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Percolation
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Percolation

Behavior of connected cluster
» Site percolation

» Bond percolation
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Percolation model

» Random environment
» With probability p site vacant (conducts)

> Two states: percolates or not!

B occupied site  [Jvacant site
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high p: does percolate

N .
low p: does not percolate
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Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Mean cluster size (without the inifinte one)?
4. Cluster size distribution

Answers:

1. Above a critical density with probability 1 below it with
probability 0

2. Only 1!

3. Decreases as a power low away from the critical density

4. Power law
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Percolation theory

Questions (in infinite systems):
1. Is there an infinite cluster in infinite systems?
2. How many infinite clusters are there?
3. Cluster size distribution (ns)
4. Mean cluster size (without the inifinte one)? (S =", s%n;)
Answers:
1. if p > pc then yes, otherwise no
2. Only 1!
3. ng~s—
4. S~ |p—pc|™7

Like a second order phase transition in a geometric system!

T
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Percolation model
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Percolation model
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Percolation model

Page 9



Percolating cluster
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» Largest cluster

» fractal with fractal dimension of df

&f log(N/€7) p < pc
> S~ Nde/d P = Pc

NP (p) p > Pc
» Largest not infinite cluster: size ~ |p — pc|™

Page 10



Percolation theory: Importance
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Percolation theory: Importance
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COFFEE!!!!

Non-equilibrium statistical physics

Image analysis

Percolation on networks: Phase transitions
Percolation on networks: robustness, fragility

Flodings




Percolation model

Bond [site] percolation
» Let us have a lattice (network)
» Each bond [site] is occupied with probability p
> (unoccupied with probability 1 — p)
> A cluster is a set of sites connected by occupied bonds
[A cluster is a set of occupied sites]
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Hoshen-Kopelman Algorithm

» Numerical task: find clusters

> |dentify clusters
> Visit all sites

» Mark them with numbers
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Hoshen-Kopelman Algorithm

» Site percolation

» Open boundary conditions

» Go through site in typewriter style
» Check left and above
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Hoshen-Kopelman Algorithm

link[1]=1
link[2]=2

» Go through sample in typewriter style
> If site is occupied, look left and up

» if no neighbour — new number
» if only one is occupied — inherit number
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Hoshen-Kopelman Algorithm

link[1]=1
link[2]=1

link[1]=1
link[2]=1
link[3]=1
link[4]=4

> ...

> If site is occupied, look left and up
> .
» if both sites are occupied — then link the two

» a link which points to itself is a root link
> find the root of both sites

» connect the larger to the smaller

» use this number
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Hoshen-Kopelman Algorithm

link[1]=1
link[2]=2

link[1]=1
link[2]=1

link[1]=1
link[2]=1
link[3]=1
link[4]=4
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Hoshen-Kopelman Algorithm

> Site percolation

» Helical boundary conditions (rolled up ont dimensional lattice)

» Go through site in typewriter style
» Check left and above (as before)

a =] c
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Hoshen-Kopelman Algorithm

Site percolation

Periodic boundary conditions

Go through site in typewriter style
Check left and above (as before)

After each line if first and last site is occupied link them

vvyYvyyvyy
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Hoshen-Kopelman Algorithm, Periodic BC

link[1]=1 link[1]=1
link[2]=2 link[2]=2
link[3]=3 link[3]=1
link[1]=1 link[1]=1
link[2]=1 link[2]=1
link[3]=1 link[3]=1
link[4]=4 link[4]=4
link[5]=1

link[6]=6
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Result
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Determine p,

» From order parameter:

» Increase and decrease p by p/2 to converge to p.
» Use the monotonity of the percolation

» Same random number sequence can be generated!

:,
VAN !

Page 23

0.8



Self similarity
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Fractals

Mandelbrot set:
fo(z) = z2+c, z,c € C for
which £.(0), f(f(0)) re-
mains bounded in absolut
value.
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Fractal growth
Fractal growth

TR

Mineralization

Surface crys1||ization

Bacterial @8
colony
growth

Disordered viscous fingering
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Snowflakes
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Fractal growth

Laplacian or gradient governed growth
» Scalar field (electrostatic field, density, through diffusion)

Au=20
» Velocity of the interface ' proportional with the gradient
vir = —CVu|r
» Boundary condition: potential is curvature (k) dependent
ulr = f(Vu, k)

» Disorder: small fluctuations
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Fractal growth
Laplacian or gradient governed growth
» Scalar field (electrostatic field, density, through diffusion)
> Velocity of the interface ' proportional with the gradient
» Boundary condition: potential is curvature (k) dependent

» Disorder: small fluctuations

Page 29



Fractal growth

Consequences:

» Positive growth feedback: If there is a bump, gradient
increases (peak effect), growth gets faster

» Screening: Faster bump will screen the slower one

» Branching: If tip is far a new bump may grow.

