
Computer simulations in Physics
Optimization

Janos Török

Department of Theoretical Physics

April 6, 2021

Page 1

Optimization
I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Gradient methods
I Simulated Annealing
I Genetic algorithm

Page 2

Optimization

I General problem of finding the ground state
I Phase-space:
I Arbitrary number of dimensions
I Methods:

I Gradient methods
I Implementation

I C: GSL
I python: scipy.optimize
I Both are very flexible and can be used with numerical or

analytical derivatives

Page 3

Gradient based optimization

I Given f (x), with x = {x1, x2, . . . xn}
I Gradient ∇f (x) ≡ g(x) = {∂1f , ∂2f , . . . ∂nf }
I Second order partial derivatives: square symmetric matrix

called the Hessian matrix:

∇2f (x) ≡ H(x) ≡

∂1∂1f . . . ∂1∂nf
...

. . .
...

∂1∂nf . . . ∂n∂nf

Page 4

General Gradient Algorithm

1. Test for convergence
2. Compute a search direction
3. Compute a step length
4. Update x

Page 5

Steepest descent algorithm

1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, compute normalized search direction
pk = −g(xk)/||g(xk)||

3. Compute αk such that f (xk + αpk) is minimized
4. New point: xk+1 = xk + αpk
5. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled

in two successive iterations, otherwise go to 2.

Page 6

Conjugate Gradient Method

I The iteration
xn+1 = xk − γn∇f (xk),

I We can select γ such that if the function is quadratic in all
directions it goes immediately into the minimum

I Idea: almost all minima are quadratic close to the minimum

γn =
|(xn − xn−1)

T [∇f (xn)−∇f (xn−1)]|
||∇f (xn)−∇f (xn−1)||2

Page 7

Conjugate Gradient Method
1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise Go to 6

3. p0 = −g0

4. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise continue

5. Compute the new conjugate gradient direction
pk = −gk + βkpk−1, where

β =

(
||gk ||
||gk−1||

)2

6. Compute αk such that f (xk + αpk) is minimized
7. New point: xk+1 = xk + αpk
8. Test for |f (xk+1 − f (xk))| ≤ εa + εr |f (xk)| and stop if fulfilled

in two successive iterations, otherwise go to 4.
Page 8

Conjugate Gradient Algorithm

Page 9

Modified Newton’s method

Second order method
1. Start from x0

2. Compute g(xk) ≡ ∇f (xk). If ||g(xk)|| ≤ εg then stop,
otherwise, continue

3. Compute H(xk) ≡ ∇2f (xk) and the search direction
pk = −H−1gk

4. Compute αk such that f (xk + αpk) is minimized
5. New point: xk+1 = xk + αpk
6. Go to 2.

Page 10

Optimization

I General optimization
I Parameters of the system x (input)

I for networks: adjacency matrix, degree distribution
I for pattern recognition: data, or processed data (e.g Fourier

spectrum, etc.)
I Optimized property: y = f (x), we search for f (.) which gives

the desired y
I any measurable quantity
I classification of data (e.g. y = 1 for cat, y = 2 for dog, etc.)

I Loss function, L(f), the quantity to be minimized
(Energy/Hamiltonian)
I Least square: L(f) = [y − f (x)]2

I Hamming distance: L(f) =

{
1 if f (x) = y

0 otherwise

Page 11

Linear regression
I Assume linear form for the loss function:

fw(x) = wT x

I n data points
I m variables
I The problem must not be linear, e.g. polynomial fit w contains

the coefficients of the polynomial (i indexes data points):

yi = w0 + w1x
(1)
i + w2x

(2)
i + · · ·+ wmx

(m)
i + εi

y1
y2
...
yn

 =

1 x

(1)
1 x

(2)
1 . . . x

(m)
1

1 x
(1)
2 x

(2)
2 . . . x

(m)
2

...
...

...
. . .

