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Percolation
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Percolation

Behavior of connected cluster
I Site percolation
I Bond percolation
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Percolation model

I Random environment
I With probability p site vacant (conducts)
I Two states: percolates or not!
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Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Mean cluster size (without the inifinte one)?
4. Cluster size distribution

Answers:
1. Above a critical density with probability 1 below it with

probability 0
2. Only 1!
3. Decreases as a power low away from the critical density
4. Power law
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Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Cluster size distribution (ns)
4. Mean cluster size (without the inifinte one)? (S =

∑
s s

2ns)
Answers:
1. if p > pc then yes, otherwise no
2. Only 1!
3. ns ∼ s−τ

4. S ∼ |p − pc |−γ

Like a second order phase transition in a geometric system!
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Percolation model
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Percolation model
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Percolation model
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Percolating cluster
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I Largest cluster
I fractal with fractal dimension of df

I S∞ ∼


ξdf log(N/ξd) p < pc

Ndf /d p = pc

NP∞(p) p > pc

I Largest not infinite cluster: size ∼ |p − pc |−ν
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Percolation theory: Importance
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Percolation theory: Importance

I COFFEE!!!!
I Non-equilibrium statistical physics
I Image analysis
I Percolation on networks: Phase transitions
I Percolation on networks: robustness, fragility
I Flodings
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Percolation model

Bond [site] percolation
I Let us have a lattice (network)
I Each bond [site] is occupied with probability p

I (unoccupied with probability 1− p)
I A cluster is a set of sites connected by occupied bonds

[A cluster is a set of occupied sites]
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Hoshen-Kopelman Algorithm

I Numerical task: find clusters
I Identify clusters
I Visit all sites
I Mark them with numbers
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Hoshen-Kopelman Algorithm

I Site percolation
I Open boundary conditions
I Go through site in typewriter style
I Check left and above
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Hoshen-Kopelman Algorithm

link[1]=1 link[1]=1

link[2]=21 1

12 2 2

I Go through sample in typewriter style
I If site is occupied, look left and up

I if no neighbour → new number
I if only one is occupied → inherit number
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Hoshen-Kopelman Algorithm

link[1]=1

link[2]=11 1

12 2 2

2 2 2 1

link[1]=1

link[2]=1

link[4]=4

link[3]=1

1 1

12 2 2

2 2 2 1

1 1

1 11

1

4

3

I . . .
I If site is occupied, look left and up

I . . .
I if both sites are occupied → then link the two

I a link which points to itself is a root link
I find the root of both sites
I connect the larger to the smaller
I use this number
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Hoshen-Kopelman Algorithm
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Hoshen-Kopelman Algorithm

I Site percolation
I Helical boundary conditions (rolled up ont dimensional lattice)
I Go through site in typewriter style
I Check left and above (as before)
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Hoshen-Kopelman Algorithm

I Site percolation
I Periodic boundary conditions
I Go through site in typewriter style
I Check left and above (as before)
I After each line if first and last site is occupied link them
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Hoshen-Kopelman Algorithm, Periodic BC
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Result
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Determine pc

I From order parameter:

I Increase and decrease p by p/2 to converge to pc
I Use the monotonity of the percolation
I Same random number sequence can be generated!
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Self similarity
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Fractals

Mandelbrot set:
fc(z) = z2 +c , z , c ∈ C for
which fc(0), fc(fc(0)) re-
mains bounded in absolute
value.
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Fractal growth
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Snowflakes
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Fractal growth

Laplacian or gradient governed growth
I Scalar field (electrostatic field, density, through diffusion)

∆u = 0

I Velocity of the interface Γ proportional with the gradient

v|Γ = −C∇u|Γ

I Boundary condition: potential is curvature (κ) dependent

u|Γ = f (∇u, κ)

I Disorder: small fluctuations
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Fractal growth
Laplacian or gradient governed growth
I Scalar field (electrostatic field, density, through diffusion)
I Velocity of the interface Γ proportional with the gradient
I Boundary condition: potential is curvature (κ) dependent
I Disorder: small fluctuations
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Fractal growth

Consequences:
I Positive growth feedback: If there is a bump, gradient

increases (peak effect), growth gets faster
I Screening: Faster bump will screen the slower one
I Branching: If tip is far a new bump may grow.
I Tip splitting: Tip gets instable and splits
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Fractal

