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Glassy behavior, frustration
I Model glass: spin-glass:

H = −1
2

∑
〈i ,j〉

JijSiSj

I where Jij are random quenched variables with 0 mean (e.g.
±J with probability half)

Rugged energy landscape.
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Rugged energy landscape

I Typical example NP-complete problems:
I Traveling salesman
I Graph partitioning
I Spin-glass

I No full optimization is possible (do we need it?)
I Very good minimas can be obtained by optimization

I Simulated annealing
I Genetic algorithm
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Simulated annealing

I Cool down the system slowly
I Speed is crucial and many experiments are needed
I No guarantee that we find something meaningful
I Warm up and down if needed, if the system quenched into a

local minimum
I One needs a Hamiltonian (or a fitness function) and an

elementary move
I Spin glass: Metropolis

I Traveling salesman
I Minimal travelling path for visiting a number of cities
I Elementary move: swap two cities (T ∼ alcohol)
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Hill climb
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Travelling salesman
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Genetic algorithm
I Learn from nature
I Let the fittest to survive

I Fitness function, e.g. energy, length, etc.
I Combine different strategies
I State is represented by a vector (genetic code or genotype)

I Phasespace, city order, neural network parameters, etc.
I Offsprings have two parents with shared genetic code
I Mutations
I Those who are not fit enough die out

I Keep the number of agents fixed
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Genetic algorithm: Reproduction

I Two parents and two children
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Genetic algorithm terminology
I Chromosome: Carrier of the genetic representation
I Gene: Smallest units in the chromosome with individual

meaning
I Parents: Pair of chromosomes, wich produce offsprings
I Population: Set of chromosomes from which the parents are

selected. Its size should be larger than the length of the
chromosome

I Selection principle: The way parents are selected (random,
elitistic)

I Crossover: Recombination of the genes of the parents by
mixing

I Crossover rate: The rate by which crossover takes place
(∼90%)

I Mutatation: Random change of genes
I Mutation rate: The rate by which mutation takes place (∼1%)
I Generation: The pool after one sweep.
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Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)

Page 10



Genetic algorithm schema

1. Start with a randomly generated population
2. Calculate the fitnesses
3. Selection

I Random
I Best fitness (keep top 50% and generate new 50%)
I Roulette (Monte-Carlo) selection

4. Crossover: offsprings must be viable (Sometimes difficult)
I One-point
I Two-point
I Uniform
I Mutation: small rate
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Genetic algorithm example
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Neural networks

I Input pattern
I Output pattern
I Adaptive wights
I Approximating non-linear

functions

I Machine learning
I Pattern recognition
I Handwriting
I Speech recognition
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Neural networks

I Input vector I
I Output vector O(I )

I Transition matrix Wij ∈ [−1, 1]

I Learning using a cost function
I Test goodness
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Neural networks: Learning

I Supervised learning
I Data training:

I Superwised learning
I Fitness function, energy:

E = T (I )− O(I ),

where T (I ) is the target vector for input I
I Minimize E for available set of {I , I (O)} pairs

I Test goodness:
I Use only part of {I , I (O)} pairs for learning, the rest is for

testing.

I Used for: pattern recognition, classification, etc.

Page 15



Neural networks: Learning

I Unsupervised learning
I Cost function may depend on task
I Cost function is deviation from mean data

C = E [(x − f (x))2]

I Test goodness:
I Some self consistent limit on the cost function

I Used for: estimation, filtering, etc.
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Neural networks: Learning

I Reinforcement learning
I Cost function is a long time performance on an agent making

decisions based on the neural network.
I Test goodness:

I Compare with other agents which can be algorithmical or
based on neural networks

I Used for: control problems, AI, complex optimization
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Genetic algorithm example
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Neural networks

I Learning algorithms:
I Linear regression
I Genetic algorithm
I Simulated annealing
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Fractals
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Fractal growth
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Snowflakes
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Fractal growth

Laplacian or gradient governed growth
I Scalar field (electrostatic field, density, through diffusion)

∆u = 0

I Velocity of the interface Γ proportional with the gradient

v|Γ = −C∇u|Γ

I Boundary condition: potential is curvature (κ) dependent

u|Γ = f (∇u, κ)

I Disorder: small fluctuations
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Fractal growth
Laplacian or gradient governed growth

I Scalar field (electrostatic field, density, through diffusion)
I Velocity of the interface Γ proportional with the gradient
I Boundary condition: potential is curvature (κ) dependent
I Disorder: small fluctuations
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Fractal growth

