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(Spin) Qubit Checklist

1. make a few qubits 
2. initialize 
3. control (1-qubit gate, 2-qubit gate) 
4. read out 
5. understand and reduce information loss
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ous legs along this trajectory generally do not commute,
a net rotation results !San-Jose et al., 2006". Such two-
phonon relaxation processes become relatively more im-
portant at very low magnetic fields, where single-phonon
relaxation becomes very inefficient !Khaetskii and Naz-
arov, 2001; San-Jose et al., 2006" !Fig. 22".

Putting all these elements together, we can predict the
B0 dependence of the relaxation rate 1/T1 between Zee-
man split sublevels of a single electron as follows. The
phonon density of states increases with !EZ

2 . Next, the
electric-field amplitude from a single phonon scales as
#q"#!EZ for deformation potential phonons and as
1/#q"1/#!EZ for piezoelectric phonons. Furthermore,
for B0 up to a few tesla, !EZ is well below the crossover
point where the dot size matches the phonon energy
!several 100 #eV", so we are in the long-wavelength
limit, where the matrix element $nl↑ %eiq! ·r!%n!l!↑ & scales as
q"!EZ. Finally, due to the effect of the Zeeman split-
ting, the matrix element in Eq. !22" picks up another
factor of !EZ !assuming only single-phonon processes
are relevant". Altogether, and taking into account that
the rate is proportional to the matrix element squared,
T1

−1 is predicted !at low temperature" to vary with !EZ
5

for coupling to piezoelectric phonons !Khaetskii and
Nazarov, 2001", and as !EZ

7 for coupling to deformation
potential phonons. At high temperature, there is an ex-
tra factor of !EZ

−1.
We can similarly work out the 1/T1 dependence on

the dot size l or, equivalently, on the orbital level spacing
!Eorb" l−2 'in single dots, !Eorb can only be tuned over a
small range, but in double dots, the splitting between
bonding and antibonding orbitals can be modified over
several orders of magnitudes !Wang and Wu, 2006"(. The
degree of admixing of spin and orbital states by HSO
contributes a factor l2 to the rate via the numerator in
Eqs. !17" and !18" and another factor of )l4 via Enl
−En!l! 'the dominant part in the denominator in Eqs.
!17" and !18"(. Taking the long-wavelength limit as be-
fore, *$nl↑ %eiq! ·r!%n!l!↑ &*2 contributes a factor l2. We thus
arrive at 1/T1" l8"!Eorb

−4 .
In summary, the relaxation rate from spin down to

spin up !for an electron in the ground-state orbital of a
quantum dot" scales as

1/T1 " !EZ
5 /!Eorb

4 !24"

at temperatures low compared to !EZ /kB, and as

1/T1 " !EZ
4 kBT/!Eorb

4 !25"

at temperatures much higher than !EZ /kB.
Experimentally measured values for T1 between Zee-

man sublevels in a one-electron GaAs quantum dot are
shown in Fig. 23. The relaxation times range from
120 #s at 14 T to 170 ms at 1.75 T, about seven orders
of magnitude longer than the relaxation rate between
dot orbitals !Fujisawa et al., 2002a". The expected B5

dependence of T1
−1 is nicely observed over the applicable

magnetic-field range. A similar dependence was ob-
served in optically measured quantum dots !Kroutvar et

al., 2004". In that system, the 1/T temperature depen-
dence of T1 was also verified !Heiss et al., 2005". There
are no systematic experimental studies yet of the depen-
dence on dot size. So far we have first considered the
effect of HSO on the eigenstates and then looked at tran-
sitions between these new eigenstates, induced by He,ph
'Fig. 20!a"(. We point out that it is also possible to cal-
culate the matrix element between the unperturbed spin
states directly, for HSO and He,ph together, for instance,
as

$nl↓%!HSO + He,ph"%nl↑&

for Zeeman split states of a single orbital 'Fig. 20!b"(.
Finally, we remark that whereas at first sight phonons

cannot flip spins by themselves as there are no spin op-
erators in the phonon Hamiltonian He,ph, this is not
strictly true. Since phonons deform the crystal lattice,
the g tensor may be modulated, and this can in fact lead
to electron spin flips directly 'when phonons modulate
only the magnitude of the g factor but not the anisot-
ropy of the g tensor, the electron spin phase gets ran-
domized without energy exchange with the bath !Se-
menov and Kim, 2004"(. Furthermore, the electron spin
could flip due to the direct relativistic coupling of the
electron spin to the electric field of the emitted phonon.
However, both mechanisms have been estimated to be
much less efficient than the mechanism via admixing of
spin and orbitals by the spin-orbit interaction !Khaetskii
and Nazarov, 2000, 2001".

5. Phase randomization due to the spin-orbit interaction

We have seen that the phonon bath can induce tran-
sitions between different spin-orbit admixed spin states,
and absorb the spin flip energy. Such energy relaxation
processes !described by a time constant T1" unavoidably
also lead to the loss of quantum coherence !described by
a time constant T2". In fact, by definition T2$2T1.

FIG. 23. !Color online" Relaxation rate between the Zeeman
split sublevels of the ground-state orbital in a quantum dot
!measured with ERO, see Sec. VI.B". Square data points are
taken from Amasha et al., 2006; round data points are repro-
duced from Elzerman, Hanson, van Beveren, Witkamp, et al.,
2004. The fact that the two datasets do not connect is ex-
plained by a possible difference in orbital spacing, crystal ori-
entation, etc. For comparison, a solid line with a B5 depen-
dence is shown.

1239Hanson et al.: Spins in few-electron quantum dots

Rev. Mod. Phys., Vol. 79, No. 4, October–December 2007

Amasha et al., PRL 2008
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Spin relaxation time measured in a GaAs quantum dot
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Dephasing in GaAs due to nuclear spins
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regardless of the spin states. Once the pulse is removed,
electron tunneling is allowed again, but only for antipar-
allel spins (stages 3 and 4). The entire cycle lasts 2 !s and
is continuously repeated, resulting in a current flow which
is proportional to the average probability Podd to find
antiparallel spins at the end of stage 2.

We first use this scheme to measure the dephasing of
the spin via a Ramsey-style experiment [see pulse se-
quence in Fig. 2(a)]. After a "=2 pulse that creates a
coherent superposition between j"i and j#i, the spin is al-
lowed to freely evolve for a delay time # (for now, we rea-
son just in a single-spin picture, see below and Ref. [20]).

Subsequently, a 3"=2 pulse is applied, with a variable
phase. Ideally, if both rf pulses have the same phase (in
the rotating frame), the spin is rotated back to j"i, and the
system returns to spin blockade. If the phases between the
two pulses are 180!, the spin is rotated to j#i, and the
blockade is lifted. Figure 2(c) shows that for small #, the
signal indeed oscillates sinusoidally as a function of the
relative phase between the two rf pulses, analogous to the
well-known Ramsey interference fringes. For large #, how-
ever, the spin completely dephases during the delay time,
and the fringes disappear [Fig. 2(c)]. When the two pulses
are applied with the same phase [Fig. 2(a)], we find that the
signal saturates on a time scale of T"2 # 37 ns (obtained
from a Gaussian fit, see below), which gives a measure of
the dephasing time.

The observed Ramsey decay time is the result of the
hyperfine interaction between the electron spin and the
(about 106) randomly oriented nuclear spins in the host
material. The interaction can be described by a nuclear
field with a spectral content ranging from milliseconds to
seconds [22]. This is much longer than the 2 !s cycle time,
but much shorter than the averaging time for each mea-
surement point (#20 s). The nuclear field in the z direction
BN;z modifies the Larmor precession frequency of the
electron spin resulting in a coherence decay of e$%#=T

"
2 &2 ,

with T"2 '
!!!
2
p

@=g!b$# 30 ns [7,8] (assuming $ '
1:5 mT, extracted from the Rabi oscillations, see [23]).
This decay is plotted in Fig. 2(a) (solid line). However,
the observed Ramsey signal cannot be compared directly
with this curve because we have to take into account the
effect of the nuclear field during the "=2 and 3"=2 pulses
as well. Essentially, BN;z shifts the electron spin resonance
condition, and as a result the fixed-frequency rf pulses will
be somewhat off resonance which decreases the fidelity of
the rotations.

We include these effects in a simulation of the spin dy-
namics, and consider from here on not just a single spin but
the actual two-spin system. We thereby leave out the ex-
change interaction, as it can be neglected during the ma-
nipulation stage. At the end of the cycle, the two-spin state
is then given by j %#; BL;R&i ' UL

3"=2%BL&UR
3"=2%BR&(

VL# %BL&VR# %BR&UL
"=2%BL&UR

"=2%BR&j""i. Here, UL;R
% %BL;R& is

the single-spin time-evolution operator (for an intended %
rotation) resulting from the driving field and the z compo-
nent of the nuclear fields in the left and right dot, BL and
BR. The operator VL;R# %BL;R& represents the single-spin
evolution during a time # in the presence of the nuclear
field only. We can then compute Podd at the end of the pulse
sequence, averaging over two independent Gaussian dis-
tributions of nuclear fields in the left and right dot:

 

Podd%#& '
1

2"$2

ZZ
e$)%B

2
L*B2

R&=2$2+

( ~Podd%#; BL;R&dBLdBR;

~Podd%#; BL;R& ' jh %#; BL;R&j"#ij2 * jh %#; BL;R&j#"ij2:
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FIG. 2 (color online). (a) Ramsey signal as a function of free-
evolution time # (each point averaged over 20 s at constant
Bext ' 42 mT, fac ' 210 MHz, Bac ' 3 mT). As shown in the
inset, this gives a Rabi period #2" of 120 ns [20]. In order to
optimize the visibility of the decay, the second pulse is a 3"=2
pulse instead of the usual "=2 pulse. Solid line: Gaussian decay
with T"2 ' 30 ns, corresponding to $ ' 1:5 mT. Dotted
line: Numerically calculated current. First Podd is computed
taking $ ' 1:5 mT, and then the current is derived as Idot '
Podd%m* 1&80* 23 fA (m and offset due to background current
obtained from fit). A current of 80 fA corresponds to one
electron transition per 2 !s cycle, and m is the additional
number of electrons that tunnel through the dot on average
before the current is blocked again. Here, we find m ' 1:44;
the deviation from the expected m ' 1 is not understood and
discussed in [20]. (b) Measured and numerically calculated
Ramsey signal for a wide range of driving fields. We assume
$ ' 1:5 mT, and estimate the current as Podd%m* 1&80*
23 fA (m ' 1:5) for #2" ' 40–220 ns, and as Podd%m* 1&80*
43 fA (m ' 1:5) for #2" ' 440 ns. (c) Ramsey signal as a
function of the relative phase between the two rf bursts for # '
10 (crosses) and 150 ns (circles). Gray dashed line is a best fit of
a cosine to the data.