I Self-similarity
I Repeating pattern
I Scaling patterns
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Scale invariance
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Fractal dimension: Example

Koch curve
I Start from unit segment
I Hausdorff dimension: cover it with spheres of size l = 3−i

I Number of spheres needed Nl = 4i (take level i !)
I Fractal dimensions:

D =
logNl

log 1/l
=

i log(4)

+i log(3)
= log3(4)
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Dimension
I d = 0 point, d = 1 line, d = 2 plane, etc. Containing space.
I Dimension of a finite object: Cover it
I Hausdorff (fractal) dimension
I Minkowski–Bouligand dimension
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Fractal dimension

I Fractal dimension
I Cover the object with boxes of size ε, the fractal dimension is:

D = dim(S) ≡ lim
ε→0

logN(ε)

log 1/ε

I Differences:
I Minkowski–Bouligand: Regular lattice is used
I Hausdorff: Spheres of given size are used.

I In practice
N(ε) ∝ εD
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Fractal dimension
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Fractal dimension: Other methods
I Sandbox method: M ∝ LD

I Correlation functions

C (r) = 〈ρ(r)ρ(0)〉 ∝ r−α

D = d − α
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Diffusion Limited Aggregation: Algorithm
Basic:
I Start with a seed at (0,0)
I Particles start far from the aggregate and diffuse till they get

adjacent to existing cluster
Advanced:
I Start with a seed at (0,0)
I Start random walker on a circle just big enough to cover the

cluster
I Define a kill ring big enough or use reentry distribution
I Regions of large jumps, on a larger scale lattice
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DLA: Lattice effects
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Ballistic deposition

I Lattice
I Off lattice
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Surface growth models

I Not the whole object but only its
surface is interesting (e.g. coastline)

I Object starts from a d-dimensional
substrate

I Object grows in the d + 1th dimension.
I Object is described by h(x) (x is a

d-dimensional position vector) height
function which is the maximum surface
position at x.

I Width of the surface

w(L, t) =

√
1
L

∫ L

0
[h(x , t)− h̄(t)]2dx

h(x)
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Family-Vicsek scaling
I Change of width in time

I Scaling relation:
w(L, t) ∝ Lαf (t/Lz)
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Theory: The KPZ-equation

I Surface growth ḣ(x, t)

I Function of: position(?), height, gradient, Laplace of height,
noise

ḣ(x, t) = f [x, h(x, t),∇h(x, t),∆h(x, t), . . . , η(x, t)]

I Normally:

ḣ(x, t) = f [h(x, t),∇h(x, t),∆h(x, t), η(x, t)]

I Gaussian noise:

〈η(x, t)η(x′, t ′)〉 = Aδ(t − t ′)δ(x − x ′)

P(η) =
1√
2πσ

exp

(
− η

2

2σ

)
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The Kadar-Parisi-Zhang equation

I Growth is lateral, up to second order

ḣ(x, t) = f [(∇h(x, t))2,∆h(x, t), η(x, t)]
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The Kadar-Parisi-Zhang equation

ḣ(x, t) = ν∆h(x, t) + λ(∇h(x, t))2 + η(x, t)

I Nonlinear
I Stochastic
I Partial differential equation
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Numerical solution of the KPZ-equation

I ξ is a random number with zero mean (can be Gaussian, or
uniform)

I Due to noise Euler scheme is enough:

hi (t + ∆t) =hi (t) + ν
∆t

(∆x)2 [hi+1(t)− 2hi (t) + hi−1(t)] +

+
λ

4
[hi+1(t)− hi−1(t)]2 + ξi

I Critical exponents and and universality classes α = 1/2,
z = 3/2
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Practice: Hoshen-Kopelman Algorithm

I Fill a square lattice with random 0 and 1
I Create a large enough array where link[i]=i
I Go through the lattice in a typewriter style
I If the site is not empty check the sites to the top and left (if

they exist)
I if both neighbors are empty → assign it a new label (you can

keep the labels in the original array)
I if only one neighbor is empty → assign it the root label of the

neighbor
I if both neighbors are occupied → search for the root labels of

the sites connect the larger to the smaller and assign this value
to this site

I (Bonus): Measure the distribution of the size of the clusters,
or the size of the largest as function of p, etc.
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