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» General problem of finding the ground state
» Phase-space:

» Arbitrary number of dimensions
» Methods:

» Gradient methods
» Simulated Annealing
> Genetic algorithm




Optimization

General problem of finding the ground state
Phase-space:
Arbitrary number of dimensions
Methods:
» Gradient methods

» Implementation

> C: GSL

» python: scipy.optimize

» Both are very flexible and can be used with numerical or
analytical derivatives
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Gradient based optimization

» Given f(x), with x = {x1,x2,...xp}

» Gradient Vf(x) = g(x) = {01f,0of,...0nf}

» Second order partial derivatives: square symmetric matrix
called the Hessian matrix:

OO f ... 010nf

V2f(x) = H(x) ' : '

O10nf ... OpOnf
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General Gradient Algorithm

. Test for convergence
. Compute a search direction

. Compute a step length

A w0 N

Update x

[=1=R
===
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Steepest descent algorithm
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1. Start from xq

. Compute g(xx) = VF(xk). If ||g(xk)|| < &g then stop,

otherwise, compute normalized search direction
Pr = —8(xk)/llg(x)ll

3. Compute ay such that f(xx + apk) is minimized
4. New point: Xx11 = Xk + apk
5. Test for |f(xk+1 — F(xk))| < €a+er|f(xk)| and stop if fulfilled

in two successive iterations, otherwise go to 2.



Conjugate Gradient Method

» The iteration
Xnt1 = Xk — YnVF(Xk),

» We can select v such that if the function is quadratic in all
directions it goes immediately into the minimum

» Idea: almost all minima are quadratic close to the minimum

|(xn — anl)T[Vf(Xn) — Vf(xp-1)]|
IVf(xn) — VF(xn-1)|[?

Yn =
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Conjugate Gradient Method

1. Start from xg

2. Compute g(xx) = VF(xk). If ||g(x«)|| < g then stop,
otherwise Go to 6

3. po=—8o

4. Compute g(xx) = VF(xk). If ||g(xk)|| < &g then stop,
otherwise continue

5. Compute the new conjugate gradient direction
Pk = —8k + BkPk—1, where

5_( |gkl] )2
|lgk—1ll

6. Compute ay such that f(xx + apg) is minimized

7. New point: Xx+1 = Xk + apk
8. Test for |f(xk+1 — F(xk))| < €a+er|f(xk)| and stop if fulfilled
in two successive iterations, otherwise go to 4.
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Conjugate Gradient Algorithm

e Steepest Descent

Conjugate Gradient
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Modified Newton's method

Second order method
1. Start from xq

2. Compute g(xx) = VF(xk). If ||g(x«)|| < g then stop,
otherwise, continue

3. Compute H(xx) = V2f(xx) and the search direction
P = —H g

4. Compute ay such that f(xx + apg) is minimized

5. New point: Xx41 = Xk + apk

6. Go to 2.
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Optimization

» General optimization
» Parameters of the system x (input)
» for networks: adjacency matrix, degree distribution
» for pattern recognition: data, or processed data (e.g Fourier
spectrum, etc.)
» Optimized property: y = f(x), we search for 7(.) which gives
the desired y
» any measurable quantity
> classification of data (e.g. y = 1 for cat, y = 2 for dog, etc.)
» Loss function, L(f), the quantity to be minimized
(Energy/Hamiltonian)
> Least square: L(f) = [y — f(x)]?
1 if fx)=y

» Hamming distance: L(f) = 0 othorwi
otherwise
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Linear regression

» Assume linear form for the loss function:

fu(x) = w'x

» n data points

» m variables

» The problem must not be linear, e.g. polynomial fit w contains
the coefficients of the polynomial (i indexes data points):

Yi = wo + W1X,-(1) + szi(z) + me,-(m) +ei
1 1 X§1) x{z) . x{m) wy €1
2 1 xz(l) x2(2) xz(m) wo €9
Yn 1 x,(,l) x,(,2) . x,(,m) Wm En

» If X is a square matrix than w = X1y
» Otherwise w = (X7 X)"1XTy
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Linear regression

> If X is a square matrix than w = X~y
» Otherwise w =

Tx)—ley

] |E

Normal equation: w

(XTx)~1xT



Linear regression: Example

» Movie success prediction
» Variables:
V' Number of views of the Wikipedia page
U Number of editors of the Wikipedia page
E Number of edits made on the Wikipedia page
R Collaborative rigor of Wikipedia editing
T Number of theaters that screen the movie
> Time=0 day of release
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Linear regression: Over fitting

t =sin(2rx) + ¢
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Linear regression: Over fitting
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Maximum likelihood

» Unknown parameter which maximizes the likelihood to obtain
the given data

» We know the probability distribution f(x;, 8) of random
variables X;

» Likelihood:
L(O) = f(x1,0)f(x2,8) - F(xn, 0)

Generally maximize log L(#)
Can be solved in many cases
Probability distributions must be known in advance

Parameters obtained through equations.

vVvYyyvyy

Main usage: model parameter estimation
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Maximum likelihood, example
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v

Two dice, one normal 6 side, the other has probabilities of
p(1,2,3,4,5,6) = (1/12,1/6,1/6,1/6,1/6,1/4)

We have rolled 10 times and the result is
1,2,6,5,6,5,3,6,4,2.

What is the likelihood that we chose the fake dice?