PRL 100, 236802 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
13 JUNE 2008

236802-2

GaAs: Koppens et al., PRL 2008

3000x improvement by using Si-28 instead of GaAs

orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 

a b c dMagnetic field

Electric
field

+

Electron
spin
Electron
spin

Electron
spin
Electron
spin

Nuclear spins

Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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A basic model for spin relaxation

• zero temperature 
• a single phonon is emitted 
• phonons are `bulk phonons’ 
• only acoustic phonons are considered 
• only longitudinal phonons are considered!
• acoustic phonon dispersion assumed to be isotropic 
• dipole approximation: phonon wave length >> dot size 
• electron-phonon interaction: deformation-potential mechanism!
• mixing of spin and orbital: spin-orbit interaction 
• relaxation rate from Fermi’s Golden Rule
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spin qubit states dressed by spin-orbit: see lecture 4
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3.1 Phonon Dispersion Curves of Semiconductors 111
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Fig. 3.1. Phonon dispersion curves in Si along high-symmetry axes. The circles are data
points from [3.4]. The continuous curves are calculated with the adiabatic bond charge
model of Weber [3.5]
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Fig. 3.2. Phonon dispersion curves in GaAs along high-symmetry axes [3.6]. The experi-
mental data points were measured at 12 K. The continuous lines were calculated with an
11-parameter rigid-ion model. The numbers next to the phonon branches label the corre-
sponding irreducible representations

usually easier to shear than to compress a crystal, the TA phonons travel with
lower velocities than the LA phonons. Two special features of the TA phonons
in the diamond- and zinc-blende-type semiconductors are: (1) their dispersion
curves are relatively flat near the zone edge; and (2) their energies are much
lower than the LA phonon energy near the zone edge. We will later show that
these features are related to the covalent nature of bonds in these crystals.

In Si the transverse optical (TO) phonons and the longitudinal optical
(LO) phonons are degenerate at the zone center. In GaAs and other zinc-
blende-type semiconductors, the LO phonon has higher energy than the TO

Do not go beyond linearly dispersing acoustic phonons
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typical frequency of emitted phonon:
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Yu & Cardona: Fundamentals of Semiconductors
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1Department of Physics, Budapest University of Technology and Economics, Hungary
(Dated: February 15, 2016)

PACS numbers:

MINIMAL PLAN

Kane’s proposal (10 min)

1. Use electron spin or nuclear spin as a qubit.

2. Long coherence times measured.

3. Single-qubit gates via NMR/ESR.

4. A-gates for selective addressing.

5. J-gates for exchange-based two-qubit gates.

Flip-flop qubit (10 min).

1. Challenge: couple a P donor to electric fields.

2. Motivations: (i) exchange-based two-qubit gates are problematic. (ii) electrical single-qubit gates are economical
(no wire needed, less power needed) (iii) E control faster than B control

3. Look for an electrically allowed transition, and make it strong by making the donor electron mobile (easily
moveable by an electric field).

4. Not analyzed: relaxation. Background: Pines-Bardeen-Slichter’s 500 minute.

Our work. (20 min, focus on working point only, mostly charge relax.)

1. Question: orbital relaxation.

2. Fermi’s golden rule.

3. Without valley structure. For example, longitudinal phonons.
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4. Valley structure of bulk silicon, e-ph, donor wave function, interface wfn.

5. Valley-enhanced orbital relaxation

6. Flip-flop relaxation

7. Conclusion: comparison of time scales.

Electron-phonon interaction: deformation potential
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Electron-phonon interaction: deformation potential
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displacement field in 1D: u(x)

strain in 1D: ✏xx(x) =
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dx

relative volume change in 1D = strain in 1D = ✏xx(x)

displacement field in 3D: u(r)

strain in 3D: ✏ij(r) =
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(@iuj(r) + @jui(r)) , where i, j 2 {x, y, z}

relative volume change in 3D = Tr (✏(r)) = ✏xx(r) + ✏yy(r) + ✏zz(r)
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Simple power law: �1 / B5

H = Hosc +Hhom +Hinh +HE(t) (3)

position, x
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displacement of a harmonic oscillator: (1)
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displacement field due to many LA phonons: (4)
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relative volume change due to many LA phonons: (7)
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dipole approximation (if `QD ⌧ 1/q): (9)
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further tools for the calculation: (12)
1
V

P
q · · · =
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(2⇡)3 . . . (13)

aq |vaci = 0 (14)
a†q |vaci = |qi (15)

convert 3D cartesian integral to spherical coordinates (16)

displacement field in 1D: u(x)

strain in 1D: ✏xx(x) =
du(x)

dx

relative volume change in 1D = strain in 1D = ✏xx(x)

displacement field in 3D: u(r)

strain in 3D: ✏ij(r) =
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Hinh =
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HE(t) = exE(t) = exE0 sin(!t) (6)

H = Hosc +Hhom +HSOI +HE(t) (7)

HSOI =
↵

~ (�ypx � �xpy) (8)

p

E

HSOI = �� · (E ⇥ p)

BSOI / E ⇥ p

===

En,m = ~!0(n+m+ 1) (9)

Eorb = ~!0 (10)
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Excitation resonant with Zeeman splitting: (11)
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0

(15)

Electron follows potential minimum. (16)

Rashba spin-orbit interaction

Khaetskii & Nazarov et al., PRB 2001
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H = Hosc +Hhom +HSOI +Heph (1)

displacement of a harmonic oscillator: (2)
x = p̀

2
(a+ a†) (3)

` =
q

~
m!0

(4)

displacement field due to many LA phonons: (5)

u(r) =
P

q
`qp
2
eiqr

⇣
aq + a†�q

⌘
q̂ (6)

`q =
q

~
⇢V vLAq , q̂ = q/q (7)

relative volume change due to many LA phonons: (8)

Tr(✏(r)) = i
q

~
2⇢V vLA

P
q
p
qeiqr

⇣
aq + a†�q

⌘
(9)

dipole approximation: (10)
if `QD ⌧ 1/q then eiqr 7! 1 + iqr and (11)

Tr(✏(r)) 7! �
q

~
2⇢V vLA

P
q
p
qqr

⇣
aq + a†�q

⌘
(12)

further tools for the calculation: (13)
1
V

P
q · · · =

R
d3q

(2⇡)3 . . . (14)

aq |vaci = 0 (15)
a†q |vaci = |qi (16)

convert 3D cartesian integral to spherical coordinates (17)

displacement field in 1D: u(x)

strain in 1D: ✏xx(x) =
du(x)

dx

relative volume change in 1D = strain in 1D = ✏xx(x)

displacement field in 3D: u(r)
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` = 100nm, m = 0.063me (29)

conduction-band effective mass: m = 0.063me

static dielectric constant: ✏r = 12.9

effective g-factor g⇤ = �0.4

charging energy estimate: U ⇠ e2

4⇡✏0✏r`

for GaAs, with ` = 50 nm, U ⇡ 2.2 meV

thermal energy at 300 K: kBT ⇡ 30 meV

thermal energy at 100 mK: kBT ⇡ 10µeV

Zeeman splitting:

E# � E" = g⇤µBB ⇡ 230µeV for B = 10 T

Exercise: estimate the

tunnel rate � from the data.

fast spin relaxation: � ⌧ �spin

�: tunnel rate

spin relaxation: exponential decay, P#(twait) ⇡ 1
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� twait
Tspin = 1
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H0 = Hosc +Hhom

H1 = HSOI

HE,q(t) = PHE(t)P

qubit basis states dressed by SOI: (26)
|0x0y "i ⇡ |0x0y "i+

P
. . . (27)

|0x0y #i ⇡ |0x0y #i+
P

. . . (28)

P = |0x0y "i h0x0y "|+ |0x0y #i h0x0y #|

===

En,m = ~!0(n+m+ 1) (29)

Eorb = ~!0 (30)

` =

r
~

m!0
(31)

` = 100nm, m = 0.063me (32)

Golovach et al., PRB 2006
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displacement field in 1D: u(x)

strain in 1D: ✏xx(x) =
du(x)

dx

relative volume change in 1D = strain in 1D = ✏xx(x)

displacement field in 3D: u(r)

strain in 3D: ✏ij(r) =
1

2
(@iuj(r) + @jui(r)) , where i, j 2 {x, y, z}

relative volume change in 3D = Tr (✏(r)) = ✏xx(r) + ✏yy(r) + ✏zz(r)

e-ph interaction: Heph = ⌅Tr (✏(r))

u(x)

⌫ =
g⇤µBB

h
. 2 · 60µeV/T · 10T

4µeV/GHz
= 300GHz

�1 =
2⇡

~
X

qf

��h0x0y #, qf |Heph|0x0y ", vaci
��2 �(~!L � ~vLAqf )

p̄x(t) = e�(t/T⇤
2 )2 (1)

T ⇤
2 =

p
2~

gµB�
(2)

Spin relaxation time: T1

Spin relaxation rate: �1 = 1
T1

Simple power law: �1 / B5

H = Hosc +Hhom +Hinh +HE(t) (3)
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�1 =
2⇡

~
X

qf

��h0x0y #, qf |Heph|0x0y ", vaci
��2 �(~!L � ~vLAqf )

p̄x(t) = e�(t/T⇤
2 )2 (1)

T ⇤
2 =

p
2~

gµB�
(2)

Spin relaxation time: T1

Spin relaxation rate: �1 = 1
T1

Simple power law: �1 / B5

H = Hosc +Hhom +Hinh +HE(t) (3)

H = Hosc +Hhom +HSOI +HE(t) (4)

HSOI = ↵(�xpy � �ypx) (5)

Hosc =
p2x + p2y
2m

+
1

2
m!2

0(x
2 + y2) (6)

B =

0

@
0
�x
B0

1

A (7)

Hhom =
1

2
g⇤µBB0�z (8)

Hinh =
1

2
g⇤µB�x�y (9)

HE(t) = exE(t) = exE0 sin(!t) (10)

H = Hosc +Hhom +HSOI +HE(t) (11)



Spin-orbit-induced spin relaxation
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H = Hosc +Hhom +HSOI +Heph (1)

Heph = �⌅

s
~

2⇢V vLA

X

q

p
qqr

⇣
aq + a†�q

⌘
(2)

displacement of a harmonic oscillator: (3)
x = p̀

2
(a+ a†) (4)

` =
q

~
m!0

(5)

displacement field due to many LA phonons: (6)

u(r) =
P

q
`qp
2
eiqr

⇣
aq + a†�q

⌘
q̂ (7)

`q =
q

~
⇢V vLAq , q̂ = q/q (8)

relative volume change due to many LA phonons: (9)

Tr(✏(r)) = i
q

~
2⇢V vLA

P
q
p
qeiqr

⇣
aq + a†�q

⌘
(10)

dipole approximation: (11)
if `QD ⌧ 1/q then eiqr 7! 1 + iqr and (12)

Tr(✏(r)) 7! �
q

~
2⇢V vLA

P
q
p
qqr

⇣
aq + a†�q

⌘
(13)

further tools for the calculation: (14)
1
V

P
q · · · =

R
d3q

(2⇡)3 . . . (15)

aq |vaci = 0 (16)
a†q |vaci = |qi (17)

convert 3D cartesian integral to spherical coordinates (18)

displacement field in 1D: u(x)

strain in 1D: ✏xx(x) =
du(x)

dx
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�1 =
1

6⇡

⌅2↵2!7
L

⇢v7LA!
2
0

/ B7 (1)

H = Hosc +Hhom +HSOI +Heph (2)

Heph = �⌅

s
~

2⇢V vLA

X

q

p
qqr

⇣
aq + a†�q

⌘
(3)

displacement of a harmonic oscillator: (4)
x = p̀

2
(a+ a†) (5)

` =
q

~
m!0

(6)

displacement field due to many LA phonons: (7)

u(r) =
P

q
`qp
2
eiqr

⇣
aq + a†�q

⌘
q̂ (8)

`q =
q

~
⇢V vLAq , q̂ = q/q (9)

relative volume change due to many LA phonons: (10)

Tr(✏(r)) = i
q

~
2⇢V vLA

P
q
p
qeiqr

⇣
aq + a†�q

⌘
(11)

dipole approximation: (12)
if `QD ⌧ 1/q then eiqr 7! 1 + iqr and (13)

Tr(✏(r)) 7! �
q

~
2⇢V vLA

P
q
p
qqr

⇣
aq + a†�q

⌘
(14)

further tools for the calculation: (15)
1
V

P
q · · · =

R
d3q

(2⇡)3 . . . (16)

aq |vaci = 0 (17)
a†q |vaci = |qi (18)

convert 3D cartesian integral to spherical coordinates (19)

displacement field in 1D: u(x)

The result:

Exercises: (1) Do the calculation.  
(2) Assume 1D structure with 1D LA phonons, 1 subband. Redo the calculation. 
(3) Replace SOI with inhomogeneous field as in lecture 4. Redo the calculation.



