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Complex Networks

I Graphs with nontrivial structures
I Graphs consist of nodes and edges connecting nodes
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Complex Networks: Example (my favourite)

I Hungarian company 3 bases

Maven 7 from networksciencebook.com by Barabasi.
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networksciencebook.com


Example (my favourite)

I CEO (red), top managers (blue), Managers (magenta), group
leaders (orange)
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Example (my favourite)

I Biggest hub, and links at distance 1 and 2

Page 5



Complex networks

I Social connections
I IT connections

I Hardware
I WWW

I Biology
I Food web
I Metabolism
I Neural connections
I Species

I Economy
I Trade
I Travel
I Product chains

I Politics
I Voters
I Relations

Page 6



Complexity vs. Complex
Complicated Complex
Torsen differential Bird flock, lungs
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Complexity

I Complexity, a scientific theory which asserts that some systems
display behavioral phenomena that are completely inexplicable
by any conventional analysis of the systems’ constituent parts.
These phenomena, commonly referred to as emergent
behaviour, seem to occur in many complex systems involving
living organisms, such as a stock market or the human brain.

John L. Casti, Encyclopaedia Britannica
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Networks

I Skeleton of complex systems (units and interactions)
I Underlying network
I Without apprehending this network we cannot understand the

complex system → Holistic approach

Holism: Looking at systems as a whole is needed for theirs
understanding
Reductionism: The precise understanding of the fine details will
finally lead to the complete picture

Page 9



Why now?

I Development of information technology
I Data gathered
I Detailed understanding of building blocks of many systems
I Digitalized world
I Interdisciplinary
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Network Science

I Citations per year

networksciencebook.com by Barabasi.
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What can we learn
I Disease spreading

Brockmann-HelbingPage 12



What can we learn
I Disease spreading
I Cascade effects
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What can we learn
I Disease spreading
I Cascade effects
I Signaling out terrorists
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What can we learn

I Disease spreading
I Cascade effects
I Signaling out terrorists
I System robustness
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What can we learn
I Disease spreading
I Cascade effects
I Signaling out terrorists
I System robustness
I System efficiency
I Trade efficiency (product suggestions, etc.)
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Graph Theory
I Königsberg (Kaliningrad) bridges
I Can we pass all the bridges exactly once?
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Graph Theory: Euler

I Euler’s theorem: An Eulerian path on a graph is possible if
there are no nodes with odd number of links or there are
exactly two such nodes

I A round trip (circle) is possible if there are no nodes with odd
number of links.

Wikipedia
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Graph Theory: Basics

I Graph:
G ≡ {V ,E}

where
V : vertices (nodes) (i , j , k, . . . )
E : edges (links) (eij , . . . )
I Network: graph of a system
I Representation:
Nodes: dots
Links: lines between dots
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Graphs/Networks

I Described by G(V ,E ), where V is the set of vertices, and E is
the list of edges

I Alternatively: Aij , Adjacency matrix (1 if there is connection, 0
if not)

I Degree of a node: k number of links connecting to the node
(if directed there are in kij and out kout degrees)

I A connected component is a subset of the graph in which all
vertex pairs are connected by continuous path

1 2 3

4 5 6

Aij =



0 1 0 1 1 0
1 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
0 0 0 0 0 0
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Adjacency matrix

I Adjacency matrix Aij

I 1 if there is connection, 0 if not
I Tells if we can go from node i to node j

1 2 3

4 5 6

Aij =



0 1 0 1 1 0
1 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
0 0 0 0 0 0
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Adjacency matrix
I Adjacency matrix Aij

I 1 if there is connection, 0 if not
I Tells if we can go from node i to node j

I Power n tells how many routes are there from node i to node j

1 2 3

4 5 6

Aij =



0 1 0 1 1 0
1 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
0 0 0 0 0 0

 A2
ij =



3 0 1 1 1 0
0 2 0 1 1 0
1 0 1 0 0 0
1 1 0 2 1 0
1 1 0 1 2 0
0 0 0 0 0 0
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Adjacency matrix
I Adjacency matrix Aij

