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Neural networks

I Input pattern
I Output pattern
I Adaptive weights
I Approximating non-linear

functions

I Machine learning
I Pattern recognition
I Handwriting
I Speech recognition
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Neural networks

I Input vector I
I Output vector O(I )

I Transition matrix Wij ∈ [−1, 1]

I Learning using a cost function
I Test goodness

Page 3



Neural networks: Learning

I Supervised learning
I Data training
I Fitness function, energy:

E = T (I )− O(I ),

where T (I ) is the target vector for input I
I Minimize E for available set of {I , I (O)} pairs
I Deep learning: many layers of neurons in the neural network

I Test goodness:
I Use only part of {I , I (O)} pairs for learning, the rest is for

testing.

I Used for: pattern recognition, classification, etc.
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Neural networks: Learning

I Unsupervised learning: No fitness function
I Reinforcement learning: e.g. Q-learning

I Penalize wrong answers and reward good ones
I Used for playing games

I Random forest (pool of decision trees):
I Generate a random synthetic data
I Teach the decision tree to recognize real data (e.g. label them

differently)
I Data points closer in the decision tree are related
I Cluster the data accordingly
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Deep learning

I Literature: Introduction to deep learning: https://www.cs.
princeton.edu/courses/archive/spring16/cos495/
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Deep learning: Classification, linear
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Deep learning: Classification, linear
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Deep learning: Kernel model

Make non-linear model linear
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Deep learning: Feed forward
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Deep learning: Feed forward
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Deep learning: Feed forward
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Deep learning: Feed forward
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Deep learning: Feed forward
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Deep learning: Feed forward
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Deep learning: Feed forward
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Deep learning: Activation function
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Fully connected neural networks

Ideas from Piotr Skalski, Pataki Bálint Ármin
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Fully connected neural networks

I Model:
I Inputs (xj) or for hidden layer l : Al−1

j

I Weight w l
ij

I Bias bli
I Weighted sum of input and bias: z li =

∑
j A

l−1
j w l

ij + bli
I Activation function (nonlinear) g : Al

i = g(z li )

Yang et el, 2000.
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Feed forward

I Example

I We have an output, how to change weights and biases to
achieve the desired output?

I Error L
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Backpropagation

I

∆W = −α ∂L

∂W

I W is a large three dimensional matrix
I Chain rule!
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Backpropagation

I Chain rule
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Backpropagation: Example

I From HMKCode
I Note that there is no activation function (it would just add

one more step in the chain rule)
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Backpropagation: Example
I ∆: prediction − actual
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Backpropagation: Example

I Summarized in matrix form
I No wonder why graphic cards are so useful for this!
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Backpropagation: Formula

I Last error is in dAl . Originally it is

L = Y − Al

I Algorithm:

dZl = dAl ∗ g ′(Zl)

dAl−1 =
∂L

∂Al−1 = (Wl)TdZl

dWl =
∂L
∂Wl

=
1
m
dZl(Al−1)T , (1)

where m is the number of components of the layer l
I Zl is the result of the sum at layer l
I Al is the result after applying the nonlinear activation function
I ∗ is an elementwise product of two vectors
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How many layers?

I Neural network with at least one hidden layer is a universal
approximator (can represent any function).

Do Deep Nets Really Need to be Deep? Jimmy Ba, Rich Caruana,
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Deep learning: Overfitting: Need a lot of data
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Deep learning: Features example
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Convolution operator: examples
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Deep learning: Convolutional Neural Network
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Deep learning: Convolutional Neural Network
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Game models:

I Rock-paper-scissors
I Prisoner’s dilemma
I Chicken, hawk-dove game
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Rock-paper-scissors

I No winning strategy on (truly) random opponent
I E.g bacteria and antibiotics in mice
I Grass-rabbit-fox
I Popular in games
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Prisoner’s Dilemma

I Two people playing the game
I Two options: Cooperate, Defect
I Cooperate: Confess the crime
I Defect: deny the crime
I Result: years in prison