» Tip splitting: Tip gets instable and splits

N

o
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Fractal

> Self-similarity
P> Repeating pattern
» Scaling patterns

Page 31



Scale invariance
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Fractal dimension: Example

/\

Ay\zAﬁ/\y\z/\

Koch curve
» Start from unit segment
» Hausdorff dimension: cover it with spheres of size | = 3~/
» Number of spheres needed N; = 4’ (take level i)
» Fractal dimensions:
log N ilog(4)

D= log 1/l ~ Filog(3) o8
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Dimension

» d =0 point, d =1 line, d =2 plane, etc. Containing space.
» Dimension of a finite object: Cover it

» Hausdorff (fractal) dimension

» Minkowski—Bouligand dimension

o N=9 N=19 N=48 N=97
Great Britain =1 l =2 | =4 =8
=} =) - = =

Page 34



Fractal dimension

» Fractal dimension

» Cover the object with boxes of size ¢, the fractal dimension is
log N
D = dim(S) = lim '8 NVE)
=0 logl/e
» Differences:
» Minkowski—Bouligand: Regular lattice is used
» Hausdorff: Spheres of given size are used.
» In practice
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Fractal dimension
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Fractal dimension: Other methods

» Sandbox method: M  LP
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Diffusion Limited Aggregation: Algorithm
Basic:
» Start with a seed at (0,0)
> Particles start far from the aggregate and diffuse till they get
adjacent to existing cluster
Advanced:
> Start with a seed at (0,0)
» Start random walker on a circle just big enough to cover the
cluster
» Define a kill ring big enough or use reentry distribution
> Regions of large jumps, on a larger scale lattice

(a) iLhLme npnxu\l.ﬂmn of IhL upummd random lmjumnu (b) A DLA aggregate and a mesh

2 allowed in the white ones. Also, two
e iy (Y
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DLA: Lattice effects

Page 39

108 particles

—
(c)

on-lattice

off-lattice

10 clusters of 10° particles




Ballistic deposition

> Lattice ‘

> Off lattice
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Surface growth models
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Not the whole object but only its
surface is interesting (e.g. coastline)
Object starts from a d-dimensional
substrate

Object grows in the d 4 1th dimension.
Object is described by h(x) (x is a
d-dimensional position vector) height
function which is the maximum surface
position at x.

Width of the surface

L
w(l,t) = \/ % /0 [h(x, t) — F(t)2dx




Family-Vicsek scaling
» Change of width in time

Tog(WL™)

» Scaling relation:
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Theory: The KPZ-equation

> Surface growth A(x, t)

» Function of: position(?), height, gradient, Laplace of height,
noise

h(x, t) = f[x, h(x, t), Vh(x, t), Ah(x, t),...,n(x, t)]

> Normally:

h(x, t) = f[h(x, t), Vh(x, t), Ah(x, t), 1n(x, t)]

» Gaussian noise;

(n(x, )n(x', ') = Ad(t — t')o(x — X)
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The Kadar-Parisi-Zhang equation

» Growth is lateral, up to second order

h(x, t) = F[(Vh(x, 1)), Ah(x, t),n(x, t)]
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The Kadar-Parisi-Zhang equation

h(x, t) = vAh(x, t) + M(Vh(x, ) + 1(x, t)

» Nonlinear
» Stochastic

» Partial differential equation
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Numerical solution of the KPZ-equation

» ¢ is a random number with zero mean (can be Gaussian, or
uniform)

» Due to noise Euler scheme is enough:

o 3 [hiva(t) = 2hi(t) + hioa ()] +

hi(t + At) =h;(t) + "W

-+ % [h,‘+1(t) — hifl(t)]2 + gi

» Critical exponents and and universality classes o = 1/2,
z=3/2

Page 46



Practice: Hoshen-Kopelman Algorithm

» Fill a square lattice with random 0 and 1
» Create a large enough array where link[i]=i

» Go through the lattice in a typewriter style
» If the site is not empty check the sites to the top and left (if
they exist)
» if both neighbors are empty — assign it a new label (you can
keep the labels in the original array)
» if only one neighbor is empty — assign it the root label of the
neighbor
» if both neighbors are occupied — search for the root labels of
the sites connect the larger to the smaller and assign this value
to this site

» (Bonus): Measure the distribution of the size of the clusters,
or the size of the largest as function of p, etc.
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