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Név: Homework
Balassa Gábor 1
Gáldi Ádám György 4
Gróf Gábor 3
Janecska Máté István 2
Seress Mátyás 3
Rudas Csilla 2
Böröczki Zoltán István 2
Kovács Péter 4
Boldoczki Fanni 1
Molnár Zsanett 1
Takács Hajna Eszter 4
Nagy Dániel Bálint 4
Szegedi Domonkos 2
Orosz István 1
Pölöskei Péter Zsolt 3
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Név: Homework
Bercsényi Dániel 1
Lucsányi Dávid 2
Galambos Tamás 3
Pázmán Koppány 2
Vécsi István Áron 2
Kátai András 1
Szekér Péter 3
Pető János 1
Bagaméry Gergő 3
Hügelné Imecs Gabriella 4
Szendi Zsuzsanna 3
Sarah Thieme 4
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Homework 1

Daemon with bag with tolerance. Responsible: András Lászlóffy
Consider an N ×N square lattice with periodic boundary conditions
and the Ising-model: H = −

∑
ij Jijσiσj . Calculate the average

magnetization for different system sizes (5× 5, 10× 10) and
energies in the microcanonical ensemble. Calculate the probability
of move denial as function of the energy.
Use the following parameters:

I Jij are random constants between 0 and 1.
I Energy fluctuation must be smaller than E0/N, where E0 is

the initial energy of the system
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Homework 2

Kinetic Monte Carlo simulation
Investige polimer chains with Monte Carlo method on a 2d square
lattice. Take a chain of N atoms, which can bend at every single
atomic position, and so change the shape of the polimer. The
probability of bending depends on the distance from the end (l) in
the following way:

Pl = e−2βl/L.

Every 3 possible position has the same probability, but if the chosen
direction is occupied, the step will be denied. Measure the average
length of the chain at different temperature values
β = 0, 0.5, 1, 2, 5 for chains of length N = 20, 40, 80.
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Homework 3
Event-driven simulation
Consider a two-dimensional gas of rigid disks (mass: m, radius: R)!
Put the disks in a square box with a size of L× L. All the collisions
are elastic, and the friction is neglible. Write an event driven
simulation that simulates the dynamics of the gas. The main goal
of the simulation is to describe the effect of opening a small hole
on the box through which the disks can leak out.

I Run the simulation with N = 100 particles
I Wait until the gas thermalizes! (Simulate ∼ 10N collisions!)
I Now open a small hole on one of the walls.
I The hole size should be small, eg. define a R/2 length

segment on one of the walls and if a prarticle touches it the
particle is removed.

I Measure the kinetic energy per particle/disk in the box as a
function of the remaining particle number! Try to explain the
result!
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Homework 4

Modularity of a network
Write an algorith which reads in a network file and then partitions
it with the modularity community detection algorithm into two
parts. Use simulated annealing to determine the optimal partition.
Using an ensemble average of 100 samples determine the
probability of links belonging to the same cluster. Measure the
average of this value for the three supplied networks.
Optional:
Try to plot the networks using gephi, try also to plot the resulting
network with gephi using link weights proportional to the
probability of belonging to the same cluster.

Page 7



Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I (Set temperature)
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Find pairs

Now we know how to calculate forces. How to get pairs?
I All pairs: ∼ N2 calculations. Only if there is no other way!
I Short range interactions: box method
I Long range interactions: k-space
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Bucketing algorithm
Finite interaction length L

I Grid with size L
I Grid of array with particle indexes in box
I Maximum number of neighbors or dynamic array
I If there is vmax then L′ = L + vmax∆t, then reset array every

∆t timesteps
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k-space solution

I Long reange interactions (e.g. Coulomb) cannot be cut off
I Often more periodic images are needed
I k-space (Fourier-transformation in 3d!)

V (k) = g2 4π
k2 + m2

I Solution of linear problems by Green’s-function
I Coulomb problem: in Fouier space → multiplication!

