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Finite difference: First order

» Forward difference
Af(x) = f(x+ h) — f(x) = fep1 — fx
» Backward difference
Vi(x)=f(x)—f(x—h)="f—f1
» Central difference
0f(x)=f(x+h/2) — f(x — h/2) = fk+% - fk_%

> Well, if you know it at k —i—%
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Finite difference: Second order

» Forward difference

A%f(x) = frpo — 261 + fi
» Backward difference

V2f(x) = fio — 2f_1 + f_o
» Central difference

62 (x) = frg1 — 26 + fi1
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Finite difference: General

» Forward difference
A"f(x) = Zn:(l)i <7> fk—i+n
» Backward difference
i =3 (-1) (1) i

» Central difference

n

i=0
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Finite
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First order differential equation

» Example: y' =y — t, boundary conditions: y(0) = yo

» Solution: y(t) =1+ t+e'(yo—1)

» Vector field
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Euler method
» Forward difference, Euler method
Yo+l = Yo+ Athy + O(AL)
» Backward difference, Implicite Euler method
Ynt1 = Yn + Atfpys + O(AL?)
» Example, linear function:
f(y) = a0+ ary

» Then: foy1 = fr+ a1(Vn+1 — Yn)
» And the new position can be obtained as:

1 2
Yn+1 = m(yn + aoAt) + O(At )
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Euler method

» Second order differential equation:
y = (1), y(t), 1)
» First velocity (v =y)
Vni1 = Vp + At f, + O(At?)
» Then position
Ynt1 = Yn + At v, + O(AL)

» Do not use it!
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Implicit Euler method (backward)

» Second order differential equation:
y = f(y(t), ¥(t), 1)
» First velocity (v = y)
Vni1 = Vp + At £, + O(AL?)
» Then position
Yni1 = Yn + At vop1 + O(ALS)

» Surprisingly good!
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Euler
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Verlet method

» Second order differential equation:
v =f(y(t), t)
» From central difference
Ynt1 = 2¥n — Yn-1 + At* £+ O(AtY)
> Leapfrog

Ynt1 = Yo+ At V41

Vn+%:Vn+%+At fn

» None of them is used

> Velocity dependent forces are difficult to add
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Velocity Verlet method

» The one actually used in all codes:

1
Vi1 = Yo+ At vy + 5Aztzf,,
1
Vh+1l = Vp + §At(fn + fn+1)

» Implementation
1. Vn+1/2 = v, + %ant

2. Yny1 = Yn T At Vpy1p2
3. Calculate forces

4 Vpp1 = Vayro + %fn+lAt
» Simplified implementation (1+4 at once):
L. Yor1 = Yo+ Vo At + 3 HAL
2. Calculate forces
3. Vot = Vo + 3(fo + fo1) At
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Energy comparison
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Energy conservation

» Runge-Kutta is not good, neither is the Euler method
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Value of the timestep

> Example:
y(t) = =Ay(t)
» Euler methor:
Yn+1 = (1 = AAt)y,
» Exact solution:
y(t) = yoexp(—At)

— At=15

» Solution is stable, but what are those oscillations?
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Value of the timestep
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> Example:
y(t) = =Ay(t)

» Euler methor:

Yot1 = (L = AAt)y,

> If AAt > 2 the oscillations increase

J10]

- At=15
= At=19
—— At=20

1 = Aft=21



Stability
» Describe the iteration with an operator T, error is €, <y,
Ynt+1 = T[Yn] Ynt1 + €pt1 = T[Yn + 6,,]
» First order expansion

€nt1= Ty, + €] = Tlyn] = T'lyslen =G €,

v

This is stable for Eigenvalues with |g,| < 1 of G
» Example: relaxation with Euler method

Tlyn]l = (1 = AAt)yn
» Error propagation matrix:
G =Ty =1-)At
» The Eigenvalue: g3 = 1 — AAt, which gives the condition:

0< ANt <2
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Stability of the Harmonic oscillator with Euler
» Positon vector y(t) = (x(t), v(t))

» Differential equation:

y(t) =L-y()
(o)

Yni1 = (I + LAt)Yn

» Error propagation matrix:

v

Euler method

G=I1+LAt

» Eigenvalues:
g2 = 1+ jwoAt

» Unfortunately |g1 2| > 1
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Stability of the Harmonic oscillator with Velocity Verlet

» Positon vector y(t) = (x(t), v(t))
» Differential equation:

L 1— JwgAt? At
T\ At (1 + APWE) 11— 3AW3

» Eigenvalues:
lg12| =1
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Stability of other methods

» The implicite Euler with relaxation:

Tlyal = (1+AAL) Ty,

v

Which gives 0 < AAt, always stablel

v

Leapfrog:
Yn+1 = _2AAt}/n + Yn—-1

» The same applies for the error
€nt1) _ [ —2MAt 1 €n
€n o 1 0 €n—1

812 = —AA £4/1+ (AAt)2

» Which gives:

» Unfortunately |go| > 1
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Partial differential equations