...
1 x

(1)
n x

(2)
n . . . x

(m)
n

w1
w2
...

wm

+

ε1
ε2
...
εn

I If X is a square matrix than w = X−1y
I Otherwise w = (XTX)−1XT y

Page 12

Linear regression

I If X is a square matrix than w = X−1y
I Otherwise w = (XTX)−1XT y

Page 13

Linear regression

Solution: W = (XTX)−1XT y

I Minimize ε2 = (Y − XW)T (Y − XW) with respect to W
I Derivate it with respect to W:

d
dW (Y − XW)T (Y − XW) = −2Xt(Y −WW) = 0

I Solve for W: XTY = (XTX)W

Page 14

Linear regression: Example
I Movie success prediction
I Variables:

V Number of views of the Wikipedia page
U Number of editors of the Wikipedia page
E Number of edits made on the Wikipedia page
R Collaborative rigor of Wikipedia editing
T Number of theaters that screen the movie

I Time=0 day of release

Page 15

Linear regression: Over fitting

t = sin(2πx) + ξ

Page 16

Linear regression: Over fitting

Page 17

Maximum likelihood

I Unknown parameter θ which maximizes the likelihood to
obtain the given data

I We know the probability distribution f (xi , θ) of random
variables xi

I Likelihood:

L(θ) = f (x1, θ)f (x2, θ) · · · f (xn, θ)

I θ parameter vector for the probability distribution
I Generally maximize log L(θ)

I Can be solved in many cases
I Probability distributions must be known in advance
I Parameters obtained through equations.
I Main usage: model parameter estimation

Page 18

Maximum likelihood, example

I Two dice, one normal 6 side, the other has probabilities of
p(1, 2, 3, 4, 5, 6) = (1/12, 1/6, 1/6, 1/6, 1/6, 1/4)

I We have rolled 10 times and the result is
1, 2, 6, 5, 6, 5, 3, 6, 4, 2.

I What is the likelihood that we chose the fake dice?
I pnorm = 1

610 = 1.65 · 10−8

I pfake =
1

66·43·12 = 2.79 · 10−8

I What is the dice which gave this with the highest probability
(1/10, 1/5, 1/10, 1/10, 1/5, 3/10)

Page 19

Glassy behavior, frustration
I Model glass: spin glass:

H = −1
2

∑
〈i ,j〉

JijSiSj

I where Jij are random quenched variables with 0 mean (e.g.
±J with probability half)

Rugged energy landscape.

Page 20

Energy landscape
Ising vs. spin glass (X Axis: binary representation of number)

Page 21

Spin glass: Aging
I Heat up the sample where it equilibrates fast
I Quench it below Tc

I Wait tw
I Switch off the magnetic field
I Measure a parameter q(tw , tw + t)
I Often q is a covariance (X observable):

q(s, t) = E (XtXs)− E (Xt)E (Xs)

Page 22

Spin glass: Trap model (Bouchaud)
I The evolution of the particle

system is represented by a
Markov process in a random
energy landscape

I The process will spend most
time into deep valleys of lowest
energy where it will be trapped

I The time spent in these valleys
is random and aging will appear
when the mean time spent in
these valleys diverges

I Order parameter: the
magnetization and the two point
spin correlation between spins at
the same site in two different
replicas

Page 23

Rugged energy landscape

I Typical example NP-complete problems:
I Traveling salesman
I Graph partitioning
I Spin glass

I No full optimization is possible (do we need it?)
I Very good minima can be obtained by stochastic optimization

I Simulated annealing
I Genetic algorithm

Page 24

Travelling salesman

I N cities on the 2d space
I Distance between the cities is the Euclidean distance (birds

flight)
I The traveller must visit all cities once
I The trajectory is circular so the traveller must return to the

starting city
I The optimized quantity is the travelled distance

Page 25

Simulated annealing

I Cool down the system slowly
I Speed is crucial and many experiments are needed
I No guarantee that we find something meaningful
I Warm up and down if needed, if the system quenched into a

local minimum
I One needs a Hamiltonian (or a fitness function) and an

elementary move
I Spin glass: Metropolis

I Traveling salesman
I Minimal traveling path for visiting a number of cities
I Elementary move: swap two cities (T ∼ alcohol)