Discussion: power counting is powerful
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‘van Vleck cancellation’ (1)
time reversal symmetry (2)
h0x0y #|x|0x0y "i / B1 (3)

q1 in eph Hamiltonian due to dipole approximation
3D acoustic phonon DOS / !2

FGR has matrix element squared

�1 / B7 = B2·( 1
2+1+1)+2 (4)

p
q = q1/2 in eph Hamiltonian (5)

�1 =
1

6⇡

⌅2↵2!7
L

⇢v7LA!
2
0

/ B7 (6)

H = Hosc +Hhom +HSOI +Heph (7)

Heph = �⌅

s
~

2⇢V vLA

X

q

p
qqr

⇣
aq + a†�q

⌘
(8)

displacement of a harmonic oscillator: (9)
x = p̀

2
(a+ a†) (10)

` =
q

~
m!0

(11)

displacement field due to many LA phonons: (12)

u(r) =
P

q
`qp
2
eiqr

⇣
aq + a†�q

⌘
q̂ (13)

`q =
q

~
⇢V vLAq , q̂ = q/q (14)

relative volume change due to many LA phonons: (15)

Tr(✏(r)) = i
q

~
2⇢V vLA

P
q
p
qeiqr

⇣
aq + a†�q

⌘
(16)

dipole approximation: (17)
if `QD ⌧ 1/q then eiqr 7! 1 + iqr and (18)

Tr(✏(r)) 7! �
q

~
2⇢V vLA

P
q
p
qqr

⇣
aq + a†�q

⌘
(19)
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replace ‘deformation potential e-ph coupling’ (1)
with ‘piezoelectric e-ph coupling’ (2)

+ (3)
1/

p
q = q�1/2 in the e-ph Hamiltonian (4)

+ (5)
�1 / B5 (6)

‘van Vleck cancellation’ (7)
time reversal symmetry (8)
h0x0y #|x|0x0y "i / B1 (9)

q1 in eph Hamiltonian (10)
due to dipole approximation (11)

3D acoustic phonons (12)
DOS / !2 (13)

FGR has matrix element squared

�1 / B7 = B2·( 1
2+1+1)+2 (14)

p
q = q1/2 in eph Hamiltonian (15)
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1

6⇡

⌅2↵2!7
L

⇢v7LA!
2
0

/ B7 (16)

H = Hosc +Hhom +HSOI +Heph (17)

Heph = �⌅

s
~

2⇢V vLA

X

q

p
qqr

⇣
aq + a†�q

⌘
(18)

displacement of a harmonic oscillator: (19)
x = p̀

2
(a+ a†) (20)

` =
q

~
m!0

(21)

ous legs along this trajectory generally do not commute,
a net rotation results !San-Jose et al., 2006". Such two-
phonon relaxation processes become relatively more im-
portant at very low magnetic fields, where single-phonon
relaxation becomes very inefficient !Khaetskii and Naz-
arov, 2001; San-Jose et al., 2006" !Fig. 22".

Putting all these elements together, we can predict the
B0 dependence of the relaxation rate 1/T1 between Zee-
man split sublevels of a single electron as follows. The
phonon density of states increases with !EZ

2 . Next, the
electric-field amplitude from a single phonon scales as
#q"#!EZ for deformation potential phonons and as
1/#q"1/#!EZ for piezoelectric phonons. Furthermore,
for B0 up to a few tesla, !EZ is well below the crossover
point where the dot size matches the phonon energy
!several 100 #eV", so we are in the long-wavelength
limit, where the matrix element $nl↑ %eiq! ·r!%n!l!↑ & scales as
q"!EZ. Finally, due to the effect of the Zeeman split-
ting, the matrix element in Eq. !22" picks up another
factor of !EZ !assuming only single-phonon processes
are relevant". Altogether, and taking into account that
the rate is proportional to the matrix element squared,
T1

−1 is predicted !at low temperature" to vary with !EZ
5

for coupling to piezoelectric phonons !Khaetskii and
Nazarov, 2001", and as !EZ

7 for coupling to deformation
potential phonons. At high temperature, there is an ex-
tra factor of !EZ

−1.
We can similarly work out the 1/T1 dependence on

the dot size l or, equivalently, on the orbital level spacing
!Eorb" l−2 'in single dots, !Eorb can only be tuned over a
small range, but in double dots, the splitting between
bonding and antibonding orbitals can be modified over
several orders of magnitudes !Wang and Wu, 2006"(. The
degree of admixing of spin and orbital states by HSO
contributes a factor l2 to the rate via the numerator in
Eqs. !17" and !18" and another factor of )l4 via Enl
−En!l! 'the dominant part in the denominator in Eqs.
!17" and !18"(. Taking the long-wavelength limit as be-
fore, *$nl↑ %eiq! ·r!%n!l!↑ &*2 contributes a factor l2. We thus
arrive at 1/T1" l8"!Eorb

−4 .
In summary, the relaxation rate from spin down to

spin up !for an electron in the ground-state orbital of a
quantum dot" scales as

1/T1 " !EZ
5 /!Eorb

4 !24"

at temperatures low compared to !EZ /kB, and as

1/T1 " !EZ
4 kBT/!Eorb

4 !25"

at temperatures much higher than !EZ /kB.
Experimentally measured values for T1 between Zee-

man sublevels in a one-electron GaAs quantum dot are
shown in Fig. 23. The relaxation times range from
120 #s at 14 T to 170 ms at 1.75 T, about seven orders
of magnitude longer than the relaxation rate between
dot orbitals !Fujisawa et al., 2002a". The expected B5

dependence of T1
−1 is nicely observed over the applicable

magnetic-field range. A similar dependence was ob-
served in optically measured quantum dots !Kroutvar et

al., 2004". In that system, the 1/T temperature depen-
dence of T1 was also verified !Heiss et al., 2005". There
are no systematic experimental studies yet of the depen-
dence on dot size. So far we have first considered the
effect of HSO on the eigenstates and then looked at tran-
sitions between these new eigenstates, induced by He,ph
'Fig. 20!a"(. We point out that it is also possible to cal-
culate the matrix element between the unperturbed spin
states directly, for HSO and He,ph together, for instance,
as

$nl↓%!HSO + He,ph"%nl↑&

for Zeeman split states of a single orbital 'Fig. 20!b"(.
Finally, we remark that whereas at first sight phonons

cannot flip spins by themselves as there are no spin op-
erators in the phonon Hamiltonian He,ph, this is not
strictly true. Since phonons deform the crystal lattice,
the g tensor may be modulated, and this can in fact lead
to electron spin flips directly 'when phonons modulate
only the magnitude of the g factor but not the anisot-
ropy of the g tensor, the electron spin phase gets ran-
domized without energy exchange with the bath !Se-
menov and Kim, 2004"(. Furthermore, the electron spin
could flip due to the direct relativistic coupling of the
electron spin to the electric field of the emitted phonon.
However, both mechanisms have been estimated to be
much less efficient than the mechanism via admixing of
spin and orbitals by the spin-orbit interaction !Khaetskii
and Nazarov, 2000, 2001".

5. Phase randomization due to the spin-orbit interaction

We have seen that the phonon bath can induce tran-
sitions between different spin-orbit admixed spin states,
and absorb the spin flip energy. Such energy relaxation
processes !described by a time constant T1" unavoidably
also lead to the loss of quantum coherence !described by
a time constant T2". In fact, by definition T2$2T1.

FIG. 23. !Color online" Relaxation rate between the Zeeman
split sublevels of the ground-state orbital in a quantum dot
!measured with ERO, see Sec. VI.B". Square data points are
taken from Amasha et al., 2006; round data points are repro-
duced from Elzerman, Hanson, van Beveren, Witkamp, et al.,
2004. The fact that the two datasets do not connect is ex-
plained by a possible difference in orbital spacing, crystal ori-
entation, etc. For comparison, a solid line with a B5 depen-
dence is shown.

1239Hanson et al.: Spins in few-electron quantum dots

Rev. Mod. Phys., Vol. 79, No. 4, October–December 2007

GaAs: 
piezo 

coupling



Measuring dephasing via the Ramsey experiment

2

0.0 0.2 0.4 0.6 0.8 1.0
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

on-site energy, � [v]

en
er
gy

[v
]

e�
o�
o
e

Simple quantum information protocols with the Kitaev double dot

(Dated: March 13, 2018)

...

CONTENTS

Contributors 1

Outline 1

I. The topological fully dimerized Kitaev double dot has a twofold degenerate ground state 1

II. The fermion-parity pseudoqubit is protected against dephasing induced by slow local quadratic disorder 4

CONTRIBUTORS

Andras Palyi (writeup), Janos Asboth, Peter Boross, Laszlo Oroszlany, Gabor Szechenyi, Janos Asboth (discus-
sions).

OUTLINE

kitaev wire: twofold degenerate ground state
initialization? readout? a la gharavi; minimal scheme in the absence of noise; e↵ect of noise at least discussed (or

even simulated)
(can you apply the chinese scheme for parity readout?)
even/odd qubit does not work; starting from |0, ei, one can get to ↵ |0, ei + � |1, oi, but that’s not very useful
q info transfer from a charge qubit to two wires following gharavi; minimal scheme; e↵ect of noise: disc/calc
(can you use the chinese scheme? is that more resilient to noise?)
braiding: demonstration via 6 sites, szecska: pi/4 gate in even/odd basis. what is the demonstration? Pedersen et

al. paper for process fidelity, approaching 1 for long times? for a 4-majorana qubit, the two di↵erent braidings (12
and 23) correspond to single-qubit gates ??? and ??? in the ee, oo basis.

do i have a full cli↵ord with majoranas+braiding?
Resources: Leijnse review Leijnse Alicea review Sato and Ando review
In the last lectures, we have determined the quasiparticle excitation spectrum of a one-dimensional p-type super-

conductor, modelled by an infinite Kitaev chain. Here, we consider a finite Kitaev chain, mostly a two-site wire we call
‘Kitaev double dot’ (KDD), and discuss how to define a controllable quantum bit in such a system, as well as how to
carry out certain simple quantum information protocols with that qubit. The concept of ‘Majorana zero modes’ and
the ‘topological protection’ of qubits based on 1D topological superconductors will be discussed in the next lecture.

RESOURCES

I. THE TOPOLOGICAL FULLY DIMERIZED KITAEV DOUBLE DOT HAS A TWOFOLD
DEGENERATE GROUND STATE

1. Hamiltonian of a Kitaev double dot:

H = ✏1c
†
1c1 + ✏2c

†
2c2 + v(c†

1c2 + c†
2c1) + �(c†

1c
†
2 + c2c1). (1)

Assume v > 0 and � > 0 for simplicity. The matrix in the 00, 01, 10, 11 basis reads

H =

0

B@

0 0 0 �
0 ✏2 v 0
0 v ✏1 0
� 0 0 ✏1 + ✏2

1

CA (2)

Simple quantum information protocols with the Kitaev double dot

(Dated: March 13, 2018)

...

