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From a high-Tc: Phys. Rev. Lett. 58, 908 (1987). 

Comm. Phys. Lab. Univ. Leiden, No. 120b (1911) 

Heike Kamerlingh Onnes 
1911: discovery of superconductivity 
1913: Nobel prize in Phyics 

Superconductivity –zero resistance 

Below a certain temperature the resistance  
becomes zero – SC phase 



1933 by 
Walter Meissner 
Robert Ochsenfeld 

Wikipedia 

Superconductivity – Meissner effect 

Below a certain temperature the 
magnetic field is expelled from 
the sample even in the field 
cooled case due to screening 
currents (perfect diamagnet) – SC 
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Also claim for RT SC or above 
Contraversial yet 

Superconductivity – matierials 
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SC – diamagnetism, phase diagram 
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Phase diagram (Type 1) 
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Superconductivity – BCS microscopic theory 
•Microscopic BCS theory (Bardeen, Cooper, Schrieffer):  

 

• The electron-phonon coupling can introduce an attractive interaction between the electrons which may 
overcome Coulomb repulsion. The phonon mediated attraction is a local interaction, Ve-ph=-(2λ/ν)δ(r1-r2).  

• The ground state of two electrons with attraction is a bound state with E=-2∆, where ∆=ħωDexp(-1/λ) is 
the superconducting energy gap. (∆(T=0)≈1.76kBTC, approaching TC it vanishes by (TC-T)1/2. ) In the SC state 
bound states of electron pairs with k↓ and -k↑ are formed (Cooper pairs) 

• The superconducting order parameter is a complex number with the absolute value equal to the gap, and 
the phase φ. 

Naive picture: an electron moving in the lattice attracts the 
ions, which will than attract the next electron passing by. 

Energy gap in the excitation spectra 
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Electron-hole pair 
excitations in a 
Fermi liquid 
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Cooper-pairs 
Pairing of electrons 
on the FS 
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Bogoliubov quasi-
particles: electron hole – 
excitations of SC 
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ξ
V describes the attractive 
interaction, ξ is measured from 
the Fermi energy. 
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Macroscopic wavefunction 

The SC state can be described using a macroscopic wave 
function: 
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( ) ( )rr sn== ψψψ *2 Denisty of SC charge carriers 

The phase of the macroscopic wave 
function is important e.g. for Josephson 
effect  
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Current operator and the calculated current (driven by 
phase gradient): 



Flux quantization 
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The flux threading the  Г contour: 

Integral along the loop – ϕ should be single valued –  
same as Bohr-Sommerfeld quantization of momentum 
Inside the loop (further than the penetration depth) js=0, 
therefore the integral along contour  Г is zero: 
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Josephson effect (traditional approach) S1 S2 I 
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11

φρψ ie= 2
22

φρψ ie= Macroscopic wave functions. |ψ|2~ particle density (ρ)  
+ phase difference (δ=φ2−φ1) 

We apply a voltage of eV on the junction! 
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Dividing by eiφ1 (or eiφ2) and writing the equations separately for the real and imaginary part: 
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The current is proportional to dρ1/dt=-dρ2/dt: 
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Subtracting the equations for the phase: 
Josephson  
equations 



Josephson effect (traditional approach) S1 S2 I 
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Supercurrent  tunelling of Cooper pairs 

Quasiparticle tunneling 

δsin0II =

Remark: This is for a tunnel junction (could 
be different for large transmission) 

Applying a constant bias voltage: 
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eVtII 2sin 00 δ

An AC current with ω=2eV/ħ is flowing. 
The DC current averages to zero. 