Pu O%u
2— —_— =
& axQ atQ f(l',t)
%u  Ou
o T t
Dé)a:? ot f 1) ‘ .
62 dl

_ 62 .
A= D2 + Hy? + 822

Au(z,y, z,t) = —p(z,y, 2, 1)

52

—A’U,(:lj‘, Y, 2) + E - V(xuya Z) =0
2m

h? du

Aut iR v =
o U+ 1 5 V=0
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Partial differential equations: Problems

» Boundary problems:
» Typically time independent systems
» Values are given on a surface, and solution is search for inside
the volume
» e.g. Poisson problem
> Starting value problems:
» Typically time dependent systems
> Start conditions are known, time evolution is searched for
» e.g. Newton equations
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Discretization

» Discretization of

» Derivative
> Space (mesh)
» Basis function

0.0 02 0.4 06 0 Lo
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Discretization on a two-dimensional lattice

» Poisson equation:

0%u(x,y 0%u(x,y

» Central derivative
1
—pij = pa(Uiv1y + Uim1j — 4uij + i1+ Uij-1)
1
ujj = Z(thi,j + U1+ Uim1j T+ Ujj1 + Uj1)
» The new value of the grid does not depend on itself!
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Matrix formulation
> 1d:
Uiyt — 2U; + U1 = —p;ih?
» System of linear equations, solve it!
1 if)i—1=j
Aj=4-2 ifi=j
0 otherwise
> 2d: (i=0,...N—1,j=0,... M—1) r=iM+j

2
Ve +Vee1 —4ve + Vep1 + Ve = —pih

o =
0
"-.,__ 2D, 6x6
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Matrix formulation
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>

vVvvyVvVvyvyy

Problem
Av=>b
Gauss elimination is not a good idea
Sparce matrices
Special sparce matric methods
Iterative methods
LU decomposition: A= L —zl + U
Jacobi approximation
— — 2 —
Unew = % [(L + U)Uold +h ,0]
= Uold + Told + Sh°p
Gauss-Seidel approximation
— 1 — — —
rgs = ;(Lvncw + Uvold) — VUold

Unew = Vold + TGs + Zh P



Partial differential equations: Boundary values

» Dirichlet problems:

» Values of the function is known on the surface
» Neumann problem

» Derivative of the function is known on the surface
» Cauchy problem

> Alternatively derivative or the value of the function is known
on the surface

» Periodic boundary

» Same value, zero derivative on both sides
» e.g. crystal potential
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Partial differential equations: Boundary values

» Dirichlet problems:
» Do not update boundary points
» In matrix formulation move values to the constant part
» Neumann problem
» Boundary points are inactive for the dynamics
» The value is changed however if the corresponding inner grid
changes its value to keep derivative constant
» For matrix method new fictional points
» Equation for derivative
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Fourier transform

» The differential equation

Dly(t)] = £(¢)

» The Fourier transform of the Green's function of F[D] = G(w)
» The Fourier transform of F[f(t)] = F(w)

y(t) = FHG(w)F(w)]
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Order of update

» Random: pick a node randomly and update the value at that
point

» Random sequential: at every step shuffle the order of the
nodes, and update each in the given order

» Parallel: solution is done to a separate array simultaneously

» Can be done in parallel
> Stability problems may arise!
» Example, Laplace equation 1d:

1
up = E(Ui—l + uit1)

» Stateu={1,-1,1,-1,1,-1,...}
> After parallel update: u={-1,1,-1,1,-1,1,...}
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Units

Computer stores only numbers
We have to keep in mind the units

Better to facilitate our life

vvyyy

e.g. Damped harmonic oscillator
moZx + y0:x + kx = 0
» Units/values:
m=m-[m], x=x"-[x], t=t-][t]

where [.] is the unit of the quantity
» Sl units: kg, m, s
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Units

» Parameters:

_ _ [m] _ [m]
[m] =[m], ~v=T7 [k]_W

G
» Boundary conditions

[x]

[x0] = [x], [v] = M

» Possible choice

[m]=m, [X]=x, [t]=+m/k

» This gives
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Units

» Dimensionless equation:

Y
vV km

» This gives us two control parameters:

r:L v’:@ E
\/km7 0 xo\ k

%X+ Oux' +x' =0
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Units: example

» Gravitational potential

V(r)= —?
» Parameters:
_ P B ¥
m = . fo] = s bal = [ Dl =
» Natural units
X3
[m] =m, [X] = Xp, [t] — EO

» Control parameter:
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Practice
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» Oscillator: Solve numerically the following differential

equation, starting from x(0) = 0, x(0) = 1 using different
integrators:
X = —yx

aqﬂ

Measure the positions of the maxima:
Poisson equation: Solve the following dlfFerentlaI equation
using iterative technique:

vzu(x7y) = _p(X’y)
Choose dx = 6y =1, L =10, p(x,y) = 0. The boundary is
zero everywhere, except for u(x, L) = 1. Change only
p(4,4) = a, Solve the problem again. For plotting surfaces you
can use gnuplot (splot "datafile"). Datafile format: "x y z"
and one empty line between rows (before x changes)

» Vector field: Reproduce the figure at page 6