CONTENTS

Contributors 1

Outline 1

I. The topological fully dimerized Kitaev double dot has a twofold degenerate ground state 1

II. The fermion-parity pseudoqubit is protected against dephasing induced by slow local quadratic disorder 4

CONTRIBUTORS

Andras Palyi (writeup), Janos Asboth, Peter Boross, Laszlo Oroszlany, Gabor Szechenyi, Janos Asboth (discus-
sions).

OUTLINE

kitaev wire: twofold degenerate ground state
initialization? readout? a la gharavi; minimal scheme in the absence of noise; e↵ect of noise at least discussed (or

even simulated)
(can you apply the chinese scheme for parity readout?)
even/odd qubit does not work; starting from |0, ei, one can get to ↵ |0, ei + � |1, oi, but that’s not very useful
q info transfer from a charge qubit to two wires following gharavi; minimal scheme; e↵ect of noise: disc/calc
(can you use the chinese scheme? is that more resilient to noise?)
braiding: demonstration via 6 sites, szecska: pi/4 gate in even/odd basis. what is the demonstration? Pedersen et

al. paper for process fidelity, approaching 1 for long times? for a 4-majorana qubit, the two di↵erent braidings (12
and 23) correspond to single-qubit gates ??? and ??? in the ee, oo basis.

do i have a full cli↵ord with majoranas+braiding?
Resources: Leijnse review Leijnse Alicea review Sato and Ando review
In the last lectures, we have determined the quasiparticle excitation spectrum of a one-dimensional p-type super-

conductor, modelled by an infinite Kitaev chain. Here, we consider a finite Kitaev chain, mostly a two-site wire we call
‘Kitaev double dot’ (KDD), and discuss how to define a controllable quantum bit in such a system, as well as how to
carry out certain simple quantum information protocols with that qubit. The concept of ‘Majorana zero modes’ and
the ‘topological protection’ of qubits based on 1D topological superconductors will be discussed in the next lecture.

RESOURCES

I. THE TOPOLOGICAL FULLY DIMERIZED KITAEV DOUBLE DOT HAS A TWOFOLD
DEGENERATE GROUND STATE

1. Hamiltonian of a Kitaev double dot:

H = ✏1c
†
1c1 + ✏2c

†
2c2 + v(c†

1c2 + c†
2c1) + �(c†

1c
†
2 + c2c1). (1)

Assume v > 0 and � > 0 for simplicity. The matrix in the 00, 01, 10, 11 basis reads

H =

0

B@

0 0 0 �
0 ✏2 v 0
0 v ✏1 0
� 0 0 ✏1 + ✏2

1

CA (2)

Simple quantum information protocols with the Kitaev double dot

(Dated: March 13, 2018)

...

CONTENTS

Contributors 1

Outline 1

I. The topological fully dimerized Kitaev double dot has a twofold degenerate ground state 1

II. The fermion-parity pseudoqubit is protected against dephasing induced by slow local quadratic disorder 4

CONTRIBUTORS

Andras Palyi (writeup), Janos Asboth, Peter Boross, Laszlo Oroszlany, Gabor Szechenyi, Janos Asboth (discus-
sions).

OUTLINE

kitaev wire: twofold degenerate ground state
initialization? readout? a la gharavi; minimal scheme in the absence of noise; e↵ect of noise at least discussed (or

even simulated)
(can you apply the chinese scheme for parity readout?)
even/odd qubit does not work; starting from |0, ei, one can get to ↵ |0, ei + � |1, oi, but that’s not very useful
q info transfer from a charge qubit to two wires following gharavi; minimal scheme; e↵ect of noise: disc/calc
(can you use the chinese scheme? is that more resilient to noise?)
braiding: demonstration via 6 sites, szecska: pi/4 gate in even/odd basis. what is the demonstration? Pedersen et

al. paper for process fidelity, approaching 1 for long times? for a 4-majorana qubit, the two di↵erent braidings (12
and 23) correspond to single-qubit gates ??? and ??? in the ee, oo basis.

do i have a full cli↵ord with majoranas+braiding?
Resources: Leijnse review Leijnse Alicea review Sato and Ando review
In the last lectures, we have determined the quasiparticle excitation spectrum of a one-dimensional p-type super-

conductor, modelled by an infinite Kitaev chain. Here, we consider a finite Kitaev chain, mostly a two-site wire we call
‘Kitaev double dot’ (KDD), and discuss how to define a controllable quantum bit in such a system, as well as how to
carry out certain simple quantum information protocols with that qubit. The concept of ‘Majorana zero modes’ and
the ‘topological protection’ of qubits based on 1D topological superconductors will be discussed in the next lecture.

RESOURCES

I. THE TOPOLOGICAL FULLY DIMERIZED KITAEV DOUBLE DOT HAS A TWOFOLD
DEGENERATE GROUND STATE

1. Hamiltonian of a Kitaev double dot:

H = ✏1c
†
1c1 + ✏2c

†
2c2 + v(c†

1c2 + c†
2c1) + �(c†

1c
†
2 + c2c1). (1)

Assume v > 0 and � > 0 for simplicity. The matrix in the 00, 01, 10, 11 basis reads

H =

0

B@

0 0 0 �
0 ✏2 v 0
0 v ✏1 0
� 0 0 ✏1 + ✏2

1

CA (2)

Simple quantum information protocols with the Kitaev double dot

(Dated: March 13, 2018)

...

CONTENTS

Contributors 1

Outline 1

I. The topological fully dimerized Kitaev double dot has a twofold degenerate ground state 1

II. The fermion-parity pseudoqubit is protected against dephasing induced by slow local quadratic disorder 4

CONTRIBUTORS

Andras Palyi (writeup), Janos Asboth, Peter Boross, Laszlo Oroszlany, Gabor Szechenyi, Janos Asboth (discus-
sions).

OUTLINE

kitaev wire: twofold degenerate ground state
initialization? readout? a la gharavi; minimal scheme in the absence of noise; e↵ect of noise at least discussed (or

even simulated)
(can you apply the chinese scheme for parity readout?)
even/odd qubit does not work; starting from |0, ei, one can get to ↵ |0, ei + � |1, oi, but that’s not very useful
q info transfer from a charge qubit to two wires following gharavi; minimal scheme; e↵ect of noise: disc/calc
(can you use the chinese scheme? is that more resilient to noise?)
braiding: demonstration via 6 sites, szecska: pi/4 gate in even/odd basis. what is the demonstration? Pedersen et

al. paper for process fidelity, approaching 1 for long times? for a 4-majorana qubit, the two di↵erent braidings (12
and 23) correspond to single-qubit gates ??? and ??? in the ee, oo basis.

do i have a full cli↵ord with majoranas+braiding?
Resources: Leijnse review Leijnse Alicea review Sato and Ando review
In the last lectures, we have determined the quasiparticle excitation spectrum of a one-dimensional p-type super-

conductor, modelled by an infinite Kitaev chain. Here, we consider a finite Kitaev chain, mostly a two-site wire we call
‘Kitaev double dot’ (KDD), and discuss how to define a controllable quantum bit in such a system, as well as how to
carry out certain simple quantum information protocols with that qubit. The concept of ‘Majorana zero modes’ and
the ‘topological protection’ of qubits based on 1D topological superconductors will be discussed in the next lecture.

RESOURCES

I. THE TOPOLOGICAL FULLY DIMERIZED KITAEV DOUBLE DOT HAS A TWOFOLD
DEGENERATE GROUND STATE

1. Hamiltonian of a Kitaev double dot:

H = ✏1c
†
1c1 + ✏2c

†
2c2 + v(c†

1c2 + c†
2c1) + �(c†

1c
†
2 + c2c1). (1)

Assume v > 0 and � > 0 for simplicity. The matrix in the 00, 01, 10, 11 basis reads

H =

0

B@

0 0 0 �
0 ✏2 v 0
0 v ✏1 0
� 0 0 ✏1 + ✏2

1

CA (2)

1 2

3

3

(c) ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ⇠(t)�
z

with ⇠(t) being a
noise, and the time evolution starts from a superposition of the two basis states, e.g., (|"i + |#i)/

p
2. In

that case, the Bloch vector of the qubit becomes randomized along the equator, meaning that the noise-
averaged Bloch vector approaches the origin. The characteristic time scale of this process is often denoted
as T ⇤

2 , and is called inhomogeneous dephasing time. In the first lecture, we have seen the example of a
charge qubit with hopping noise, with noise strength �, where the inhomogeneous dephasing time was
T ⇤

2,c

= ~/�. Similarly, a charge qubit with independent noise on the on-site energies with noise strength �,
in the absence of hopping noise, has the same inhomogeneous dephasing time T ⇤

2,c

= ~/�.

3. One could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) It is not possible to prepare a superposition of |ei and |oi. Argument 1: As long as we consider the KDD
itself, the even and odd sectors are decoupled. Argument 2: We could allow for an environment that helps us
preparing a superposition of the two KDD ground states. In that case, the fermion parity of the full system
(KDD+environment) has a well-defined fermion parity, e.g., even, at the beginning of the preparation
procedure. At the end of the procedure, the fermion parity of the full system should still be even. To
prepare the desired superposition, one aims at a state with the structure 1p

2
(|ei + |oi)⌦(↵ |eienv+� |oienv).

Clearly, this is not an even state of the full system for any value of ↵ and �, so it cannot be prepared.

(b) If the KDD is isolated electronically (no tunneling) from its environment, then the its fermion parity
number is conserved. This means that this pseudoqubit shows no relaxation. Electrons tunneling between
the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to relaxation though;
sometimes the related processes are called ‘quasiparticle poisoning’.

(c) The FPPQ enjoys a certain degree of protection against dephasing due to on-site disorder, if we compare
the corresponding inhomogeneous dephasing time to that of a charge qubit experiencing the same amount
of on-site disorder. Following the arguments above, the minigap in the presence of on-site disorder of
strength � ⌧ v scales as Egap ⇠ �2/v. The e↵ective Hamiltonian of the FPPQ is H = Egap

2 �
z

, which
implies T ⇤

2 ⇠ ~/Egap ⇠ (v/�)T ⇤
2,c

� T ⇤
2,c

, i.e., the dephasing time is indeed prolonged with respect to
that of the charge qubit. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder.

IV. THE FPPQ CAN BE READ OUT USING PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the KDD is either in |ei or in |oi, and would like to find out which one.
A general strategy is to convert the parity information to charge information first, and then measure the charge
information. An example protocol realizing this is depicted in Fig. 1c. Here, site 3 is an auxiliary site (quantum
dot) that is used for the charge measurement, and the orange lines denote time-dependent hopping amplitudes
u(t).

2. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

3. The 2x degeneracy of the GS in the fully dimerized limit is a bit protected: a small on-site energy disorder
✏1, ✏2 ⌧ v splits the degeneracy only in second order, gap ⇠ ✏2/v. (Prove this. Plot the minigap E1 � E0

as function of ✏1 and ✏2. Plot the spectrum against ✏1 = ✏2.) It is not protected against ”hopping noise” or
”pair-potential noise”: if � �= v, then the degeneracy is split in first order in the deviation.

