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Glassy behavior, frustration
» Model glass: spin-glass:
1
H=—3 Z J;SiS;
(i)
» where Jjj are random quenched variables with 0 mean (e.g.
+J with probability half)

Spin Glass

o
Rugged energy landscape. WL\ ,
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Rugged energy landscape

» Typical example NP-complete problems:
» Traveling salesman
» Graph partitioning
» Spin-glass
» No full optimization is possible (do we need it?)
» Very good minimas can be obtained by optimization

» Simulated annealing
» Genetic algorithm
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Simulated annealing

» Cool down the system slowly

» Speed is crucial and many experiments are needed

» No guarantee that we find something meaningful

» Warm up and down if needed, if the system quenched into a
local minimum

» One needs a Hamiltonian (or a fitness function) and an
elementary move

» Spin glass: Metropolis
» Traveling salesman

» Minimal travelling path for visiting a number of cities
» Elementary move: swap two cities (T ~ alcohol)
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Hill climb

Z 807m of 350m (best: 807m)
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Travelling salesman
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Genetic algorithm

» Learn from nature

> Let the fittest to survive
» Fitness function, e.g. energy, length, etc.

» Combine different strategies

» State is represented by a vector (genetic code or genotype)
» Phasespace, city order, neural network parameters, etc.

» Offsprings have two parents with shared genetic code

» Mutations

» Those who are not fit enough die out

» Keep the number of agents fixed
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Genetic algorithm: Reproduction

» Two parents and two children

Parents: Parents:
CrOssOoVer point CIOSS0VEr points

Children: Children:

parents: NN NI I N O O BN B
I Y O
BN " @ Probebiiy of 0.5, children have

Children: I 50% genes from first parent and 50% of

genes from second parent even with
randomly chosen crossover points,
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Genetic algorithm terminology

» Chromosome: Carrier of the genetic representation

» Gene: Smallest units in the chromosome with individual
meaning

» Parents: Pair of chromosomes, wich produce offsprings

» Population: Set of chromosomes from which the parents are
selected. lIts size should be larger than the length of the

chromosome

» Selection principle: The way parents are selected (random,
elitistic)

» Crossover: Recombination of the genes of the parents by
mixing

» Crossover rate: The rate by which crossover takes place
(~90%)

» Mutatation: Random change of genes
» Mutation rate: The rate by which mutation takes place (~1%)
» Generation: The pool after one sweep.
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Genetic algorithm schema

1. Start with a randomly generated population

2. Calculate the fitnesses

3. Selection
» Random
> Best fitness (keep top 50% and generate new 50%)
» Roulette (Monte-Carlo) selection

Crossover: offsprings must be viable (Sometimes difficult)

Parents

[ Tz T= [+ [5 [E[ZE s |
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Genetic algorithm schema

=

. Start with a randomly generated population

N

. Calculate the fitnesses
3. Selection
» Random

> Best fitness (keep top 50% and generate new 50%)
» Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)
» One-point

Two-point

Uniform

Mutation: small rate
[2 2 [s Ja [5 [6 [7 &8 s ]

v vy
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Genetic algorithm example
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Neural networks

Hidden
Input . .
>
Output Machine learning
> Pattern recognition
» Handwriting
» Speech recognition
» Input pattern
» Qutput pattern
» Adaptive wights

» Approximating non-linear
functions
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Neural networks

» Input vector /

» Output vector O(/)

» Transition matrix Wj; € [-1,1]
» Learning using a cost function

» Test goodness
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Neural networks: Learning

> Supervised learning
» Data training:

» Superwised learning
» Fitness function, energy:

E=T(I)—-0(),

where T (/) is the target vector for input /
» Minimize E for available set of {/,/(0O)} pairs
» Test goodness:

» Use only part of {/,/(O)} pairs for learning, the rest is for
testing.

» Used for: pattern recognition, classification, etc.
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Neural networks: Learning

v

Unsupervised learning
» Cost function may depend on task

» Cost function is deviation from mean data
C = E[(x — f(x))?]

» Test goodness:
» Some self consistent limit on the cost function

» Used for: estimation, filtering, etc.
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Neural networks: Learning

» Reinforcement learning
» Cost function is a long time performance on an agent making
decisions based on the neural network.

» Test goodness:
» Compare with other agents which can be algorithmical or
based on neural networks

» Used for: control problems, Al, complex optimization

R
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Genetic algorithm example

oy ot 19T

propos?d

Ball
distance
to opp.
goal

Number of
scores

Number
of kicks

e Distance to
Field ball
distribution

R Distance to nearest
Distance to nearest teammate
opponent
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Neural networks

» Learning algorithms:

> Linear regression
» Genetic algorithm
» Simulated annealing
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Fractals
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Fractal growth

Mineralization

Surface crysilization

Bacterial §
colony
growth

Disordered viscous fingering

Page 21



Snowflakes
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Fractal growth

Laplacian or gradient governed growth

» Scalar field (electrostatic field, density, through diffusion)
Au=20
» Velocity of the interface [ proportional with the gradient
vl = —CVulr
» Boundary condition: potential is curvature (x) dependent
ulr = f(Vu, k)

» Disorder: small fluctuations
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Fractal growth
Laplacian or gradient governed growth
» Scalar field (electrostatic field, density, through diffusion)
» Velocity of the interface I proportional with the gradient
» Boundary condition: potential is curvature (x) dependent
» Disorder: small fluctuations
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Fractal growth

Consequences:

» Positive growth feedback: If there is a bump, gradient
increases (peak effect), growth gets faster

» Screening: Faster bump will screen the slower one

» Branching: If tip is far a new bump may grow.