I Ewald summation:
I Handle short range in real and long range in k-space
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Program

I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I (Set temperature)

Page 12



Euler method

I Velocity:
∆v
∆t

= F/m

∆v = F/m∆t

I Displacement
∆x = v∆t

Too bad!
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Runge-Kutta method

I Fourth order method
I Very precise but

I Four times force calculation
I No energy conservation (non-sympletic)
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Leapforg method

I Calculate v(t + 1
2∆t) = v(t − 1

2∆t) + a(t)∆t
I Calculate x(t + ∆t) = x(t) + v(t + 1

2∆t)∆t
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Verlet method
I Calculate v(t + 1

2∆t) = v(t) + 1
2a(t)∆t

I Calculate x(t + ∆t) = x(t) + v(t + 1
2∆t)∆t

I Derive a(t + ∆t) from the forces
I Calculate v(t + ∆t) = v(t + 1

2∆t) + 1
2a(t + ∆t)∆t
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Sympletic integrator

I Energy (slightly modified) is conserved
I Time reversibility

I Verlet
I Leapfrog

I Most molecular dynamics methods use Verlet!
I Forces are calculated once per turn
I Microcanonical (NVE) modelling can be only done with these
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Multiple time scale integration

I Different force range
I Short range change fast
I Long range change slowly

I Recalculate long range forces only in every nth times-step
I Forces are calculated once per turn

I Typical examples:
I Intramolecular forces: strong, high frequency
I Intermolecular forces (e.g. Lennard-Jones, Coulomb) slow
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Error

Method Error Cumulative error
Euler: ∆t3 ∆t
Runge-Kutta: ∆t5 ∆t4

Verlet: ∆t4 ∆t2

Leapfrog: ∆t4 ∆t2
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Molecular dynamics

Program:
I Have an algorithm to calculate forces
I Get list of interacting particles
I Determine accelerations and velocities; step particles
I Set temperature
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Temperature

Definition:
I Encyclopedia Britannica, Wikipedia:

"A temperature is a numerical measure of hot or cold."
I Thermodynamics:

Second law of thermodynamics & Carnot engine

δQ = TdS

ηmax = ηCarnot = 1− TC/TH

I Statistical physics:

β ≡ 1
kB

(
∂S
∂E

)
V ,N

=
1

kBT
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Definition of temperature

Temperature is a measure of the random submicroscopic motions
and vibrations of the particle constituents of matter.

The average kinetic energy per particle degrees of freedom is

Ē =
1
2
kBT

Molecular dynamics conserves only the total energy!

Task: Control kinetic energy!
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Setting temperature

I Experiment
I Environment
I Mixing → uniform temperature

I Simulation
I Control the kinetic energy (velocities)
I Mixing → Maxwell-Boltzmann distribution
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Nosé-Hoover thermostat

I Original Hamiltonian

H0 =
∑

i

p2
i

2mi
+ U(q)

I Heatbath in the Hamiltonian:

Hn =
∑

i

p′2i
2mi

+ U(q′) +
p2
s

2Q
+ gkBT log(s)

I Extra degree of freedom s.
I Q "mass" related to s → controls the speed of convergence
I g = 3N the number degrees of freedom
I p′ and q′ are virtual coordinates
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Nosé-Hoover thermostat
I Virtual coordinates, vs. original ones:

p = p′/s
q = q′

t =

∫
1
s
dt ′

I Solution of the new Hamiltonian:

ξ = ṡ/s = ps/Q

q̇′ =
p′

m

ṗ′i = −∂U
∂q′i
− ξp′i

ξ̇ =
1
Q

(∑
i

ṗ′
2
i

mi
− gkBT

)
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Molecular dynamics

I Create sample
I Crystal
I Random deposition
I Distorted crystal
I Simulation

I Temperate sample
I Make test
I Collect data

I Data size: e.g. N = 104, t = 106 small simulation:
I 1 hour on 1 core PC
I 3 doubles/atom → 24 bytes/atom/timesteps
I Result 2.4 1011 bytes = 240 Gigabytes

Movie
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