4. Introduce ‘relaxation’ and ‘dephasing’ via the ‘qubit basis’ and classical longitudinal and transverse noise.
Relaxation is possible only via quasiparticle poisoning. Dephasing from on-site energy noise is suppressed.
Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
ho|n1|oi = ho|n2|oi = 1/2. But we can read it out if we adiabatically detune from full dimerization, e.g., set
✏1 = ✏2 = v. Quote numbers from mathematica notebook. This is called parity-to-charge conversion. (Note
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(c) ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ⇠(t)�
z

with ⇠(t) being a
noise, and the time evolution starts from a superposition of the two basis states, e.g., (|"i + |#i)/

p
2. In

that case, the Bloch vector of the qubit becomes randomized along the equator, meaning that the noise-
averaged Bloch vector approaches the origin. The characteristic time scale of this process is often denoted
as T ⇤

2 , and is called inhomogeneous dephasing time. In the first lecture, we have seen the example of a
charge qubit with hopping noise, with noise strength �, where the inhomogeneous dephasing time was
T ⇤

2,c

= ~/�. Similarly, a charge qubit with independent noise on the on-site energies with noise strength �,
in the absence of hopping noise, has the same inhomogeneous dephasing time T ⇤

2,c

= ~/�.

3. One could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) It is not possible to prepare a superposition of |ei and |oi. Argument 1: As long as we consider the KDD
itself, the even and odd sectors are decoupled. Argument 2: We could allow for an environment that helps us
preparing a superposition of the two KDD ground states. In that case, the fermion parity of the full system
(KDD+environment) has a well-defined fermion parity, e.g., even, at the beginning of the preparation
procedure. At the end of the procedure, the fermion parity of the full system should still be even. To
prepare the desired superposition, one aims at a state with the structure 1p

2
(|ei + |oi)⌦(↵ |eienv+� |oienv).

Clearly, this is not an even state of the full system for any value of ↵ and �, so it cannot be prepared.

(b) If the KDD is isolated electronically (no tunneling) from its environment, then the its fermion parity
number is conserved. This means that this pseudoqubit shows no relaxation. Electrons tunneling between
the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to relaxation though;
sometimes the related processes are called ‘quasiparticle poisoning’.

(c) The FPPQ enjoys a certain degree of protection against dephasing due to on-site disorder, if we compare
the corresponding inhomogeneous dephasing time to that of a charge qubit experiencing the same amount
of on-site disorder. Following the arguments above, the minigap in the presence of on-site disorder of
strength � ⌧ v scales as Egap ⇠ �2/v. The e↵ective Hamiltonian of the FPPQ is H = Egap

2 �
z

, which
implies T ⇤

2 ⇠ ~/Egap ⇠ (v/�)T ⇤
2,c

� T ⇤
2,c

, i.e., the dephasing time is indeed prolonged with respect to
that of the charge qubit. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder.

IV. THE FPPQ CAN BE READ OUT USING PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the KDD is either in |ei or in |oi, and would like to find out which one.
A general strategy is to convert the parity information to charge information first, and then measure the charge
information. An example protocol realizing this is depicted in Fig. 1c. Here, site 3 is an auxiliary site (quantum
dot) that is used for the charge measurement, and the orange lines denote time-dependent hopping amplitudes
u(t).

2. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

3. The 2x degeneracy of the GS in the fully dimerized limit is a bit protected: a small on-site energy disorder
✏1, ✏2 ⌧ v splits the degeneracy only in second order, gap ⇠ ✏2/v. (Prove this. Plot the minigap E1 � E0

as function of ✏1 and ✏2. Plot the spectrum against ✏1 = ✏2.) It is not protected against ”hopping noise” or
”pair-potential noise”: if � �= v, then the degeneracy is split in first order in the deviation.

4. Introduce ‘relaxation’ and ‘dephasing’ via the ‘qubit basis’ and classical longitudinal and transverse noise.
Relaxation is possible only via quasiparticle poisoning. Dephasing from on-site energy noise is suppressed.
Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
ho|n1|oi = ho|n2|oi = 1/2. But we can read it out if we adiabatically detune from full dimerization, e.g., set
✏1 = ✏2 = v. Quote numbers from mathematica notebook. This is called parity-to-charge conversion. (Note

1 2 3 4

3

(c) ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ⇠(t)�
z

with ⇠(t) being a
noise, and the time evolution starts from a superposition of the two basis states, e.g., (|"i + |#i)/

p
2. In

that case, the Bloch vector of the qubit becomes randomized along the equator, meaning that the noise-
averaged Bloch vector approaches the origin. The characteristic time scale of this process is often denoted
as T ⇤

2 , and is called inhomogeneous dephasing time. In the first lecture, we have seen the example of a
charge qubit with hopping noise, with noise strength �, where the inhomogeneous dephasing time was
T ⇤

2,c

= ~/�. Similarly, a charge qubit with independent noise on the on-site energies with noise strength �,
in the absence of hopping noise, has the same inhomogeneous dephasing time T ⇤

2,c

= ~/�.

3. One could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) It is not possible to prepare a superposition of |ei and |oi. Argument 1: As long as we consider the KDD
itself, the even and odd sectors are decoupled. Argument 2: We could allow for an environment that helps us
preparing a superposition of the two KDD ground states. In that case, the fermion parity of the full system
(KDD+environment) has a well-defined fermion parity, e.g., even, at the beginning of the preparation
procedure. At the end of the procedure, the fermion parity of the full system should still be even. To
prepare the desired superposition, one aims at a state with the structure 1p

2
(|ei + |oi)⌦(↵ |eienv+� |oienv).

Clearly, this is not an even state of the full system for any value of ↵ and �, so it cannot be prepared.

(b) If the KDD is isolated electronically (no tunneling) from its environment, then the its fermion parity
number is conserved. This means that this pseudoqubit shows no relaxation. Electrons tunneling between
the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to relaxation though;
sometimes the related processes are called ‘quasiparticle poisoning’.

(c) The FPPQ enjoys a certain degree of protection against dephasing due to on-site disorder, if we compare
the corresponding inhomogeneous dephasing time to that of a charge qubit experiencing the same amount
of on-site disorder. Following the arguments above, the minigap in the presence of on-site disorder of
strength � ⌧ v scales as Egap ⇠ �2/v. The e↵ective Hamiltonian of the FPPQ is H = Egap

2 �
z

, which
implies T ⇤

2 ⇠ ~/Egap ⇠ (v/�)T ⇤
2,c

� T ⇤
2,c

, i.e., the dephasing time is indeed prolonged with respect to
that of the charge qubit. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder.

IV. THE FPPQ CAN BE READ OUT USING PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the KDD is either in |ei or in |oi, and would like to find out which one.
A general strategy is to convert the parity information to charge information first, and then measure the charge
information. An example protocol realizing this is depicted in Fig. 1c. Here, site 3 is an auxiliary site (quantum
dot) that is used for the charge measurement, and the orange lines denote time-dependent hopping amplitudes
u(t).

2. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

3. The 2x degeneracy of the GS in the fully dimerized limit is a bit protected: a small on-site energy disorder
✏1, ✏2 ⌧ v splits the degeneracy only in second order, gap ⇠ ✏2/v. (Prove this. Plot the minigap E1 � E0

as function of ✏1 and ✏2. Plot the spectrum against ✏1 = ✏2.) It is not protected against ”hopping noise” or
”pair-potential noise”: if � �= v, then the degeneracy is split in first order in the deviation.

4. Introduce ‘relaxation’ and ‘dephasing’ via the ‘qubit basis’ and classical longitudinal and transverse noise.
Relaxation is possible only via quasiparticle poisoning. Dephasing from on-site energy noise is suppressed.
Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
ho|n1|oi = ho|n2|oi = 1/2. But we can read it out if we adiabatically detune from full dimerization, e.g., set
✏1 = ✏2 = v. Quote numbers from mathematica notebook. This is called parity-to-charge conversion. (Note

1 2 3 4

a)

c)

b) d)

e)

without noise

with noise

f) Ramsey experiment

3

(c) ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ⇠(t)�
z

with ⇠(t) being a
noise, and the time evolution starts from a superposition of the two basis states, e.g., (|"i + |#i)/

p
2. In

that case, the Bloch vector of the qubit becomes randomized along the equator, meaning that the noise-
averaged Bloch vector approaches the origin. The characteristic time scale of this process is often denoted
as T ⇤

2 , and is called inhomogeneous dephasing time. In the first lecture, we have seen the example of a
charge qubit with hopping noise, with noise strength �, where the inhomogeneous dephasing time was
T ⇤

2,c

= ~/�. Similarly, a charge qubit with independent noise on the on-site energies with noise strength �,
in the absence of hopping noise, has the same inhomogeneous dephasing time T ⇤

2,c

= ~/�.

3. One could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) It is not possible to prepare a superposition of |ei and |oi. Argument 1: As long as we consider the KDD
itself, the even and odd sectors are decoupled. Argument 2: We could allow for an environment that helps us
preparing a superposition of the two KDD ground states. In that case, the fermion parity of the full system
(KDD+environment) has a well-defined fermion parity, e.g., even, at the beginning of the preparation
procedure. At the end of the procedure, the fermion parity of the full system should still be even. To
prepare the desired superposition, one aims at a state with the structure 1p

2
(|ei + |oi)⌦(↵ |eienv+� |oienv).

Clearly, this is not an even state of the full system for any value of ↵ and �, so it cannot be prepared.

(b) If the KDD is isolated electronically (no tunneling) from its environment, then the its fermion parity
number is conserved. This means that this pseudoqubit shows no relaxation. Electrons tunneling between
the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to relaxation though;
sometimes the related processes are called ‘quasiparticle poisoning’.

(c) The FPPQ enjoys a certain degree of protection against dephasing due to on-site disorder, if we compare
the corresponding inhomogeneous dephasing time to that of a charge qubit experiencing the same amount
of on-site disorder. Following the arguments above, the minigap in the presence of on-site disorder of
strength � ⌧ v scales as Egap ⇠ �2/v. The e↵ective Hamiltonian of the FPPQ is H = Egap

2 �
z

, which
implies T ⇤

2 ⇠ ~/Egap ⇠ (v/�)T ⇤
2,c

� T ⇤
2,c

, i.e., the dephasing time is indeed prolonged with respect to
that of the charge qubit. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder.

IV. THE FPPQ CAN BE READ OUT USING PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the KDD is either in |ei or in |oi, and would like to find out which one.
A general strategy is to convert the parity information to charge information first, and then measure the charge
information. An example protocol realizing this is depicted in Fig. 1c. Here, site 3 is an auxiliary site (quantum
dot) that is used for the charge measurement, and the orange lines denote time-dependent hopping amplitudes
u(t).

2. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

3. The 2x degeneracy of the GS in the fully dimerized limit is a bit protected: a small on-site energy disorder
✏1, ✏2 ⌧ v splits the degeneracy only in second order, gap ⇠ ✏2/v. (Prove this. Plot the minigap E1 � E0

as function of ✏1 and ✏2. Plot the spectrum against ✏1 = ✏2.) It is not protected against ”hopping noise” or
”pair-potential noise”: if � �= v, then the degeneracy is split in first order in the deviation.

4. Introduce ‘relaxation’ and ‘dephasing’ via the ‘qubit basis’ and classical longitudinal and transverse noise.
Relaxation is possible only via quasiparticle poisoning. Dephasing from on-site energy noise is suppressed.
Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
ho|n1|oi = ho|n2|oi = 1/2. But we can read it out if we adiabatically detune from full dimerization, e.g., set
✏1 = ✏2 = v. Quote numbers from mathematica notebook. This is called parity-to-charge conversion. (Note

FIG. 1. Simple quantum information protocols with the Kitaev double dot. (a) The Kitaev double dot, with on-site
energies ✏1 and ✏2, hopping v, and pair potential �. (b) Energy spectrum of the Kitaev double dot, for � = v and ✏1 = ✏2 = ✏.
(c) Setup for parity-to-charge conversion and parity readout of the Kitaev double dot (sites 1 and 2) using an auxiliary site
(3). (d) Two Kitaev double dots to form a Majorana qubit. (e) Setup for non-protected x-rotation of the Majorana qubit. (f)
Schematics of a Ramsey experiment of a qubit, aiming to measure the inhomogeneous dephasing time T ⇤

2 .

