
The Bychkov-Rashba effect

1 Surface states

The Brillouin zone of an fcc lattice.

The Fermi surface of Au.

FIG. 1. The Au~111! surface. ~a! Top view of the first three

surface layers ~first, second, and third layer: large, medium-sized,

and small filled circles, respectively!. aW 1 and aW 2 are the basis vec-

tors of the direct lattice. The z axis points towards the bulk. ~b!

Two-dimensional reciprocal lattice with basis vectors bW 1 and bW 2.

The first Brillouin zone is marked gray. The two representative

symmetry points K̄ and M̄ mark a corner @kW i(K̄)5(bW 12bW 2)/2# and

a center @kW i(M̄)5(bW 11bW 2)/2# of the Brillouin-zone boundary, re-

spectively.

(From J. Henk, A. Ernst, and P. Bruno, Phys. Rev. B 68,

165416 (2003).)
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FIG. 1. Results of the band-structure calculation along the �̄M̄
direction for a 23-layer slab of Au�111�. The shaded area represents
the projected bulk states, and the solid lines give the surface state
dispersion. The Fermi level has been adjusted to the experimental
position.

(From G. Nicolay et al., Phys. Rev. B 65, 033407 (2001).)
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2 Isotropic Bychkov-Rashba effect

Consider planewave-like surface states in a non-magnetic host,

ϕks (r) =
1√
N
χs e

ikrf (z) , (1)

where χs is a spinor, k = (kx, ky) ∈ SBZ (Surface Brillouin zone), N is the number of sites
on the 2D lattice and f (z) describes the exponentional decay of the wavefunction along the
direction normal to the surface. Let us suppose that these states are eigenfunctions of the
Hamiltonian, H0, in absence of spin-orbit coupling,

H0ϕks =

(
E0 +

~2k2

2m∗

)
ϕks . (2)

The spin-orbit coupling (SOC),

HSOC =
~

4m2c2
(∇V × p)σ = − ~

4m2c2
(∇V × σ) p (3)

acts on these states as

HSOC ϕks (r) = − ~2

4m2c2
√
N

(∇V (r)× σ χs) eikr
(
f (z) k +

df (z)

idz
ez

)
, (4)

where ez is the unitvector normal to the surface.

By making use of the periodicity parallel to the surface, the matrixelements of SOC can be
expressed as

〈k′s′|HSOC |ks〉 = δkk′ [(α× σs′s) k+(β × σs′s) ez] (5)

with

α = − ~2

4m2c2

∫
V0

d3r∇V (r) f 2 (z) , (6)

and

β =
i~2

4m2c2

∫
V0

d3r∇V (r) f (z)
df (z)

dz
, (7)

where V0 is the two-dimensional unit cell of the surface, which, in principle, extends for −∞ <
z <∞.

According to the simplest model of the BR effect only the normal component of ∇V (r) is taken
into account,

∇V (r) ' ez
∂V (r)

∂z
(8)

which implies
α = αez , β = βez , (9)

α = − ~2

4m2c2

∫
V0

d3r
∂V (r)

∂z
f 2 (z) , (10)

β =
i~2

4m2c2

∫
V0

d3r
∂V (r)

∂z
f (z)

df (z)

dz
. (11)
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Obviously, the term containing β vanishes in Eq. (5), consequently,

HSOC (k) = α(ez × σ) k = α (σxky − σykx) . (12)

The eigenfunctions of the Hamilton operator H = H0+HSOC are linear combinations of ϕks (r),

Hψk (r) = Ekψk (r)

ψk (r) =
∑
s=±1

cksϕks (r) ,

which leads to the equation,[
E0 +

~2k2

2m∗
+ α (σxky − σykx)

]
ck = Ekck , (13)

⇓[
E0 + ~2k2

2m∗
α (ky + ikx)

α (ky − ikx) E0 + ~2k2

2m∗

] [
ck+
ck−

]
= Ek

[
ck+
ck−

]
(14)

⇓(
E0 +

~2k2

2m∗
− Ek

)2

− α2
(
k2x + k2y

)
= 0 (15)

⇓

E±k = E0 +
~2k2

2m∗
± α |k| .