» Tip splitting: Tip gets instable and splits

N

Zboe
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Fractal

» Self-similarity
» Repeating pattern
» Scaling patterns
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Diffusion Limited Aggregation

v

Starting from a seed

v

Particles come from infinity with diffusion

v

If incoming particle touches cluster it gets stuck to it

v

Samples: 1m and 100m particles

Page 27



Scale
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Diffusion Limited Aggregation: Algorithm
Basic:
» Start with a seed at (0,0)
» Particles start far from the aggregate and diffuse till they get
adjacent to existing cluster
Advanced:
» Start with a seed at (0,0)
» Start random walker on a circle just big enough to cover the
cluster
» Define a kill ring big enough or use reentry distribution
» Regions of large jumps, on a larger scale lattice

la]

FIG. I: (a) Schematic npnxu\l.ﬂmn of IhL upummd random lmjumnu (b) A DLA aggregate and a mesh

Pa ge nli 2 2r, allowed in the white ones. Also, two
Laina
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Diffusion Limited Aggregation: Algorithm

v

Start with a seed at (0,0)

Start random walker on a circle just big enough to cover the
cluster

v

v

Define a kill ring big enough or use reentry distribution

v

Regions of large jumps, on a larger scale lattice

[a] [b]

FIG. 1: (a) Schematic representation of the “optimized random trajectories™. (b) A DLA aggregate and a mesh
of cells 2ryy % 2riy. Long steps are forbidden in the gray boxes and allowed in the white ones. Also, two
long steps are illustrated. (¢) A zoom of the region inside the large square in (b).

Page 30



Dimension

d =0 point, d =1 line, d = 2 plane, etc. Containing space.
Dimension of a finite object: Cover it

Hausdorff (fractal) dimension

Minkowski—Bouligand dimension

vVVvyVvyy

ot N=9 N=19 N=48 N=97
Great Britain =1 I =2 | =4 r=8

. = = E A
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Fractal dimension

» Fractal dimension

» Cover the object with boxes of size ¢, the fractal dimension is
D = dim(S)
» Differences:

I

= lim -8 NGE)
e—0 logl/e

» Minkowski—Bouligand: Regular lattice is used

» Hausdorff: Spheres of given size are used.

> In practice

N(e) o eP
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Fractal dimension: Example

/\

Ay\zAﬁ/\y\z/\

Koch curve

v

Start from unit segment
Hausdorff dimension: cover it with spheres of size | = 37~/
Number of spheres needed N; = 4' (take level i)
Fractal dimensions:
_ IIog N, _ /I.og(4) ~ logy(4)

ogl/l  +ilog(3)

v vy

D
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Fractal dimension: Other methods
» Sandbox method: M o LP

» Correlation functions
C(r) = (p(r)p(0)) oc r
D=d—-a«a
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DLA: Lattice effects
106 particles

on-lattice

off-lattice

10 clusters of 10° particles




DLA: Lattice effects

DLA on a lattice is anisotropic but splitting tips are observed!
Randomness suppresses the stabilizing effect.

No much difference between lattice and
off lattice DLA (a)

What if we suppress randomness?
»Noise reduction”: The growth happens
only after the m-th particle arrives at the
growth site. Ordinary DLA: m=1

m=2 ' . m=20
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Ballistic deposition

>Lattice‘ ‘ ‘ ‘ ‘ ‘
» Off lattice

A
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Surface growth models

» Not the whole object but only its
surface is interesting (e.g. coastline)

» Object starts from a d-dimensional
substrate

» Object grows in the d + 1th dimension.

» Object is described by h(x) (x is a
d-dimensional position vector) height
function which is the maximum surface
position at X.

» Width of the surface

L
w(L,t) = \/ % /0 [h(x, t) — h(t)dx
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Family-Vicsek scaling
» Change of width in time
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» Scaling relation:
w(L,t) oc L*f(t/L%)
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Theory: The KPZ-equation

v

Surface growth h(x, t)

v

Function of: position(?), height, gradient, Laplace of height,
noise

h(x, t) = f[x, h(x, t), Vh(x, t), Ah(x, t),...,n(x,t)]

v

Normally:

h(x, t) = f[h(x, t), Vh(x, t), Ah(x, t), 7(x, t)]

v

Gaussian noise:

(n(x, thn(x, t')) = Ad(t — t')d(x — x')

P(r) = o (- )
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The Kadar-Parisi-Zhang equation

» Growth is lateral, up to second order

h(x, t) = F[(Vh(x, t))2, Ah(x, t), n(x, t)]
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The Kadar-Parisi-Zhang equation

h(x, t) = vAh(x, t) + MV h(x, t))? + 5(x, t)

» Nonlinear
» Stochastic

» Partial differential equation
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Discretization in 1D of the KPZ-equation

Space discretization (1+1 dimensions):

xi = iAx, hi = h(x;)

% (x) = —hi‘;;:"‘l +0 (a7
[% (x,-)}2 = % +0(8x3)
Py = 20t bt g (ave)
Y
ilihtl - A1x2 [V(h"“ —2hi + hi1) + %(’W—l — hi_1)?| + noise.
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Numerical solution of the KPZ-equation

» ¢ is a random number with zero mean (can be Gaussian, or
uniform)

» Due to noise Euler scheme is enough:

hi(t + At) =hi(t) + V(AA)f)z i1 (£) — 2hi(t) + hi_1 ()] +

+ % [hiva(t) — hii(t)] + &

» Critical exponents and and universality classes a = 1/2,
z=13/2
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