⇡
x

/2

⌧wait

2. The parameter set ✏1 = ✏2 = 0, � = v will be called the ‘topological fully dimerized’ case, for reasons to become
clear later. The energy values of the KDD in this case are E0 = E1 = �v, E2 = E3 = v. That is, the ground
state is twofold degenerate. The eigenvectors and corresponding energy eigenstates have the form:

 0 = (1, 0, 0, �1)/
p

2 ⌘ |ei =
1p
2

(|00i � |11i) (3)

 1 = (0, 1, �1, 0)/
p

2 ⌘ |oi =
1p
2

(|10i � |01i) (4)

 2 = (1, 0, 0, 1)/
p

2 ⌘ |e0i =
1p
2

(|00i + |11i) (5)

 3 = (0, 1, 1, 0)/
p

2 ⌘ |o0i =
1p
2

(|10i + |01i) (6)

II. FINITE ON-SITE ENERGY OPENS A MINIGAP

1. Starting from the topological fully dimerized limit, switch on identical on-site energies, ✏1 = ✏2 = ✏. The
Hamiltonian is still diagonalized exactly; the spectrum as a function of the on-site energy is shown in Fig. 1b.
The finite on-site energy ✏ splits the ground state degeneracy, i.e., creates a minigap, and the dependence of the
minigap on ✏ is quadratic: Egap = o(✏2/v). One can consider on-site disorder: independent random but small
values of the on-site energies, ✏1, ✏2 ⌧ v. Simple perturbation theory shows that such a disorder does open a
minigap, which is also quadratic: Egap = o(✏21/v) + o(✏1✏2/v) + o(✏22/v). However, it is also easy to see that in
the presence of weak hopping disorder or weak pair-potential disorder, the minigap is linear in the disorder.

2. Exercise: Express the exact energy eigenvalues and energy eigenstates of H away from the dimerized limit, for
arbitrary values of the 4 parameters.
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(c) ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ⇠(t)�
z

with ⇠(t) being a
noise, and the time evolution starts from a superposition of the two basis states, e.g., (|"i + |#i)/

p
2. In

that case, the Bloch vector of the qubit becomes randomized along the equator, meaning that the noise-
averaged Bloch vector approaches the origin. The characteristic time scale of this process is often denoted
as T ⇤

2 , and is called inhomogeneous dephasing time. In the first lecture, we have seen the example of a
charge qubit with hopping noise, with noise strength �, where the inhomogeneous dephasing time was
T ⇤

2,c

= ~/�. Similarly, a charge qubit with independent noise on the on-site energies with noise strength �,
in the absence of hopping noise, has the same inhomogeneous dephasing time T ⇤

2,c

= ~/�.

3. One could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) It is not possible to prepare a superposition of |ei and |oi. Argument 1: As long as we consider the KDD
itself, the even and odd sectors are decoupled. Argument 2: We could allow for an environment that helps us
preparing a superposition of the two KDD ground states. In that case, the fermion parity of the full system
(KDD+environment) has a well-defined fermion parity, e.g., even, at the beginning of the preparation
procedure. At the end of the procedure, the fermion parity of the full system should still be even. To
prepare the desired superposition, one aims at a state with the structure 1p

2
(|ei + |oi)⌦(↵ |eienv+� |oienv).

Clearly, this is not an even state of the full system for any value of ↵ and �, so it cannot be prepared.

(b) If the KDD is isolated electronically (no tunneling) from its environment, then the its fermion parity
number is conserved. This means that this pseudoqubit shows no relaxation. Electrons tunneling between
the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to relaxation though;
sometimes the related processes are called ‘quasiparticle poisoning’.

(c) The FPPQ enjoys a certain degree of protection against dephasing due to on-site disorder, if we compare
the corresponding inhomogeneous dephasing time to that of a charge qubit experiencing the same amount
of on-site disorder. Following the arguments above, the minigap in the presence of on-site disorder of
strength � ⌧ v scales as Egap ⇠ �2/v. The e↵ective Hamiltonian of the FPPQ is H = Egap

2 �
z

, which
implies T ⇤

2 ⇠ ~/Egap ⇠ (v/�)T ⇤
2,c

� T ⇤
2,c

, i.e., the dephasing time is indeed prolonged with respect to
that of the charge qubit. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder.

IV. THE FPPQ CAN BE READ OUT USING PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the KDD is either in |ei or in |oi, and would like to find out which one.
A general strategy is to convert the parity information to charge information first, and then measure the charge
information. An example protocol realizing this is depicted in Fig. 1c. Here, site 3 is an auxiliary site (quantum
dot) that is used for the charge measurement, and the orange lines denote time-dependent hopping amplitudes
u(t).

2. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

3. The 2x degeneracy of the GS in the fully dimerized limit is a bit protected: a small on-site energy disorder
✏1, ✏2 ⌧ v splits the degeneracy only in second order, gap ⇠ ✏2/v. (Prove this. Plot the minigap E1 � E0

as function of ✏1 and ✏2. Plot the spectrum against ✏1 = ✏2.) It is not protected against ”hopping noise” or
”pair-potential noise”: if � �= v, then the degeneracy is split in first order in the deviation.

4. Introduce ‘relaxation’ and ‘dephasing’ via the ‘qubit basis’ and classical longitudinal and transverse noise.
Relaxation is possible only via quasiparticle poisoning. Dephasing from on-site energy noise is suppressed.
Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
ho|n1|oi = ho|n2|oi = 1/2. But we can read it out if we adiabatically detune from full dimerization, e.g., set
✏1 = ✏2 = v. Quote numbers from mathematica notebook. This is called parity-to-charge conversion. (Note
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FIG. 1. Simple quantum information protocols with the Kitaev double dot. (a) The Kitaev double dot, with on-site
energies ✏1 and ✏2, hopping v, and pair potential �. (b) Energy spectrum of the Kitaev double dot, for � = v and ✏1 = ✏2 = ✏.
(c) Setup for parity-to-charge conversion and parity readout of the Kitaev double dot (sites 1 and 2) using an auxiliary site
(3). (d) Two Kitaev double dots to form a Majorana qubit. (e) Setup for non-protected x-rotation of the Majorana qubit. (f)
Schematics of a Ramsey experiment of a qubit, aiming to measure the inhomogeneous dephasing time T ⇤

2 .

⇡
x

/2

⌧wait

2. The parameter set ✏1 = ✏2 = 0, � = v will be called the ‘topological fully dimerized’ case, for reasons to become
clear later. The energy values of the KDD in this case are E0 = E1 = �v, E2 = E3 = v. That is, the ground
state is twofold degenerate. The eigenvectors and corresponding energy eigenstates have the form:

 0 = (1, 0, 0, �1)/
p

2 ⌘ |ei =
1p
2

(|00i � |11i) (3)

 1 = (0, 1, �1, 0)/
p

2 ⌘ |oi =
1p
2

(|10i � |01i) (4)

 2 = (1, 0, 0, 1)/
p

2 ⌘ |e0i =
1p
2

(|00i + |11i) (5)

 3 = (0, 1, 1, 0)/
p

2 ⌘ |o0i =
1p
2

(|10i + |01i) (6)

II. FINITE ON-SITE ENERGY OPENS A MINIGAP

1. Starting from the topological fully dimerized limit, switch on identical on-site energies, ✏1 = ✏2 = ✏. The
Hamiltonian is still diagonalized exactly; the spectrum as a function of the on-site energy is shown in Fig. 1b.
The finite on-site energy ✏ splits the ground state degeneracy, i.e., creates a minigap, and the dependence of the
minigap on ✏ is quadratic: Egap = o(✏2/v). One can consider on-site disorder: independent random but small
values of the on-site energies, ✏1, ✏2 ⌧ v. Simple perturbation theory shows that such a disorder does open a
minigap, which is also quadratic: Egap = o(✏21/v) + o(✏1✏2/v) + o(✏22/v). However, it is also easy to see that in
the presence of weak hopping disorder or weak pair-potential disorder, the minigap is linear in the disorder.

2. Exercise: Express the exact energy eigenvalues and energy eigenstates of H away from the dimerized limit, for
arbitrary values of the 4 parameters.
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(c) ‘Qubit dephasing’ happens, e.g., if the qubit is subject to a Hamiltonian H(t) = ⇠(t)�
z

with ⇠(t) being a
noise, and the time evolution starts from a superposition of the two basis states, e.g., (|"i + |#i)/

p
2. In

that case, the Bloch vector of the qubit becomes randomized along the equator, meaning that the noise-
averaged Bloch vector approaches the origin. The characteristic time scale of this process is often denoted
as T ⇤

2 , and is called inhomogeneous dephasing time. In the first lecture, we have seen the example of a
charge qubit with hopping noise, with noise strength �, where the inhomogeneous dephasing time was
T ⇤

2,c

= ~/�. Similarly, a charge qubit with independent noise on the on-site energies with noise strength �,
in the absence of hopping noise, has the same inhomogeneous dephasing time T ⇤

2,c

= ~/�.

3. One could imagine using the even and odd ground states of the topological fully dimerized KDD as a qubit.
As we argue below, one cannot prepare a superposition though; hence we will call this two-level system the
‘fermion-parity pseudoqubit’, FPPQ.

(a) It is not possible to prepare a superposition of |ei and |oi. Argument 1: As long as we consider the KDD
itself, the even and odd sectors are decoupled. Argument 2: We could allow for an environment that helps us
preparing a superposition of the two KDD ground states. In that case, the fermion parity of the full system
(KDD+environment) has a well-defined fermion parity, e.g., even, at the beginning of the preparation
procedure. At the end of the procedure, the fermion parity of the full system should still be even. To
prepare the desired superposition, one aims at a state with the structure 1p

2
(|ei + |oi)⌦(↵ |eienv+� |oienv).

Clearly, this is not an even state of the full system for any value of ↵ and �, so it cannot be prepared.

(b) If the KDD is isolated electronically (no tunneling) from its environment, then the its fermion parity
number is conserved. This means that this pseudoqubit shows no relaxation. Electrons tunneling between
the KDD and its environment, or quasiparticles created, e.g., thermally, can lead to relaxation though;
sometimes the related processes are called ‘quasiparticle poisoning’.

(c) The FPPQ enjoys a certain degree of protection against dephasing due to on-site disorder, if we compare
the corresponding inhomogeneous dephasing time to that of a charge qubit experiencing the same amount
of on-site disorder. Following the arguments above, the minigap in the presence of on-site disorder of
strength � ⌧ v scales as Egap ⇠ �2/v. The e↵ective Hamiltonian of the FPPQ is H = Egap

2 �
z

, which
implies T ⇤

2 ⇠ ~/Egap ⇠ (v/�)T ⇤
2,c

� T ⇤
2,c

, i.e., the dephasing time is indeed prolonged with respect to
that of the charge qubit. Note that the FPPQ in the KDD is not protected against hopping disorder or
pair-potential disorder.

IV. THE FPPQ CAN BE READ OUT USING PARITY-TO-CHARGE CONVERSION

1. The task is the following: we know that the KDD is either in |ei or in |oi, and would like to find out which one.
A general strategy is to convert the parity information to charge information first, and then measure the charge
information. An example protocol realizing this is depicted in Fig. 1c. Here, site 3 is an auxiliary site (quantum
dot) that is used for the charge measurement, and the orange lines denote time-dependent hopping amplitudes
u(t).