2.1 Alternative representation

Taking any direction in the SBZ, k = k ek ,

E±k =


E0 + ~2k2

2m∗
± αk if k > 0

E0 + ~2k2
2m∗
∓ αk if k < 0

. (16)

Defining

E→k = E−k Θ (k) + E+
k [1−Θ (k)] (17)

=
~2k2

2m∗
− αk = E0 + ER +

~2 (k −∆k/2)2

2m∗
, (18)

and

E←k = E+
k Θ (k) + E−k [1−Θ (k)] (19)

=
~2k2

2m∗
+ αk = E0 + ER +

~2 (k + ∆k/2)2

2m∗
, (20)
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with
~2∆k
2m∗

= α =⇒ ∆k =
2m∗α

~2
, (21)

and the Rashba energy,

ER = −~2 (∆k)2

8m∗
= −m

∗α2

2~2
, (22)

we indeed get two parabolas shifted to the left and to the right by ∆k/2 and downwards by
ER.

3 Spin-polarization in k-space

By introducing ek = (cos (ϕ) , sin (ϕ)) , the Hamiltonian can be written as

Hk =

[
E0 + ~2k2

2m∗
iαke−iϕ

−iαkeiϕ E0 + ~2k2
2m∗

]
(23)

and the eigenvectors are solutions of the equation[
∓αk iαke−iϕ

−iαkeiϕ ∓αk

] [
c±k+
c±k−

]
= 0 (24)

⇓[
∓1 ie−iϕ

−ieiϕ ∓1

] [
c±k+
c±k−

]
= 0 (25)

⇓[
c±k+
c±k−

]
=

1√
2

(
∓1
ieiϕ

)
. (26)

By taking into account that the wavefunctions ϕks are normalized, the expectation value of the
Pauli matrices related to the eigenstates is defined by

P±k = 〈ψ±k |σ|ψ
±
k 〉 = 〈c±k |σ|c

±
k 〉 , (27)

which is referred to as the spin-polarization vector in the reciprocal space. Straightforward
calculations yield

P±x =
1

2

(
∓1 −ie−iϕ

)( 0 1
1 0

)(
∓1
ieiϕ

)
= ± sinϕ (28)

P±y =
1

2

(
∓1 −ie−iϕ

)( 0 −i
i 0

)(
∓1
ieiϕ

)
= ∓ cosϕ (29)

P±z =
1

2

(
∓1 −ie−iϕ

)( 1 0
0 −1

)(
∓1
ieiϕ

)
= 0 (30)
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i.e.,

P±k =

 ± sin (ϕ)
∓ cos (ϕ)

0

 =
1

k

 ±ky∓kx
0

 (31)

Obviously, ∣∣P±k ∣∣ = 1 (32)

P±k · k = 0 (33)

and
P−k = −P+

k . (34)

FIG. 2. Rashba spin-orbit interaction in a two-dimensional elec-
tron gas. The dispersions E�(k� �) of free electrons are shown for
�so�4/Bohr, k� ��(kx ,ky). The ‘‘inner’’ state �‘‘�’’ in Eq. �6��
shows strong dispersion, the ‘‘outer’’ weak dispersion �‘‘�’’ in Eq.
�6��. Both surfaces touch each other at k� ��0. For a better illustra-
tion, the Rashba effect is extremely exaggerated �compared to typi-
cal two-dimensional electron gases�.
(From J. Henk, A. Ernst, and P. Bruno, Phys. Rev. B 68,

165416 (2003).)

6



FIG. 3. L-gap surface states on Au�111�. �a� Dispersion of the
spin-orbit split surface states along K̄-�̄-K̄ �i.e., k� ��(kx,0)]. Open
�closed� symbols belong to the inner �outer� surface state. Gray
arrows point from the surface states at the Fermi energy EF to the
momentum distribution shown in panel b. The region of bulk bands
is depicted by gray areas. �b� Momentum distribution at EF . The
thick arrows indicate the in-plane spin polarization �Px and Py ,
according to Eq. �9��.
(From J. Henk, A. Ernst, and P. Bruno, Phys. Rev. B 68, 165416

(2003).)
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4 Anisotropic Bychkov-Rashba effect

We will consider surface states around a high-symmetry point of the 2D BZ (or SBZ), denoted
by Q. In case, of the L-gap surface states of noble metals this is the center of the SBZ, i.e. the
Γ point, but similar surface states exist around the Y point of the SBZ of the Au(110) surface
as demonstrated below.