Prorm = gio = 1.65 - 1078

Pfake = m =279-1078



Glassy behavior, frustration
» Model glass: spin glass:
1
H=—3 Z J;S:iS;
()
> where Jj; are random quenched variables with 0 mean (e.g.
+J with probability half)

Spin Glass

o
Rugged energy landscape. WL\ ,
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Energy landscape

Ising vs. spin glass (X Axis: binary representation of number)
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Spin glass: Aging
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» Heat up the sample where it equilibrates fast
» Quench it below T,

> Wait t,

» Measure a parameter g(ty, tyw + t)

» Often g is a covariance (X observable):

q(s, t) = E(XeXs) — E(X¢)E(X,)

01 1 10 100 1000
t-t,(s)



Spin glass: Trap model (Bouchaud)
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» The evolution of the particle

system is represented by a
Markov process in a random
energy landscape

The process will spend most

time into deep valleys of lowest
energy where it will be trapped
The time spent in these valleys

is random and aging will appear
when the mean time spent in

these valleys diverges
Order parameter: the

magnetization and the two point
spin correlation between spins at
the same site in two different

replicas
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Rugged energy landscape

> Typical example NP-complete problems:
» Traveling salesman
» Graph partitioning
» Spin glass
» No full optimization is possible (do we need it?)
» Very good minima can be obtained by stochastic optimization

» Simulated annealing
» Genetic algorithm
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Simulated annealing

Cool down the system slowly
Speed is crucial and many experiments are needed

No guarantee that we find something meaningful

vvvyyy

Warm up and down if needed, if the system quenched into a
local minimum

v

One needs a Hamiltonian (or a fitness function) and an
elementary move

» Spin glass: Metropolis
» Traveling salesman

» Minimal traveling path for visiting a number of cities
» Elementary move: swap two cities (T ~ alcohol)
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Simulated annealing
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v

Loss function: e.g. energy E
Minimize energy like in a physical system

Vary parameter set w in an ergodic way (all possible values
must be reachable)

Observe detailed balance:

. . if E; < E;

p(i —j) = -y
exp[B(E; — Ej)] otherwise

where >~ 1/T

Slowly decrease T



Hill climb

# 807m of 9530m (best: 807m)
= .

@ 558675

MERK FLIP




Travelling salesman
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Genetic algorithm
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Learn from nature
Let the fittest to survive
» Fitness function, e.g. energy, length, etc.
Combine different strategies
State is represented by a vector (genetic code or genotype)
» Phasespace, city order, neural network parameters, etc.
Offsprings have two parents with shared genetic code
Mutations
Those who are not fit enough die out
» Keep the number of agents fixed




Genetic algorithm: Reproduction

» Two parents and two children

Parents: Parents:
Crossover point CTOSSOVEr points

Chikdren: Chikdren:

Parents:

with a probability of 0.5, children have
L0% genes from first parent and 509 of
genes from second parent even with
randomly chosen crossover points,

Children:
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Genetic algorithm terminology
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Chromosome: Carrier of the genetic representation

Gene: Smallest units in the chromosome with individual
meaning

Parents: Pair of chromosomes, which produce offsprings
Population: Set of chromosomes from which the parents are
selected. Its size should be larger than the length of the
chromosome

Selection principle: The way parents are selected (random,
elitistic)

Crossover: Recombination of the genes of the parents by
mixing

Crossover rate: The rate by which crossover takes place
(~90%)

Mutation: Random change of genes

Mutation rate: The rate by which mutation takes place (~1%)
Generation: The pool after one sweep.



Genetic algorithm schema

1. Start with a randomly generated population

2. Calculate the fitnesses

3. Selection
» Random
> Best fitness (keep top 50% and generate new 50%)
> Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)

Parents

[tz sz ¢ |5 [e[Zes |
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Genetic algorithm schema

—_

. Start with a randomly generated population

N

. Calculate the fitnesses
3. Selection
» Random
> Best fitness (keep top 50% and generate new 50%)
> Roulette (Monte-Carlo) selection
4. Crossover: offsprings must be viable (Sometimes difficult)
» One-point
» Two-point
» Uniform

» Mutation: small rate
[ T2 T8 T4 s J6 [7 [8 T3 ]

Page 32



Genetic algorithm example
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Practice

Genetic algorithm
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Network optimization example

» Optimize transmission energy consumption (Jin et al. 2003)
Sensors scattered in space

One data collector

Intermediate collectors can be installed

Energy consumption

E(kv d) = Eelec + d2Eamp7

where Egjec is the base electric need of a radio station, Eymp is
the energy need of an amplifier and d is the distance to
transmit to.

>
| 2
>
>

[ )
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Network optimization example 2.

oo

» Coding: bit

» 1: direct connection to data collector (it is a cluster head)
» 0: connection to nearest cluster head

Page 36



Network optimization example 3.
.\4—.\.
\\<

» Coding: bit
» 1: direct connection to data collector (it is a cluster head)
» 0: connection to nearest cluster head
Indvl: 1 1 10 0101
Indv2: 10 1 lfl 110
Crossover point
After crossover, two offspring are created as below:
Childl: 11101110
> CrOSSOVer: Child2 10110101
» Mutation: change a bit
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Network optimization example results
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Table 1: Test Results of Three Problem Size
Node Converge | Head | Distance
Size Population after (%) |decreased
) generation
100 80 105 10.0% 76.85%
200 160 120 10.0% [ 81.20%
400 300 145 112% [ 82.20%