Consequences:
I Positive growth feedback: If there is a bump, gradient

increases (peak effect), growth gets faster
I Screening: Faster bump will screen the slower one
I Branching: If tip is far a new bump may grow.
I Tip splitting: Tip gets instable and splits
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Fractal

I Self-similarity
I Repeating pattern
I Scaling patterns
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Diffusion Limited Aggregation

I Starting from a seed
I Particles come from infinity with diffusion
I If incoming particle touches cluster it gets stuck to it
I Samples: 1m and 100m particles
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Scale
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Diffusion Limited Aggregation: Algorithm
Basic:

I Start with a seed at (0,0)
I Particles start far from the aggregate and diffuse till they get

adjacent to existing cluster
Advanced:

I Start with a seed at (0,0)
I Start random walker on a circle just big enough to cover the

cluster
I Define a kill ring big enough or use reentry distribution
I Regions of large jumps, on a larger scale lattice
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Diffusion Limited Aggregation: Algorithm
I Start with a seed at (0,0)
I Start random walker on a circle just big enough to cover the

cluster
I Define a kill ring big enough or use reentry distribution
I Regions of large jumps, on a larger scale lattice
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Dimension
I d = 0 point, d = 1 line, d = 2 plane, etc. Containing space.
I Dimension of a finite object: Cover it
I Hausdorff (fractal) dimension
I Minkowski–Bouligand dimension
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Fractal dimension

I Fractal dimension
I Cover the object with boxes of size ε, the fractal dimension is:

D = dim(S) ≡ lim
ε→0

logN(ε)

log 1/ε

I Differences:
I Minkowski–Bouligand: Regular lattice is used
I Hausdorff: Spheres of given size are used.

I In practice
N(ε) ∝ εD
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Fractal dimension: Example

Koch curve
I Start from unit segment
I Hausdorff dimension: cover it with spheres of size l = 3−i

I Number of spheres needed Nl = 4i (take level i !)
I Fractal dimensions:

D =
logNl

log 1/l
=

i log(4)

+i log(3)
= log3(4)
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Fractal dimension: Other methods
I Sandbox method: M ∝ LD

I Correlation functions

C (r) = 〈ρ(r)ρ(0)〉 ∝ r−α

D = d − α
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DLA: Lattice effects
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DLA: Lattice effects
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Ballistic deposition

I Lattice
I Off lattice
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Surface growth models

I Not the whole object but only its
surface is interesting (e.g. coastline)

I Object starts from a d -dimensional
substrate

I Object grows in the d + 1th dimension.
I Object is described by h(x) (x is a

d -dimensional position vector) height
function which is the maximum surface
position at x.

I Width of the surface

w(L, t) =

√
1
L

∫ L

0
[h(x , t)− h̄(t)]2dx

h(x)

Page 38



Family-Vicsek scaling
I Change of width in time

I Scaling relation:
w(L, t) ∝ Lαf (t/Lz)
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Theory: The KPZ-equation

I Surface growth ḣ(x, t)

I Function of: position(?), height, gradient, Laplace of height,
noise

ḣ(x, t) = f [x, h(x, t),∇h(x, t),∆h(x, t), . . . , η(x, t)]

I Normally:

ḣ(x, t) = f [h(x, t),∇h(x, t),∆h(x, t), η(x, t)]

I Gaussian noise:

〈η(x, t)η(x′, t ′)〉 = Aδ(t − t ′)δ(x − x ′)

P(η) =
1√
2πσ

exp
(
− η

2

2σ

)
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The Kadar-Parisi-Zhang equation

I Growth is lateral, up to second order

ḣ(x, t) = f [(∇h(x, t))2,∆h(x, t), η(x, t)]
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The Kadar-Parisi-Zhang equation

ḣ(x, t) = ν∆h(x, t) + λ(∇h(x, t))2 + η(x, t)

I Nonlinear
I Stochastic
I Partial differential equation
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Discretization in 1D of the KPZ-equation
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Numerical solution of the KPZ-equation

I ξ is a random number with zero mean (can be Gaussian, or
uniform)

I Due to noise Euler scheme is enough:

hi (t + ∆t) =hi (t) + ν
∆t

(∆x)2 [hi+1(t)− 2hi (t) + hi−1(t)] +

+
λ

4
[hi+1(t)− hi−1(t)] + ξi

I Critical exponents and and universality classes α = 1/2,
z = 3/2
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