Page 26

Simulated annealing

I Loss function: e.g. energy E

I Minimize energy like in a physical system
I Vary parameter set w in an ergodic way (all possible values

must be reachable)
I Observe detailed balance:

p(i → j) =

{
1 if Ej < Ei

exp[β(Ei − Ej)] otherwise

I where β ' 1/T
I Slowly decrease T

Page 27

Hill climb

Page 28

Travelling salesman

Page 29

Genetic algorithm

I Learn from nature
I Let the fittest to survive

Page 30

Genetic algorithm
I Learn from nature
I Let the fittest to survive

I Fitness function, e.g. energy, length, etc.
I Combine different strategies
I State is represented by a vector (genetic code or genotype)

I Phasespace, city order, neural network parameters, etc.
I Offsprings have two parents with shared genetic code
I Mutations
I Those who are not fit enough die out

I Keep the number of agents fixed

Page 31

Genetic algorithm terminology
I Chromosome: Carrier of the genetic representation
I Gene: Smallest units in the chromosome with individual

meaning
I Parents: Pair of chromosomes, which produce offsprings
I Population: Set of chromosomes from which the parents are

selected. Its size should be larger than the length of the
chromosome

I Selection principle: The way parents are selected (random,
elitistic)

I Crossover: Recombination of the genes of the parents by
mixing

I Crossover rate: The rate by which crossover takes place
(∼90%)

I Mutation: Random change of genes
I Mutation rate: The rate by which mutation takes place (∼1%)
I Generation: The pool after one sweep.

Page 32

Genetic algorithm: Reproduction

I Two parents and two children

Page 33

Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)

Page 34

Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)
I One-point
I Two-point
I Uniform
I Mutation: small rate

Page 35

Genetic algorithm example

Page 36

Practice

Please, solve one of the following exercises to earn the 20 points for
practice. You can work in pairs as usual. If you wish, you can solve
both problems for a total of 40 points.
I Simulated annealing of the travelling salesman
I Linear regression of the Titanic survivals

Page 37

Simulated annealing of the travelling salesman

I Place N cities randomly on the unit square. Use N = 50, 100
cities for the test.

I Distance between the cities is the Euclidean distance
I The algorithm must propose an order to visit all cities
I The trajectory is circular so the traveller must return to the

starting city
I The optimized quantity is thus the sum of the city distances in

the proposed order of visit.
I Implement both type of elementary steps:

I Exchange two cities in the order of visit: e.g. ABCDEFA →
ABEDCFA

I Reverse the visit direction of a part of the trajectory: e.g.
ABCDEFA → AEDCBFA

I Measure the efficiency of the two elementary steps

Page 38

Linear regression of the Titanic survivals

I Download the Titanic datafile from https://gist.github.
com/michhar/2dfd2de0d4f8727f873422c5d959fff5

I Keep the following columns: Pclass, Sex, Age, Parch, Fare
(Parch: Number of Parents/Children Aboard) for input and
the column Survived for output

I Replace text data with different numbers for different strings
I Rescale the numbers in each column to have zero mean and 1

variance
I Do the linear regression. You can use builtin matrix

multiplication algorithm, but no builtin regression algorithms
I Discuss the importance of the different parameters

Page 39

https://gist.github.com/michhar/2dfd2de0d4f8727f873422c5d959fff5
https://gist.github.com/michhar/2dfd2de0d4f8727f873422c5d959fff5

Homework

Genetic algorithm

Page 40

Network optimization example
I Optimize transmission energy consumption (Jin et al. 2003)
I Sensors scattered in space
I One data collector
I Sensors can be turned into intermediate collectors (hubs)
I Energy consumption

E (k, d) = Eelec + d2Eamp,

where Eelec is the base electric need of a radio station, Eamp is
the energy need of an amplifier and d is the distance to
transmit to.

Page 41

Network optimization example 2.

I Coding: bit
I 1: direct connection to data collector (it is a hub)
I 0: connection to nearest hub

Page 42

Network optimization example 3.

I Coding: bit
I 1: direct connection to data collector (it is a cluster head)
I 0: connection to nearest cluster head

I Crossover:
I Mutation: change a bit

Page 43

Network optimization example results

Page 44