SX k

k

y

x

Γ Y

bulk
continuum

surface
band

~ s

~ py

E F
kx

ε

Left: Sketch of the fcc(110) Surface Brillouin Zone. The dark area denotes the
projection of the L-gap of bulk Au. Right: Structure of the surface energy spectrum
in the absence of SO interaction, along the line k = (kx, 0). Surface states in the
relative gap with k 6= 0 can be built up from states indicated by the thick black
lines and the black circle at k = 0. Note that k = 0 corresponds to the Y point of
the Brillouin zone. (From E. Simon et al., Physical Review B 81, 235438 (2010).

A Bloch state corresponding to k + Q is given by

ψk (r) = ei(k+Q)ruk+Q (r) , (35)

where the uk+Q is periodic on the real lattice,

uk+Q (r + R) = uk+Q (r) . (36)

Next we write the Bloch function in the from

ψk (r) = eikrϕk (r) , (37)

where the function ϕk (r) defined as

ϕk (r) = eiQruk+Q (r) (38)

satisfies the boundary condition,

ϕk (r + R) = eiQRϕk (r) , (39)

and it is the eigenfunction of H (k, r) = e−ikrH (r) eikr .The Hamilton operator H (k, r) can be
written as

H (k, r) = H0 (k, r) I2 +HSOC (k, r) (40)
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with

H0 (k, r) =
(p + ~k)2

2m
+ V (r)− (p + ~k)4

8m3c2
+

~2

8m2c2
∆V (r) (41)

and
HSOC (k, r) = L (k, r) σ (42)

L (k, r) =
~

4m2c2
(∇V (r)× (p + ~k)) . (43)

Instead of the solving exactly the eigenvalue equation of H (k, r) , we consider surface states
that are nondegenerate eigenstates of H0 (k, r),

H0 (k, r)ϕk (r) = ε0 (k)ϕk (r) , (44)

and use first order perturbation theory in the space of the two spinor functions, ϕks (r) =
ϕk (r)χs, by diagonalizing the matrix of spin-orbit interaction, called the Bychkov-Rashba
Hamiltonian,

HBR (k) = γ (k) σ , (45)

with
γ (k) = 〈ϕk|L (k) |ϕk〉 . (46)

We are looking for possible forms of γ (k) by making use of time reversal invariance and point-
group symmetry.

Time reversal transformation acts as

T−1H0 (k, r)T = CH0 (k, r)C = H0 (−k, r) (47)

T−1L (k, r)T = CL (k, r)C = −L−k (r) (48)

T−1σT = −σ (49)

and, consequently,
T−1H (k, r)T = H (−k, r) . (50)

implying
ε0 (−k) = ε0 (k) (51)

and
ϕ−k (r) = eiθCϕk (r) = eiθϕk (r)∗ , (52)

where θ ∈ R is an arbitrary phase. Let’s check the boundary condition for ϕ−k (r):

ϕ−k (r + R) = ϕk (r + R)∗ = e−iQRϕk (r)∗ = e−iQRϕ−k (r) , (53)

which is equivalent with the condition (39) for

−Q =

{
Q

Q + K
. (54)

This is obviously satisfied for the Γ point of any SBZ, but also for the Y point of the fcc(110)

SBZ, since 2Q =2π
b

(1, 0, 0) is a reciprocal lattice vector, where b =
√
2
2
a, with a being the cubic

lattice constant.
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Furthermore,

γ (−k) = 〈ϕ−k|L (−k) |ϕ−k〉 = −〈Cϕk|CL (k)ϕk〉 = −〈ϕk|L (k)ϕk〉∗

= −〈ϕk|L (k)ϕk〉 = −γ (k) . (55)

Let g ∈ G the point-group of the surface,

V
(
g−1r

)
= V (r) . (56)