2. A remark (thanks to Peter Makk): For a KDD, the fermion parity can be read out without parity-to-charge
conversion: in fact, by applying a strong charge measurement on both sites we obtain the total charge and
thereby the fermion parity. How does that opportunity change if we take a long chain? Is it enough to measure
the charge at the two end sites of the chain? No. By inspecting the ground-state wave functions for longer
chains, we conclude that the fermion parity is revealed only if all local charges are measured.

3. The 2x degeneracy of the GS in the fully dimerized limit is a bit protected: a small on-site energy disorder
✏1, ✏2 ⌧ v splits the degeneracy only in second order, gap ⇠ ✏2/v. (Prove this. Plot the minigap E1 � E0

as function of ✏1 and ✏2. Plot the spectrum against ✏1 = ✏2.) It is not protected against ”hopping noise” or
”pair-potential noise”: if � �= v, then the degeneracy is split in first order in the deviation.

4. Introduce ‘relaxation’ and ‘dephasing’ via the ‘qubit basis’ and classical longitudinal and transverse noise.
Relaxation is possible only via quasiparticle poisoning. Dephasing from on-site energy noise is suppressed.
Dephasing from hopping noise or pairpotential noise is not suppressed.

5. Can we read out the FPPQ by charge measurement? Not in the fully dimerized limit: he|n1|ei = he|n2|ei =
ho|n1|oi = ho|n2|oi = 1/2. But we can read it out if we adiabatically detune from full dimerization, e.g., set
✏1 = ✏2 = v. Quote numbers from mathematica notebook. This is called parity-to-charge conversion. (Note
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FIG. 1. Simple quantum information protocols with the Kitaev double dot. (a) The Kitaev double dot, with on-site
energies ✏1 and ✏2, hopping v, and pair potential �. (b) Energy spectrum of the Kitaev double dot, for � = v and ✏1 = ✏2 = ✏.
(c) Setup for parity-to-charge conversion and parity readout of the Kitaev double dot (sites 1 and 2) using an auxiliary site
(3). (d) Two Kitaev double dots to form a Majorana qubit. (e) Setup for non-protected x-rotation of the Majorana qubit. (f)
Schematics of a Ramsey experiment of a qubit, aiming to measure the inhomogeneous dephasing time T ⇤

2 .

⇡
x

/2

⌧wait

2. The parameter set ✏1 = ✏2 = 0, � = v will be called the ‘topological fully dimerized’ case, for reasons to become
clear later. The energy values of the KDD in this case are E0 = E1 = �v, E2 = E3 = v. That is, the ground
state is twofold degenerate. The eigenvectors and corresponding energy eigenstates have the form:

 0 = (1, 0, 0, �1)/
p

2 ⌘ |ei =
1p
2

(|00i � |11i) (3)

 1 = (0, 1, �1, 0)/
p

2 ⌘ |oi =
1p
2

(|10i � |01i) (4)

 2 = (1, 0, 0, 1)/
p

2 ⌘ |e0i =
1p
2

(|00i + |11i) (5)

 3 = (0, 1, 1, 0)/
p

2 ⌘ |o0i =
1p
2

(|10i + |01i) (6)

II. FINITE ON-SITE ENERGY OPENS A MINIGAP

1. Starting from the topological fully dimerized limit, switch on identical on-site energies, ✏1 = ✏2 = ✏. The
Hamiltonian is still diagonalized exactly; the spectrum as a function of the on-site energy is shown in Fig. 1b.
The finite on-site energy ✏ splits the ground state degeneracy, i.e., creates a minigap, and the dependence of the
minigap on ✏ is quadratic: Egap = o(✏2/v). One can consider on-site disorder: independent random but small
values of the on-site energies, ✏1, ✏2 ⌧ v. Simple perturbation theory shows that such a disorder does open a
minigap, which is also quadratic: Egap = o(✏21/v) + o(✏1✏2/v) + o(✏22/v). However, it is also easy to see that in
the presence of weak hopping disorder or weak pair-potential disorder, the minigap is linear in the disorder.

2. Exercise: Express the exact energy eigenvalues and energy eigenstates of H away from the dimerized limit, for
arbitrary values of the 4 parameters.

FIG. 1. Simple quantum information protocols with the Kitaev double dot. (a) The Kitaev double dot, with on-site
energies ✏1 and ✏2, hopping v, and pair potential �. (b) Energy spectrum of the Kitaev double dot, for � = v and ✏1 = ✏2 = ✏.
(c) Setup for parity-to-charge conversion and parity readout of the Kitaev double dot (sites 1 and 2) using an auxiliary site
(3). (d) Two Kitaev double dots to form a Majorana qubit. (e) Setup for non-protected x-rotation of the Majorana qubit. (f)
Schematics of a Ramsey experiment of a qubit. It aims to determine the noise-induced inhomogeneous dephasing time T ⇤

2 via
measuring the final-state polarization h�zi(⌧wait).

3. As before, we assume that we have experimentally realized this Hamiltonian, and have control over all param-
eters. We will also discuss what happens when these parameters have some uncontrolled components (disor-
der/noise).

4. The parameter set ✏1 = ✏2 = 0, � = v will be called the ‘topological fully dimerized’ case, for reasons to become
clear later. The energy values of the KDD in this case are E0 = E1 = �v, E2 = E3 = v. That is, the ground
state is twofold degenerate. The eigenvectors and corresponding energy eigenstates have the form:

 0 = (1, 0, 0, �1)/
p

2 ⌘ |ei =
1p
2

(|00i � |11i) (3)

 1 = (0, 1, �1, 0)/
p

2 ⌘ |oi =
1p
2

(|10i � |01i) (4)

 2 = (1, 0, 0, 1)/
p

2 ⌘ |e0i =
1p
2

(|00i + |11i) (5)

 3 = (0, 1, 1, 0)/
p

2 ⌘ |o0i =
1p
2

(|10i + |01i) (6)

II. FINITE ON-SITE ENERGY OPENS A MINIGAP

1. Starting from the topological fully dimerized limit, switch on identical on-site energies, ✏1 = ✏2 = ✏. The
Hamiltonian is still diagonalized exactly; the spectrum as a function of the on-site energy is shown in Fig. 1b.
The finite on-site energy ✏ splits the ground state degeneracy, i.e., creates a minigap, and the dependence of the
minigap on ✏ is quadratic: Egap = o(✏2/v). One can consider on-site disorder: independent random but small
values of the on-site energies, ✏1, ✏2 ⌧ v. Simple perturbation theory shows that such a disorder does open a
minigap, which is also quadratic: Egap = o(✏21/v) + o(✏1✏2/v) + o(✏22/v). However, it is also easy to see that in
the presence of weak hopping disorder or weak pair-potential disorder, the minigap is linear in the disorder.
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A Ramsey experiment in GaAs

regardless of the spin states. Once the pulse is removed,
electron tunneling is allowed again, but only for antipar-
allel spins (stages 3 and 4). The entire cycle lasts 2 !s and
is continuously repeated, resulting in a current flow which
is proportional to the average probability Podd to find
antiparallel spins at the end of stage 2.

We first use this scheme to measure the dephasing of
the spin via a Ramsey-style experiment [see pulse se-
quence in Fig. 2(a)]. After a "=2 pulse that creates a
coherent superposition between j"i and j#i, the spin is al-
lowed to freely evolve for a delay time # (for now, we rea-
son just in a single-spin picture, see below and Ref. [20]).

Subsequently, a 3"=2 pulse is applied, with a variable
phase. Ideally, if both rf pulses have the same phase (in
the rotating frame), the spin is rotated back to j"i, and the
system returns to spin blockade. If the phases between the
two pulses are 180!, the spin is rotated to j#i, and the
blockade is lifted. Figure 2(c) shows that for small #, the
signal indeed oscillates sinusoidally as a function of the
relative phase between the two rf pulses, analogous to the
well-known Ramsey interference fringes. For large #, how-
ever, the spin completely dephases during the delay time,
and the fringes disappear [Fig. 2(c)]. When the two pulses
are applied with the same phase [Fig. 2(a)], we find that the
signal saturates on a time scale of T"2 # 37 ns (obtained
from a Gaussian fit, see below), which gives a measure of
the dephasing time.

The observed Ramsey decay time is the result of the
hyperfine interaction between the electron spin and the
(about 106) randomly oriented nuclear spins in the host
material. The interaction can be described by a nuclear
field with a spectral content ranging from milliseconds to
seconds [22]. This is much longer than the 2 !s cycle time,
but much shorter than the averaging time for each mea-
surement point (#20 s). The nuclear field in the z direction
BN;z modifies the Larmor precession frequency of the
electron spin resulting in a coherence decay of e$%#=T

"
2 &2 ,

with T"2 '
!!!
2
p

@=g!b$# 30 ns [7,8] (assuming $ '
1:5 mT, extracted from the Rabi oscillations, see [23]).
This decay is plotted in Fig. 2(a) (solid line). However,
the observed Ramsey signal cannot be compared directly
with this curve because we have to take into account the
effect of the nuclear field during the "=2 and 3"=2 pulses
as well. Essentially, BN;z shifts the electron spin resonance
condition, and as a result the fixed-frequency rf pulses will
be somewhat off resonance which decreases the fidelity of
the rotations.

We include these effects in a simulation of the spin dy-
namics, and consider from here on not just a single spin but
the actual two-spin system. We thereby leave out the ex-
change interaction, as it can be neglected during the ma-
nipulation stage. At the end of the cycle, the two-spin state
is then given by j %#; BL;R&i ' UL

3"=2%BL&UR
3"=2%BR&(

VL# %BL&VR# %BR&UL
"=2%BL&UR

"=2%BR&j""i. Here, UL;R
% %BL;R& is

the single-spin time-evolution operator (for an intended %
rotation) resulting from the driving field and the z compo-
nent of the nuclear fields in the left and right dot, BL and
BR. The operator VL;R# %BL;R& represents the single-spin
evolution during a time # in the presence of the nuclear
field only. We can then compute Podd at the end of the pulse
sequence, averaging over two independent Gaussian dis-
tributions of nuclear fields in the left and right dot:

 

Podd%#& '
1

2"$2

ZZ
e$)%B

2
L*B2

R&=2$2+

( ~Podd%#; BL;R&dBLdBR;

~Podd%#; BL;R& ' jh %#; BL;R&j"#ij2 * jh %#; BL;R&j#"ij2:
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FIG. 2 (color online). (a) Ramsey signal as a function of free-
evolution time # (each point averaged over 20 s at constant
Bext ' 42 mT, fac ' 210 MHz, Bac ' 3 mT). As shown in the
inset, this gives a Rabi period #2" of 120 ns [20]. In order to
optimize the visibility of the decay, the second pulse is a 3"=2
pulse instead of the usual "=2 pulse. Solid line: Gaussian decay
with T"2 ' 30 ns, corresponding to $ ' 1:5 mT. Dotted
line: Numerically calculated current. First Podd is computed
taking $ ' 1:5 mT, and then the current is derived as Idot '
Podd%m* 1&80* 23 fA (m and offset due to background current
obtained from fit). A current of 80 fA corresponds to one
electron transition per 2 !s cycle, and m is the additional
number of electrons that tunnel through the dot on average
before the current is blocked again. Here, we find m ' 1:44;
the deviation from the expected m ' 1 is not understood and
discussed in [20]. (b) Measured and numerically calculated
Ramsey signal for a wide range of driving fields. We assume
$ ' 1:5 mT, and estimate the current as Podd%m* 1&80*
23 fA (m ' 1:5) for #2" ' 40–220 ns, and as Podd%m* 1&80*
43 fA (m ' 1:5) for #2" ' 440 ns. (c) Ramsey signal as a
function of the relative phase between the two rf bursts for # '
10 (crosses) and 150 ns (circles). Gray dashed line is a best fit of
a cosine to the data.
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orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 

a b c dMagnetic field

Electric
field

+

Electron
spin
Electron
spin

Electron
spin
Electron
spin

Nuclear spins

Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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external B-field

field created by nuclear spins 
`nuclear field’ = `Overhauser field’

Quasistatic approximation:  
(1) BN is constant for each run of the experiment  

(2) BN changes randomly between subsequent runs

Weak nuclear field approximation: 
BN << B0

Gaussian nuclear field approximation:!
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Noise-averaged dynamics of the polarization vector
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regardless of the spin states. Once the pulse is removed,
electron tunneling is allowed again, but only for antipar-
allel spins (stages 3 and 4). The entire cycle lasts 2 !s and
is continuously repeated, resulting in a current flow which
is proportional to the average probability Podd to find
antiparallel spins at the end of stage 2.

