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Complex Networks

» Graphs with nontrivial structures

» Graphs consist of nodes and edges connecting nodes
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Complex Networks: Example (my favourite)

» Hungarian company 3 bases

Maven 7 from etworksciencebook.com by Barabasi.
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etworksciencebook.com
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Example (my favourite)

» CEO (red), top managers (blue), Managers (magenta), group
leaders (orange)
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Example (my favourite)

» Biggest hub, and links at distance 1 and 2
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Complex networks

» Social connections
» |T connections
» Hardware
> WWW
> Biology
» Food web
» Metabolism
» Neural connections
» Species
> Economy

» Trade
> Travel
» Product chains

» Politics

> Voters
» Relations

Page 6



Complexity vs. Complex

Complicated Complex
Torsen differential Bird flock, lungs
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Complexity

» Complexity, a scientific theory which asserts that some systems
display behavioral phenomena that are completely inexplicable
by any conventional analysis of the systems’ constituent parts.
These phenomena, commonly referred to as emergent
behaviour, seem to occur in many complex systems involving
living organisms, such as a stock market or the human brain.

John L. Casti, Encyclopaedia Britannica
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Complexity

» Many interacting components
» Particles: 103 — 1023
» Brain: 103 — 10!
» Humans: 34 — 10°
» Computers: 1000 — 10°
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Complexity

» Many interacting components

» Emergence: occurs when an entity is observed to have
properties its parts do not have on their own

» More is different, P.W. Anderson

» Brain: neurons — thoughts

» Humans: people — society

» Technology: interconnected computers — WWW
» Particles: crystal structure
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Complexity

» Many interacting components

> Emergence
» Nonlinearity

» Brain: neurons

» Humans: Reactions

» Technology: virus spreading
» Particles: three planet problem
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Complexity

Page 12

» Many interacting components
> Emergence
» Nonlinearity

> Spontaneous organization

» Brain: learning

» Humans: society

» Technology: Torrent community
» Particles: crystals



Complexity

» Many interacting components
> Emergence
» Nonlinearity
» Spontaneous organization
» Diversity

» Brain: Different interactions (spontaneous, at will)
» Humans: society

» Technology: Torrent community
» Particles: Phase separation
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Networks

> Skeleton of complex systems (units and interactions)
» Underlying network

» Without apprehending this network we cannot understand the
complex system — Holistic approach

Holism: Looking at systems as a whole is needed for theirs
understanding

Reductionism: The precise understanding of the fine details will
finally lead to the complete picture
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Why now?

Development of information technology
Data gathered

>
>
» Detailed understanding of building blocks of many systems
» Digitalized world

>

Interdisciplinary
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Network Science

» Citations per year
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etworksciencebook.com

What can we learn

» Disease spreading

Modem boundaries are

22012 Encyclopmdia Britannica, Inc.
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What can we learn

» Disease spreading
» Cascade effects
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What can we learn

» Disease spreading
» (Cascade effects

» Signaling out terrorists
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What can we learn

Page 20

» Disease spreading
» Cascade effects

» Signaling out terrorists

» System robustness




What can we learn

» Disease spreading

» Cascade effects

> Signaling out terrorists

» System robustness

» System efficiency

» Trade efficiency (product suggestions, etc.)
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Graph Theory

> Konigsberg (Kaliningrad) bridges
» Can we pass all the bridges exactly once?
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Graph Theory: Euler
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Wikipedia

» Euler's theorem: An Eulerian path on a graph is possible if
there are no nodes with odd number of links or there are
exactly two such nodes

» A round trip (circle) is possible if there are no nodes with odd
number of links.
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Complex networks
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’ Phenomenon Nodes ‘ Links ‘
Ising Spins Interaction(neighbors)
Cell metabolism Molecules | Chem. reactions
Sci. collaboration | Scientists | Joint papers
Wwww Pages URL links
Air traffic Airports Airline connections
Economy Firms Trading
Language Words Joint appearance




