = J[(k − 30)&255]ˆJ[(k − 127)&255]

I Return J[k], increase k by one
I Extremely fast, reliable also on bit level
I General transformation x ∈ [0 : 1[

x = r/(RAND_MAX + 1)

Page 40



Floating point random numbers

I General transformation x ∈ [0 : 1[

x = r/(RAND_MAX + 1)

I It is important to know whether limits are included or not
I General feature: 0 included 1 not
I Generate integer number from 1,2,3. use i = r%3 (modulo)

result: 1 will be 1+ 10−9 more probable than 2 or 3.
I General practice use division instead of percentage, higher bits

are more reliable for LCG

Page 41



Tests

I General: e.g. TESTU01
I Diehard tests:

I Birthday spacings (spacing is exponential)
I Monkey tests (random typewriter problem)
I Parking lot test

I Moments: m =

∫ 1

0

1
n + 1

I Correlation

Cq,q′(t) =

∫ 1

0

∫ 1

0
xqx ′q

′
P[x , x ′(t)]dxdx ′ =

1
(q + 1)(q′ + 1)

I Fourier-spectra
I Fill of d dimensional lattice
I Random walks

Red ones are not always fulfilled!
I Certain Multiplicative congruential generators are bad on bit

series distribution, not completely position independent.

Page 42



Bit series distribution
Probability of having k times the same bit

Fit to the tail for different bit positions (gcc)

Page 43



Fill of d dimensional lattice

I Generate d random numbers ci ∈ [0, L]
I Set x [c1, c2, . . . , cd ] = 1
I The Marsaglia effect is that for all congruential multiplicative

generators there will be unavailable points (on hyperplanes) if
d is large enough.

I For RANDU d = 3

Page 44



Solution for Marsaglia effect

I Instead of d random numbers only 1 (x)
I Divide it int d parts: k=int(logd(RANDMAX))

c_1=x%k, x/=k
c_2=x%k, x/=k
...

I Better to have L = 2k . Which is much faster because of AND
and SHIFT operations

General advice: Save time by generating less random numbers

Page 45



Random numbers with different distributions

I Let us have a good random number r ∈ [0, 1].
I The probability density function is P(x)
I The cumulative distribution is

D(x) =

∫ x

−∞
P(x ′)dx ′

I Obviously:
P(x) = D ′(x)

I The numbers D−1(x) will be distributed according to P(x)

I D−1(x) is the inverse function of D(x) not always easy to get!

Page 46



Random numbers with different distributions

Graphical representation

Page 47



Random numbers with different distributions

A soluable example
I

P(x) =
1
π

1
1+ x2

I

D(x) =
1
π

∫ x

−∞

1+ x ′2

d
x ′ =

1
2
+

1
π

arctan(x)

I
x = D−1(y) = tan [π(y − 1/2)]

Page 48



Box-Müller method

Page 49



Box-Müller method

I r1, r2 uniformly distributed between 0 and 1
I if r2

1 + r2
2 ≥ 1 or r1 = r2 = 0 discard r1 and r2. So the

generated point is inside the unit circle and is not at the origin
I R2 = r2

1 + r2
2 is uniformly distributed between 0 and 1.

I U1 ≡ R2, U2 ≡ arctan(r1/r2)/(2π)
I Two independent normally distributed random numbers:

x1 =
√
−2 logU1 cos(2πU2) = r1

√
−2 log(R2)

R2

x2 =
√
−2 logU1 sin(2πU2) = r2

√
−2 log(R2)

R2

Page 50



Power law distributed random numbers

Let P(y) have uniform distribution in [0, 1]. We generate P(x)
such as

P(x) = Cxn

for x ∈ [x0, x1].

D(x) =

∫ x

x0

P(x ′)dx ′ =
C

n + 1
(
xn+1 − xn+1

0
)

The inverse function is simple:

x =
[(
xn+1
1 − xn+1

0
)
y + xn+1

0
]1/(n+1)

Page 51



Monte Carlo

I Identify base: [a, b]
I Identify minimum/maximum: Pmax = maxx∈[a,b] P(x), idem...
I Generate a point (x , y) in the rectangle (a,Pmin), (b,Pmax)

I If y < P(x) the return x otherwise generate new point

reject

accept

a b x

P(x)

Page 52



Error
I Ensemble average
I Example: estimate π
I Drop a needle of length l ≤ t
I May or may not cross a line

pcross =
2l
tπ

I Lazzarini in 1901 using N = 3408 tries got:

π ' 355/113 = 3.14159292 = π +O(10−7)

I Impressive 10−7 error, but
1√
N
' 0.0017

Page 53


