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Clustering, modularity, community detection
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Patterns in complex network

I Natural networks are not homogeneous
I There are natural groups
I These groups are more densely connected internally then

externally
I Nodes in groups are more similar
I Exact mathematical definition is lacking
I These groups are called communities
I Clustering: group similar items together
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Egocentric network on iWiW
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Egocentric network on iWiW
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Egocentric network on iWiW
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Clustering example: Correlation between 50 symptoms

Clustered Random
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Clustering example: Correlation between 50 symptoms

Community detection
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Zachary karate club
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Cluster, Community definition:
I Group which is more connected to itself than to the rest
I Group of items which are more similar to each other than to

the rest of the system.

Communities, Partioning:
I Strict partitioning clustering: each object belongs to exactly

one cluster
I Overlapping clustering: each object may belong to more

clusters
I Hierarchical clustering: objects that belong to a child cluster

also belong to the parent cluster
I Outliers: which do not conform to an expected pattern
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Communities, Partitioning

I Strict partitioning clustering: each object belongs to exactly
one cluster

I Overlapping clustering: each object may belong to more
clusters

I Hierarchical clustering: objects that belong to a child cluster
also belong to the parent cluster

I Outliers: which do not conform to an expected pattern
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Communities, Partitioning, definitions:

I Local:
I (Strong) Each node has more neighbors inside than outside
I (Weak) Total degree within the community is larger than the

total degree out of it.
I Modularity by local definition (above)
I Clique-percolation

I Global: The community structure found is optimal in a global
sense
I Modularity
I k-means clustering
I Agglomerative hierarchical clustering
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Communities, Partitioning, definitions:

I Hundreds of different algorithms, definitions
I Starting point: adjacency matrix Aij , 1 if there is a link

between nodes i and j , otherwise 0
I Nodes as vectors (e.g. rows of adjacency matrix)
I Metric between objects (nodes) ||a− b||:

I Euclidean distance: ||a− b||2 =
√∑

i (ai − bi )2

I Maximum distance: ||a− b||∞ = maxi |ai − bi |
I Cosine similarity: ||a− b||c = a·b

||a|| ||b||
I Hamming distance: number of different coordinates
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Modularity
Global method
I eαβ percentage of edges between modules (clusters) α and β

probability edge is in module α is eαα
I aα percentage of edges with at least 1 end in module α

probability a random edge would fall into module α

23

1

I Modularity is

Q =
k∑

α=1

(eαα − a2
α)

I aα =
∑

β eαβ
I Try to maximize Q
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Modularity algorithm

I Rewrite Q:

Q =
1
2m

∑
i ,j∈same

[
Aij −

kikj
2m

]
2m =

∑
i ki

I Only two modules
I si = ±1: 1 if node i is in module 1; -1 otherwise

Q =
1
4m

∑
{i ,j}

[
Aij −

kikj
2m

]
(si sj + 1)

I +1 is a constant can be omitted
I Change the vector si to maximize Q
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Modularity algorithm

Q =
1
4m

∑
{i ,j}

[
Aij −

kikj
2m

]
si sj

I Try to find ±1 vector si that maximizes the modularity.
I Start with two groups
I Then split one of the two groups using the same technique
I Very similar to spin glass Hamiltonian
I Generally a np-complete problem, we can use the same

techniques.
I Often steepest descent is used, (greedy method): change the

site that would increase the modularity the most.
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Modularity: human interactions between cities
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Modularity: human interactions between cities
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iWiW vs. counties: aggregate connections between cities
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Problems with modularity

Resolution

Q =
1
4m

∑
{i ,j}

[
Aij −

kikj
2m

]
si sj

I On large networks normalization factor m can be very large
I (It relies on random network model)
I The expected edge between modules decreases and drops

below 1
I A single link is a strong connection.
I Small modules will not be found
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k-means clustering

I Cut the system into exactly k parts
I Let µi be the mean of each cluster (using a metric)
I The cluster i is the set of points which are closer to µi than to

any other µj
I The result is a partitioning of the data space into Voronoi cells
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k-means clustering, standard algorithm:
I Define a norm between nodes
I Give initial positions of the means mi

I Assignment step: Assign each node to cluster whose mean mi

is the closest to node.
I Update step: Calculate the new means of the clusters
I Go to Assignment step.
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k-means clustering: Major usage
I Detection of connected parts in images
I Use the Red, Green Blue value of each pixel
I Put them on a 3d space
I Find relevant clusters
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k-means clustering: Image color segmentation
I Detection of connected parts in images
I Use the Red, Green Blue value of each pixel
I Put them on a 3d space
I Find relevant clusters
I Use the center instead of each color
I Define connected clusters as objects on image
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k-means clustering: Problems

I k has to fixed beforehand
I Fevorizes equal sized clusters:

I Very sensitive on initial conditions:

I No guarantee that it converges
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Hierarchical clustering
1. Define a norm between nodes d(a, b)
2. At the beginning each node is a separate cluster
3. Merge the two closest clusters into one
4. Repeat 3.