Random Networks

Generate networks:

» From data:
» Phone calls
» WWW links

» Biology database
» Air traffic data
» Trading data
» Generate randomly
» From regular lattice by random algorithm (e.g. percolation)
» Erdés-Rényi graph
» Watts—Strogatz small world model
» Configuration model
» Barabasi-Albert model
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Graph Theory: Basics

» Graph:
G={V,E}
where
V' vertices (nodes) (i,/,k,...)
E: edges (links) (ejj,...)
> Network: graph of a system
» Representation:

Nodes: dots
Links: lines between dots
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Graphs/Networks

» Described by G(V/, E), where V is the set of vertices, and E is
the list of edges

» Alternatively: Aj;, Adjacency matrix

» Degree of a node: k number of links connecting to the node
(if directed there are in kjj and out ko,: degrees)

» Strength of a node: The sum of weight of the links connecting
the node

» A connected component is a subset of the graph in which all
vertex pairs are connected by continuous path
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Basic network properties

> Global:
» Degree distribution
» Shortest path
» Diameter, small world
» Clustering coefficient
» Mesoscopic:
» Communities, modularity
» Treeness
» Hierarchy
» Core-periphery
» Microscopic:
> Assortativity
» Centrality
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Degree distribution
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Degree distribution

» Poisson: Well defined mean and variance

» Power law (scale free): Variance and event mean can be
undefined, but definitely mode does not match with average
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Minimal path

» Minimal path is the path with the smallest possible edges
between the two nodes

> If weighted then generally 1/w;; is considered (weight is
proportional to throughput)

» Many applications: e.g. Route planning
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Minimal path
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» Minimal path is the path with the smallest possible edges
between the two nodes
If weighted then generally 1/w;; is considered (weight is
proportional to throughput)

> Many applications: e.g. Route planning

Search Results. _
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Dijkstra’s algorithm

» Find the shortest path from a source

v

Known: links, link weights (node distances)

> Store: distance to that point, link to previous element in
shortest path

» List of unvisited nodes sorted by distance to origin (set to
infinity if unknown)
» Algorithm:
1. Choose the unvisited node with the smallest distance to the
origin
2. Visit all its unvisited neighbors: if distance is smaller than the
current distance to that point, store it and set link to previous
element to the current active node
3. Mark node as finished
4. If list of unvisited nodes is not empty, go to 1.

Movie
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Diameter/Small world

» Diameter: Largest distance between two vertices
> Average diameter: Mean distance between all vertex pairs

» Society: Small world. Karinthy (1929)
A fascinating game grew out of this discussion. One of us
suggested performing the following experiment to prove that
the population of the Earth is closer together now than they
have ever been before. We should select any person from the
1.5 billion inhabitants of the Earth — anyone, anywhere at all.
He bet us that, using no more than five individuals, one of
whom is a personal acquaintance, he could contact the
selected individual using nothing except the network of
personal acquaintances
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Diameter/Small world

>

>
>
>
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Diameter: Largest distance between two vertices

Average diameter: Mean distance between all vertex pairs
Society: Small world. Karinthy (1929)

Milgram experiment: Letters were given to individuals in
middle us (Kansas/Nebraska)

They had to reach a person in Boston

Average hops was 5.5 persons




Clustering coefficient
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» The fraction of triangles with respect to V structures

» For a node i consider all triangles it is part of

> Divide it by the number of possible triangles

» In society there are many triangles (high probability that two
of my friends know each other)

G

_ ek Aj =1, Ak =1, A = 1]

ki(ki — 1)

(a) No pairs formed among
neighbors: C =0

(b) One pair formed among
neighbors: C=1/3

1y

N

(c) Three pairs formed among
neighbors: C=3/3



Other measures

» Next week

» Now models
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Erdés-Rényi

» P. Erd6s, A. Rényi, On random graphs, Publicationes
Mathematicae Debrecen, Vol. 6 (1959), pp. 290-297 (cit 789)