We have learned already that

H0
(
k, g−1r

)
= H0 (gk, r) , (57)

while

L
(
k, g−1r

)
=

~
4m2c2

(
∇V

(
g−1r

)
×
(
g−1p + ~k

))
=

~
4m2c2

(
g−1∇V (r)×

(
g−1p + ~k

))
=

~
4m2c2

det (g) g−1 (∇V (r)× (p + ~gk)) = det (g) g−1L (gk, r) , (58)

where det (g) = 1 for proper rotations and det (g) = −1 for inproper rotations. If Ug ∈ SU (2)
is the 2× 2 unitary matrix representation of g,

UgσU
−1
g = det (g) g−1σ (59)

the Hamilton operator remains invariant against the symmetry transformation g,

UgH
(
k, g−1r

)
U−1g = H (gk, r) . (60)

The point-group symmetry implies

H0
(
k, g−1r

)
ϕk

(
g−1r

)
= H0 (gk, r)ϕk

(
g−1r

)
= ε0 (k)ϕk

(
g−1r

)
, (61)

thus
ε0 (gk) = ε0 (k) (62)

and
ϕk

(
g−1r

)
= eiτϕgk (r) (63)

for τ ∈ R. Inspecting the boundary condition for ϕgk (r),

ϕgk (r + R) = eiτϕk

(
g−1r + g−1R

)
= eiQ(g−1R)ϕk

(
g−1r

)
= ei(gQ)Rϕk

(
g−1r

)
= ei(gQ)Rϕgk (r) , (64)

Eq. (39) is satisfied if

gQ =

{
Q

Q + K
, (65)

i.e. we should restrict g to the little group of Q! From Eqs. (58) and (63) we can then deduce

γ (gk) = 〈ϕgk|L (gk) |ϕgk〉 = 〈ϕk| det (g) gL (k) |ϕk〉 = det (g) g γ (k) . (66)
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Eqs. (51), (55), (62) and (66) are useful to find the parametric forms of ε0 (k) and γ (k). First
we note that the Taylor expansion of ε0 (k) and γ (k) contain just even and odd powers of the
components of k, respectively. Usually we go up to second power for ε0 (k),

ε0 (k) = ε0 + b20k
2
x + b11kxky + b02k

2
y (67)

and third power for γ (k),

γ (k) =

 c10kx + c01ky
d10kx + d01ky
e10kx + e01ky

+

 c30k
3
x + c21k

2
xky + c12kxk

2
y + c03k

3
y

d30k
3
x + d21k

2
xky + d12kxk

2
y + d03k

3
y

e30k
3
x + e21k

2
xky + e12kxk

2
y + e03k

3
y

 . (68)

As an example we consider the case when the little group of Q is C2v such as for the Y point of
the SBZ of the Au(110) surface. All we have to know are the action of the symmetry operations:

E C2 σx σy
x x −x x −x
y x −y −y y
z z z z z

.

To get the second-order parametric form of ε0 (k) we apply σx or σy (C2 doesn’t give any
restriction):

b20k
2
x + b11kxky + b02k

2
y →
σx
b20k

2
x − b11kxky + b02k

2
y

from which b11 = 0 follows:
ε0 (k) = ε0 + b20k

2
x + b02k

2
y

The linear terms in γ (k) can also be obtained by applying σx or/and σy:

c10kx + c01ky →
σx
c10kx − c01ky = −c10kx − c01ky → c10 = 0

c10kx + c01ky →
σy
−c10kx + c01ky = c10kx + c01ky → c10 = 0

d10kx + d01ky →
σx
d10kx − d01ky = d10kx + d01ky → d01 = 0

e10kx + e01ky →
σx
e10kx − e01ky = −e10kx − e01ky → e10 = 0

e10kx + e01ky →
σy
−e10kx + e01ky = −e10kx − e01ky → e01 = 0

thus, up to first power in k,

γ(1) (k) =

 c01ky
d10kx

0

 ,

and
H

(1)
BR (k) = c01kyσx + d10kxσy ,

i.e. the dispersion of the BR states is not isotropic, which is the case only if d10 = −c01.
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Energy differences, ε+(k) − ε−(k), for the Rashba-split surface state of Au(110)
(solid black line) and Au(111) (dashed red line) as a function of the polar angle
ϕ = arctan ky

kx
, shown in units of degree around the graph. The magnitude of k was

fixed to satisfy ε+(k) = εF . The energy scale is indicated by the axis on the left.
(From E. Simon et al., Physical Review B 81, 235438 (2010).
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