I 1 if there is connection, 0 if not
I Tells if we can go from node i to node j

I Power n tells how many routes are there from node i to node j

1 2 3

4 5 6

Aij =



0 1 0 1 1 0
1 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 0
0 0 0 0 0 0

 A3
ij =



2 4 0 4 4 0
4 0 2 1 1 0
0 2 0 1 1 0
4 1 1 2 3 0
4 1 1 3 2 0
0 0 0 0 0 0
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Weighted graphs

I Described by G(V ,E ), where V is the set of vertices, and E is
the list of edges

I Wij weight of the link between nodes i and j

I Strength of a node: The sum of weight of the links connecting
the node

1 2 3

4 5 6

Wij =



0 1 0 7 1 0
1 0 3 0 0 0
0 3 0 0 0 0
7 0 0 0 4 0
1 0 0 4 0 0
0 0 0 0 0 0
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Basic network properties

I Global:
I Degree distribution
I Shortest path
I Diameter, small world
I Clustering coefficient

I Mesoscopic:
I Communities, modularity
I Treeness
I Hierarchy
I Core-periphery

I Microscopic:
I Assortativity
I Centrality
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Degree distribution
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Degree distribution

I Poisson: Well defined mean and variance
I Power law (scale free): Variance and event mean can be

undefined, but definitely mode does not match with average
I Existence of the hubs!
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Minimal path

I Minimal path is the path with the smallest possible edges
between the two nodes

I If weighted then generally 1/wij is considered (weight is
proportional to throughput)

I Many applications: e.g. Route planning

1 2 3

4 5 6
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Minimal path

I Minimal path is the path with the smallest possible edges
between the two nodes

I If weighted then generally 1/wij is considered (weight is
proportional to throughput)

I Many applications: e.g. Route planning
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Dijkstra’s algorithm

I Find the shortest path from a source
I Known: links, link weights (node distances)
I Store: distance to that point, link to previous element in

shortest path
I List of unvisited nodes sorted by distance to origin (set to

infinity if unknown)
I Algorithm:

1. Choose the unvisited node with the smallest distance to the
origin

2. Visit all its unvisited neighbors: if distance is smaller than the
current distance to that point, store it and set link to previous
element to the current active node

3. Mark node as finished
4. If list of unvisited nodes is not empty, go to 1.

Movie
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Diameter/Small world

I Diameter: Largest distance between two vertices
I Average diameter: Mean distance between all vertex pairs
I Society: Small world. Karinthy (1929)

A fascinating game grew out of this discussion. One of us
suggested performing the following experiment to prove that
the population of the Earth is closer together now than they
have ever been before. We should select any person from the
1.5 billion inhabitants of the Earth – anyone, anywhere at all.
He bet us that, using no more than five individuals, one of
whom is a personal acquaintance, he could contact the
selected individual using nothing except the network of
personal acquaintances
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Diameter/Small world
I Diameter: Largest distance between two vertices
I Average diameter: Mean distance between all vertex pairs
I Society: Small world. Karinthy (1929)
I Milgram experiment: Letters were given to individuals in

middle us (Kansas/Nebraska)
I They had to reach a person in Boston
I Average hops was 5.5 persons
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Centrality

I Degree centrality: Cd(i) = ki
I Closeness centrality: inverse of the average distances from i :

Cc(i) =
(

1
N−1

∑
j dij

)
I Betweenness centrality: Number of times a shortest path (σjk

number of shortest paths between j and k) passes through
Cb(i) =

∑
i 6=j 6=k σjk(i)/σjk

I Eigenvector centrality: Ax = λx . The eigenvector
corresponding to the largest eigenvalue is the centrality
measure
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Centrality
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Centrality

1 2 3

4 5 6

Centrality 1 2 3 4 5 6
Degree 3 2 1 2 2 0

Betweeenness 0.4 0.3 0 0 0 0
Closeness 0.64 0.53 0.35 0.46 0.46 0
Eigenvector 0.6 0.34 0.15 0.50 0.50 0
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Random Networks

Generate networks:
I From data:

I Phone calls
I WWW links
I Biology database
I Air traffic data
I Trading data

I Generate randomly
I From regular lattice by random algorithm (e.g. percolation)
I Erdős-Rényi graph
I Watts–Strogatz small world model
I Configuration model
I Barabási-Albert model
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Erdős-Rényi

I P. Erdős, A. Rényi, On random graphs, Publicationes
Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit.
789)

I Two variants:
1. G (N,M): N nodes, M links
2. G (N,P): N nodes, links with p probability (all considered)

I Algorithm
1. G (N,M): (If M � N(N − 1)/2)

I Choose i and j randomly i , j ∈ [1,N] and i 6= j
I If there is no link between i an j establish one

2. G (N,P): (Like percolation)
I Take all {i , j} pairs (i 6= j)
I With probability p establish link between i and j
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Erdős-Rényi: degree distribution
I Degree distribution

P(k) =

(
N − 1
k

)
pk(1− p)N−1−k

I For large N and Np =const it is a Poisson distribution

P(k)→ (np)ke−np

k!
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Erdős-Rényi: Small world/Clustering
I Small world?

I Yes
I Average degree z = 2M/N
I Nodes reached after l steps (z − 1)l
I All nodes reached N = (z − 1)l so

l = logN/ log(z − 1)

I For humanity: l ' log(7 · 109)/ log(150) = 4.5
I Clustering

I Probability of link is independent p
I Average degree z = 2M/N is kept constant
I Probability of a link is pl = 2M

N(N−1)
I Clustering

C = pl

I For large networks
lim

N→∞
pl = 0

I In large random networks there are no triangles
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Erdős-Rényi
I Real life: Read networks

Most networks are different!
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Watts-Strogatz model

I High clustering: triangular lattice
I Construct a model which continuously extrapolates between

the lattice and the random network
I Start from the lattice and randomly rewire links with

probability p

I p is a parameter, with p = 0 lattice, p = 1 Erdős-Rényi
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Preferential attachment

Barabási-Albert graph
I Initially a fully connected graph of m0 nodes
I All new nodes come with m links (m ≤ m0)

I Links are attached to existing nodes with probability
proportional to its number of links

I ki is the number links of node i , then

pa =
ki∑
j kj
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Barabási-Albert graph

I Degree distribution
p(k) ∼ k−3

I Independent of m!

m = 1
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Scalefree network example: Flight routes
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Scalefree network example: Co-authorship
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Algorithm for Barabási-Albert graph

1. n = m0 number of existing nodes
2. K =

∑
j kj total number of connections

3. r random number r ∈ [0,K ]

4. Find imax for which
∑imax

j=0 kj < r

5. If there is no edge then add one between nodes n + 1 and imax

6. If node n + 1 has less than m connections go to 3.
7. Increase n by 1
8. If n < N go to 2.
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Percolation on networks (graphs)

I Network is defined by nodes and links
I Percolation gives us connected components
I Link removal percolation gives information about robustness,

and structure
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Percolation and attack on random networks
I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Error vs. attacks
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Percolation and attack on random networks
I Failure: equivalent to percolation: remove nodes at random
I Attack: remove most connected nodes
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Random Walk on Random Networks
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Random Walk on Random Networks
I Rate equation nk probability of finding the walker an a site

with k edges:

∂nk
∂t

= −rnk + k
∑
k ′

P(k ′|k) r
k ′
nk ′

I Uncorrelated random network:

P(k ′|k) = k ′

〈k〉
Pk ′

I New equation:

∂nk
∂t

= −rnk + r
k

〈k〉
∑
k ′

P(k ′)nk ′

I Solution:
nk =

k

〈k〉N
I Random walkers gather on high connectivity nodes
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Page rank

I Do what surfers do
I Random walk on pages, but sometimes (probability q) a new

(random) restart
I Dumping factor d = 1− q (general choice d = 0.85).
I Self-consistent, equation:

PR(i) =
q

N
− (1− q)

∑
j

Aij
PR(j)

kout,j

R =

(
dA+

1− d

N
E
)
R

where E is a matrix of all ones
I Solution: iteration
I Result: Favours sites which are linked by many (reliable

sources)
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Page rank example
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