» Two variants:
1. G(N,M): N nodes, M links
2. G(N, P): N nodes, links with p probability (all considered)
> Algorithm
1. G(N,M):
» Choose i and j randomly i,j € [1, N] and i # j
» If there is no link between i an j establish one
2. G(N, P): (Like percolation)

> Take all {i,j} pairs (i #j)
> With probability p establish link between i and j
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Erdés-Rényi: degree distribution

» Degree distribution

P = (V) ) - o

» For large N and Np =const it is a Poisson distribution

(np)ke=rP

P(k) — p

2=0 p=01 p=02

() (b (=)
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Erdés-Rényi: Small world

» Small world?

> Yes

> Average degree z =2M/N

> Nodes reached after / steps (z — 1)’
> All nodes reached N = (z — 1)/ so

I =logN/log(z — 1)

> For humanity: / ~ log(7 - 10°)/ log(150) = 4.5
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Erdés-Rényi: Clustering

» Probability of link is independent p
» Average degree z =2M/N is kept constant
» Probability of a link is p; = %
» Clustering
C=p
» For large networks
lim p;=20
N—oc0

» In large random networks there are no triangles
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Erdés-Reényi

etworks

T Y
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Watts-Strogatz model

» High clustering: triangular lattice

» Construct a model which continuously extrapolates between
the lattice and the random network

» Start from the lattice and randomly rewire links with
probability p

» pis a parameter, with p = 0 lattice, p = 1 Erd&és-Rényi
Regular Small-world Random

Increasing randomness
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Preferential attachment

Barabasi-Albert graph
> Initially a fully connected graph of mg nodes
» All new nodes come with m links (m < my)

m=1 m=2 m=3

» Links are attached to existing nodes with probability
proportional to its number of links

» k; is the number links of node /, then
Pa= ki
? Zj ki

Page 44



Barabasi-Albert graph

» Degree distribution

p(k) ~ k3
» Independent of m!
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Scalefree network example: Flight routes
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Scalefree network example

. Co-authorship




Algorithm for Barabasi-Albert graph
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© N o b~ wh =

n = mg number of existing nodes

K =3, kj total number of connections

r random number r € [0, K]

Find inax for which Zj’r;ag ki <r

If there is no edge then add one between nodes n+ 1 and inax
If node n+ 1 has less than m connections go to 3.

Increase n by 1

If n < N go to 2.



Centrality

» Degree centrality

» High degree nodes are

more central

» Closeness centrality

> Average distance to

other nodes

» Betweenness centrality
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» Eigenvector centrality

(Page rank)
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Percolation on networks (graphs)

» Network is defined by nodes and links

» Percolation gives us connected components

» Link removal percolation gives information about robustness,
and structure
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Percolation and attack on random networks

» Failure: equivalent to percolation: remove nodes at random
> Attack: remove most connected nodes
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Error vs. attacks
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Percolation and attack on random networks
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» Failure:
> Attack:

equivalent to percolation: remove nodes at random

remove most connected nodes
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Random Walk on Random Networks
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Random Walk on Random Networks

> Rate equation ny probability of finding the walker an a site
with k edges:

ong NS
o = et k; P(K'[K) e

» Uncorrelated random network:

P(K'|k) = <kkl>Pk/

» New equation:

8[’1;{
W —rng + r Z P nk/

> Solution:
k
Nk = ——
kN
» Random walkers gather on high connectivity nodes
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Page rank

» Do what surfers do

» Random walk on pages, but sometimes (probability g) a new
(random) restart

» Dumping factor d = 1 — g (general choice d = 0.85).

» Self-consistent, equation:
N g Pr(j)
Prli) = — (1~ Q)Y Aj
1-d
R=(dA+—E|R
(an+ 25 %)

where E is a matrix of all ones

» Solution: iteration

» Result: Favours sites which are linked by many (reliable
sources)
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Page rank example