Cooperate Defect
Cooperate -1, -1 -3, 0
Defect 0, -3 -2, -2
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Prisoner’s Dilemma

I Payoff matrix
I Reward for actions based on other player’s actions

Cooperate Defect
Cooperate 2, 2 0, 3
Defect 3, 0 1, 1

Cooperate Defect
Cooperate 1, 1 0, 2
Defect 0, 2 0, 0
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Prisoner’s Dilemma

I Each player with a preferred strategy that collectively results in
an inferior outcome

I Dominating strategy regardless of the opponent’s action
I Nash equilibrium, from which no individual player benefits

from deviating

Cooperate Defect
Cooperate 2, 2 0, 3
Defect 3, 0 1, 1

Cooperate Defect
Cooperate 1, 1 0, 2
Defect 0, 2 0, 0
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Prisoner’s Dilemma

I One game → defect
I Fixed number of games → defect
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Chicken game, Hawk-Dove game
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Chicken game, Hawk-Dove game
I No preferred strategy
I The best strategy is to anti-coordinate with your opponent

Cooperate Defect
Cooperate 0, 0 -1, 2
Defect 2, -1 -5, -5

I Example: Cold war
I Solution: anti-correlated pure strategy
I Probabilistic, or mixed strategy (play Hawk with p′)
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Chicken game, Hawk-Dove game difference to Prisoner’s
dilemma

Cooperate Defect
Cooperate Reward S, T
Defect T, S Punish

Hawk-Dove Prisoner’s dilemma
C D

C 2, 2 1, 3
D 3, 1 0, 0

C D
C 2, 2 0, 3
D 3, 0 1,1

I Prisoner’s dilemma:
Temptation(T)>Reward(R)>Punish(P)>Sucker(S)

I Chicken game:
Temptation(T)>Reward(R)>Sucker(S)>Punish(P)
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Stag game

Prisoner’s dilemma Hawk-Dove Stag game
C D

C 2, 2 0, 3
D 3, 0 1,1

C D
C 2, 2 1, 3
D 3, 1 0, 0

C D
C 3, 3 0, 2
D 2, 0 1,1

I Prisoner’s dilemma:
Temptation(T)>Reward(R)>Punish(P)>Sucker(S)

I Chicken game:
Temptation(T)>Reward(R)>Sucker(S)>Punish(P)

I Stag game:
Reward(R)>Temptation(T)>Punish(P)>Sucker(S)
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Prisoner’s dilemma: multiple agents

I Against all others
I Against itself
I Against a fully random agent
I Number of agents: 14, 62
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Prisoner’s dilemma: multiple agents: Strategies
I Strategies for repeated games in Axelrod’s tournament ( 1980):
I AllD: choosing D always (unconditional defector, the bad guy,

. . . )
I AllC: choosing C always („the good guy” or sucker)
I Random: chooses D or C with probabilities q or (1-q)
I TFT (Tit-for tat): chooses C first, then she

repeats/reciprocates the previous strategy of the co-player
I Generous TFT: TFT, but chooses C (instead of D) with a

probability q
I WSLS (win-stay-lose-shift): first C or D, then she changes it if

her payoff is smaller than an aspiration level (Ux<a)
I Stochastic reactive strategies: Chooses C or D with

probabilities dependent on the previous decision of the
co-player

I Stochastic reactive strategies with longer memory: Etc.
I Go-by-Majority cooperates on the first round, then takes

majority strategy.
I . . . and many morePage 44



Multiple agents: Winning strategy

I The winner is: Tit-for-tat!
I Human law
I Note that Common good was not included
I Why not “always defect”(AD), which is the Nash equilibrium of

the
I Prisoners’ dilemma for any finite number of plays?
I Nash equilibrium means that AS is the best strategy against

AD
I AS is not dominant strategy
I It is not the best strategy for all strategies
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Multiple agents: Best strategy

I Large pool of players (movie):
I It can be shown that for a repeated PD game there is no best

strategy for all possible strategies
I But for a good strategy it has to be

I Nice (do not defect first)
I Punish others for being nasty
I Forgive fast
I Be efficient against yourself
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