AC-Josephson effect 



DC SQUID Superconducting quantum interferometer device (SQUID):  

Two Josephson junctions in parallel in a "loop" geometry. The loop encloses a magnetic flux of Φ 
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The superconductor has a well-defined phase at every position. -> The pase 
difference between A and B is constant for all trajectories. 
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The maximal value of the critical current is tuned by the magnetic flux:  ( )/cos2 0max Φ= eII

Source: Wikipedia 

Here we neglected the self-inductance of the ring 

Measurement: current bias at treshold 
Measure switching voltage 



RCSJ model S1 S2 I 
12 φφδ −=

Similar to the motion of a particle in 
potential, with friction 

In case of a harmomic 
oscillator 

U(δ) 

Quality factor 

Resonancy frequency  
without  
 
with damping 
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U(δ) 

δ 

„washboard potential” 

For no extenal current and weak damping oscillations in the 
potential well 

The equation decribes the motion of the phase in a 
potential 
If the particle manages to get out of a minimum of the 
potential, (happens for I>Ic, when the potential have an 
inflection) the phase changes, and DC voltage appears 
on the junction (Josephson relation) 

I> Ic: part of the current must flow as IN or ID -> finite junction voltage |V| > 0 time varying Is   IN + 
ID is varying in time  complicated non-sinusoidal oscillations of Is 
I » Ic – almost all current flows on the resistor V is ~ constant  sinusoidal oscillation with time 
average 0 
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overdamped 
small R and C 
Q<<1 

Overdamped: Q<<1  -- second derivative can be 
omitted. 
Viscous drag dominates – velocity proportional 
slope of washboard 
For I>Ic  , δ=sin-1(I) solution, V=0  
If I>Ic it escapes the potential, however, at I<Ic 
retraped immediately, no hysteresis 

Switching at the critical current! I 
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underdamped 
large R and C 
Q >>1 

Underdamped Q>>1  --  if I goes over Ic than the 
inertia is bigger than the damping, it will roll down 
continuously. Hysteresis – only traps at smaller 
current when kinetic energy=damping. For zero 
damping only traps at 0 current. 
Large C  shunt oscillating part of V  <I>=0 
Down to ωRC 
  

Sinusoidal supercurrent  averages to zero 
Normal current flows  hysteretic behaviour 



Josephson junctions 
Fabrication 

Fabrication: e-beam lithography and shadow evaporation 

evaporation 

evaporation oxidation 

Shadow, not used structures remain 

T Niemczyk et al., Supercond. Sci. Technol. 22, 034009 (2009) 
Wu Yu-Lin et al., Chin. Phys. B. 22, 060309(2013) 

Real JJ measurement 



Thermal  escape: Due to the phase motion at higher 
temperature and/or larger current particle can escape: 

Here U0(EJ0, I/Ic) 
This is a stochastic process, the switching current varies. 
The distribution of Ic can be known. 
For low temperatures the phase particle can tunnel out: 
macroscopic quantum tunneling – finite voltage 
appears on the junctions (if it is underdamped enough) 

δ 

Nb JJs 
At high T, thermal 
escape, at low T, 
macroscopic 
quantum tunneling 
dominates 

Walfraff et al., Rev. of Sc. Instr, 7, 3740 (2003) 

RCSJ model 
Thermal or quantum escape 

B~1 



By tuning the potential of a single Josephson junction (washboard potential) , such, 
that it is asymmetric, close to the critical current 
 
If, I≈Ic and it only houses 2-3 levels, the lowest two forms a qubit 

Operation: 
Anharmonic oscillator, qubit states are separated 
Make transitions with microwave pulses ω01 and 
prepare state – AC current pulses 
Readout: A pulse with frequency ω12 is applied. 
As the barrier for state 2 is small, the state can tunnel 
out  changing phase  finite voltage appears 
 
If the qubit was in state 1 it will be resonant for the 
readout pulse ω12, if in state 0 not. 
 
For superpositions, it will tunnel out with a 
probability corresponding to state 1. To measure 
these probabilities, multiple measurements on the 
qubit prepared in the same way is needed. 
 T1 measurement 

Populate state 1 and wait before readout 
The measured signal will decay as the waiting time increased – measure of T1 

Phase qubit – current biased JJ S1 S2 I 
12 φφδ −=

J. Martinis et al., Phys. Rev. Lett., 89, 117901 (2002)  
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