Norm between clusters ||A− B||
I Maximum or complete linkage clustering:

max{d(a, b) : a ∈ A, b ∈ B}

I Minimum or single-linkage clustering:

min{d(a, b) : a ∈ A, b ∈ B}

I Mean or average linkage clustering:

1
||A|| ||B||

∑
a∈A

∑
b∈B

d(a, b)
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Hierarchical clustering
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Dendogram of the Zachary karate club
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Example: Temperatures in capitals
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Euclidean distance
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Hierarchical clustering: problems

I Advantages
I Simple
I Fast
I Number of clusters can be

controlled
I Hierarchical relationship

I Disadvantages
I No a priori cutting level
I Meaning of clusters

unclear
I Important links may be

missed
I Different result if one item

omitted
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Clique percolation

I Motivation: clusters are formed with at least triangles
I Can be generalized to any k-clique

I k = 2 normal percolation
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Clique percolation

I It will definitely lead to overlapping communities, but overlap
is limited to k − 1 nodes

I k-clusters are included in k − 1 clusters
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Clique percolation

I Algorithm
I Similar to normal percolation on networks but with multiple

loops
I Advantages

I Different level of clusters
I Clusters are generally relevant
I No heuristics

I Disadvantages
I Running time cannot be guessed (finding the maximal clique is

an np-complete problem)
I Code may run for ages
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Random Walks on Graphs

I Nodes in a community have higher probability for internal than
for external link.

I Random walker has a higher probability of remaining inside a
community than passing to an other.

I Use this feature for community detection.
I Infomap
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Infomap idea

I Take a (long) path of a random walker
I Encode it efficiently by giving unique address to each node
I Compress the encoding by assuming two level structure
I Give two level codes: Top ones (unique for each group), local

(can be the same in different groups). Ex:
I addresses in real life: Countries, Cities (there is also a

Budapest in the USA), Streets (you may find Main street in
many cities)

I domain names: .hu, .de; lower domains, e.g. notebook,
weather
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Huffman coding

I Compress data in the most efficient general way
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Huffman coding

1. Create a leaf node for each symbol and add it to the priority
queue.

2. While there is more than one node in the queue:
2.1 Remove the two nodes of highest priority (lowest probability)

from the queue
2.2 Create a new internal node with these two nodes as children

and with probability equal to the sum of the two nodes’
probabilities.

2.3 Add the new node to the queue.

3. The remaining node is the root node and the tree is complete.
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Huffman coding, vs. infomap

I Can a coding be more efficient than Huffman coding?
I If we know more about the data yes!
I Answer: Two level coding (Of course it would be stupid for

text)
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Sample random path and Huffman coding
Path length: 314 bits
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Sample random path and Huffman coding
Path length: 243 bits
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Infomap: Algorithm

I Start with Huffman coding
I Optimize coding to minimize the map equation:

L = qyH(Q) +
nc∑
i=1

pi�H(P i ),

where H(Q) is the frequency-weighted average length of
codewords for inter group jumps, H(P i ) is frequency-weighted
average length of codewords for group i .

I Implementation: Start with all nodes as different communities
I Merge them if L decreases
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Infomap

I One of the most popular
I Fast for large networks
I Reliability is comparable to more complex methods
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Practice: Hierarchical or k-means clustering

I Download the towns.dat file
I Load the file in a matrix
I Write a distance function which measures the distance in a 12

(cities) or 16 (months) dimensional space.
I Write the hierarchical and k-means clustering algorithm (do

NOT use the built in one!)
I For the hierarchical clustering print out data as:

I N − 1 lines for the N − 1 branching
I Four columns: id1 id2 distance 0
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Practice: Hierarchical or k-means clustering

I Dendogram data
I When you connect two objects it is a new branch and must get

a new number (next integer)
I When leaf merges with a group use the group id
I When two groups merge use both group ids.
I Distance: distance between the two leaves/groups

2 5 138 0
3 4 219 0
0 7 255 0
1 8 268 0
6 9 295 0
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