We first use this scheme to measure the dephasing of
the spin via a Ramsey-style experiment [see pulse se-
quence in Fig. 2(a)]. After a "=2 pulse that creates a
coherent superposition between j"i and j#i, the spin is al-
lowed to freely evolve for a delay time # (for now, we rea-
son just in a single-spin picture, see below and Ref. [20]).

Subsequently, a 3"=2 pulse is applied, with a variable
phase. Ideally, if both rf pulses have the same phase (in
the rotating frame), the spin is rotated back to j"i, and the
system returns to spin blockade. If the phases between the
two pulses are 180!, the spin is rotated to j#i, and the
blockade is lifted. Figure 2(c) shows that for small #, the
signal indeed oscillates sinusoidally as a function of the
relative phase between the two rf pulses, analogous to the
well-known Ramsey interference fringes. For large #, how-
ever, the spin completely dephases during the delay time,
and the fringes disappear [Fig. 2(c)]. When the two pulses
are applied with the same phase [Fig. 2(a)], we find that the
signal saturates on a time scale of T"2 # 37 ns (obtained
from a Gaussian fit, see below), which gives a measure of
the dephasing time.

The observed Ramsey decay time is the result of the
hyperfine interaction between the electron spin and the
(about 106) randomly oriented nuclear spins in the host
material. The interaction can be described by a nuclear
field with a spectral content ranging from milliseconds to
seconds [22]. This is much longer than the 2 !s cycle time,
but much shorter than the averaging time for each mea-
surement point (#20 s). The nuclear field in the z direction
BN;z modifies the Larmor precession frequency of the
electron spin resulting in a coherence decay of e$%#=T

"
2 &2 ,

with T"2 '
!!!
2
p

@=g!b$# 30 ns [7,8] (assuming $ '
1:5 mT, extracted from the Rabi oscillations, see [23]).
This decay is plotted in Fig. 2(a) (solid line). However,
the observed Ramsey signal cannot be compared directly
with this curve because we have to take into account the
effect of the nuclear field during the "=2 and 3"=2 pulses
as well. Essentially, BN;z shifts the electron spin resonance
condition, and as a result the fixed-frequency rf pulses will
be somewhat off resonance which decreases the fidelity of
the rotations.

We include these effects in a simulation of the spin dy-
namics, and consider from here on not just a single spin but
the actual two-spin system. We thereby leave out the ex-
change interaction, as it can be neglected during the ma-
nipulation stage. At the end of the cycle, the two-spin state
is then given by j %#; BL;R&i ' UL

3"=2%BL&UR
3"=2%BR&(

VL# %BL&VR# %BR&UL
"=2%BL&UR

"=2%BR&j""i. Here, UL;R
% %BL;R& is

the single-spin time-evolution operator (for an intended %
rotation) resulting from the driving field and the z compo-
nent of the nuclear fields in the left and right dot, BL and
BR. The operator VL;R# %BL;R& represents the single-spin
evolution during a time # in the presence of the nuclear
field only. We can then compute Podd at the end of the pulse
sequence, averaging over two independent Gaussian dis-
tributions of nuclear fields in the left and right dot:
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FIG. 2 (color online). (a) Ramsey signal as a function of free-
evolution time # (each point averaged over 20 s at constant
Bext ' 42 mT, fac ' 210 MHz, Bac ' 3 mT). As shown in the
inset, this gives a Rabi period #2" of 120 ns [20]. In order to
optimize the visibility of the decay, the second pulse is a 3"=2
pulse instead of the usual "=2 pulse. Solid line: Gaussian decay
with T"2 ' 30 ns, corresponding to $ ' 1:5 mT. Dotted
line: Numerically calculated current. First Podd is computed
taking $ ' 1:5 mT, and then the current is derived as Idot '
Podd%m* 1&80* 23 fA (m and offset due to background current
obtained from fit). A current of 80 fA corresponds to one
electron transition per 2 !s cycle, and m is the additional
number of electrons that tunnel through the dot on average
before the current is blocked again. Here, we find m ' 1:44;
the deviation from the expected m ' 1 is not understood and
discussed in [20]. (b) Measured and numerically calculated
Ramsey signal for a wide range of driving fields. We assume
$ ' 1:5 mT, and estimate the current as Podd%m* 1&80*
23 fA (m ' 1:5) for #2" ' 40–220 ns, and as Podd%m* 1&80*
43 fA (m ' 1:5) for #2" ' 440 ns. (c) Ramsey signal as a
function of the relative phase between the two rf bursts for # '
10 (crosses) and 150 ns (circles). Gray dashed line is a best fit of
a cosine to the data.
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is continuously repeated, resulting in a current flow which
is proportional to the average probability Podd to find
antiparallel spins at the end of stage 2.
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quence in Fig. 2(a)]. After a "=2 pulse that creates a
coherent superposition between j"i and j#i, the spin is al-
lowed to freely evolve for a delay time # (for now, we rea-
son just in a single-spin picture, see below and Ref. [20]).
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phase. Ideally, if both rf pulses have the same phase (in
the rotating frame), the spin is rotated back to j"i, and the
system returns to spin blockade. If the phases between the
two pulses are 180!, the spin is rotated to j#i, and the
blockade is lifted. Figure 2(c) shows that for small #, the
signal indeed oscillates sinusoidally as a function of the
relative phase between the two rf pulses, analogous to the
well-known Ramsey interference fringes. For large #, how-
ever, the spin completely dephases during the delay time,
and the fringes disappear [Fig. 2(c)]. When the two pulses
are applied with the same phase [Fig. 2(a)], we find that the
signal saturates on a time scale of T"2 # 37 ns (obtained
from a Gaussian fit, see below), which gives a measure of
the dephasing time.

The observed Ramsey decay time is the result of the
hyperfine interaction between the electron spin and the
(about 106) randomly oriented nuclear spins in the host
material. The interaction can be described by a nuclear
field with a spectral content ranging from milliseconds to
seconds [22]. This is much longer than the 2 !s cycle time,
but much shorter than the averaging time for each mea-
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the observed Ramsey signal cannot be compared directly
with this curve because we have to take into account the
effect of the nuclear field during the "=2 and 3"=2 pulses
as well. Essentially, BN;z shifts the electron spin resonance
condition, and as a result the fixed-frequency rf pulses will
be somewhat off resonance which decreases the fidelity of
the rotations.

We include these effects in a simulation of the spin dy-
namics, and consider from here on not just a single spin but
the actual two-spin system. We thereby leave out the ex-
change interaction, as it can be neglected during the ma-
nipulation stage. At the end of the cycle, the two-spin state
is then given by j %#; BL;R&i ' UL
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rotation) resulting from the driving field and the z compo-
nent of the nuclear fields in the left and right dot, BL and
BR. The operator VL;R# %BL;R& represents the single-spin
evolution during a time # in the presence of the nuclear
field only. We can then compute Podd at the end of the pulse
sequence, averaging over two independent Gaussian dis-
tributions of nuclear fields in the left and right dot:
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FIG. 2 (color online). (a) Ramsey signal as a function of free-
evolution time # (each point averaged over 20 s at constant
Bext ' 42 mT, fac ' 210 MHz, Bac ' 3 mT). As shown in the
inset, this gives a Rabi period #2" of 120 ns [20]. In order to
optimize the visibility of the decay, the second pulse is a 3"=2
pulse instead of the usual "=2 pulse. Solid line: Gaussian decay
with T"2 ' 30 ns, corresponding to $ ' 1:5 mT. Dotted
line: Numerically calculated current. First Podd is computed
taking $ ' 1:5 mT, and then the current is derived as Idot '
Podd%m* 1&80* 23 fA (m and offset due to background current
obtained from fit). A current of 80 fA corresponds to one
electron transition per 2 !s cycle, and m is the additional
number of electrons that tunnel through the dot on average
before the current is blocked again. Here, we find m ' 1:44;
the deviation from the expected m ' 1 is not understood and
discussed in [20]. (b) Measured and numerically calculated
Ramsey signal for a wide range of driving fields. We assume
$ ' 1:5 mT, and estimate the current as Podd%m* 1&80*
23 fA (m ' 1:5) for #2" ' 40–220 ns, and as Podd%m* 1&80*
43 fA (m ' 1:5) for #2" ' 440 ns. (c) Ramsey signal as a
function of the relative phase between the two rf bursts for # '
10 (crosses) and 150 ns (circles). Gray dashed line is a best fit of
a cosine to the data.
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FIG. 3: Qubit coherence. The spin state statistics are normalized with respect to the visibility to account for fluctuations between
different measurements. a By varying the delay time ⌧w between two ⇡x/2 pulses (see inset), Ramsey oscillations arise in the spin-up
fraction f". Fitting the decay with fN, = e�[⌧/T⇤

2 ]↵ , with ↵ = 1.3, we deduce a dephasing time T ⇤
2 = 120 µs. b A Hahn-echo pulse sequence

incorporates an additional ⇡-pulse (inset), and compensates for slow drifts in the environment. The resulting spin-up fraction f" decay gives
the spin coherence time TH

2 = 1.2 ms. c By applying a CPMG pulse sequence (inset) we can further enhance the coherence time, giving
TCPMG
2 = 28 ms.

previously[26].

The same internal electric field that we use to tune the val-
ley splitting can also be used to tune the qubit resonance fre-
quency by more than 8 MHz (Fig. 5b, and Supplementary
Information), corresponding to more than 3000 times the min-
imum observed ESR linewidth. This tunability, which is re-
markable for a system with these long coherence times, pro-
vides encouraging prospects for scalability. We can operate
our device in regimes both above and below the spin-valley
anticrossing with no discernable impact on the ESR frequency
dependence with Fz , demonstrating a gate-addressable and
high-fidelity qubit well away from the valley anticrossing
point, where the relaxation time dramatically drops[26]. The
electric field creates a Stark shift of the electron g

⇤-factor
due to the small but finite spin-orbit coupling. Tight binding
simulations[18] and measurements on donors in silicon[28]
indicate a quadratic Stark shift in g

⇤. By fitting our data we
find a quadratic Stark coefficient of ⌘2 = 2.2 nm2/V2, compa-
rable to that calculated in Rahman et al. [18].

The results presented here demonstrate that a single elec-
tron spin confined to a quantum dot in isotopically purified sil-
icon can serve as a robust qubit platform for solid-state quan-
tum computing. We have demonstrated long qubit coherence
times, high fidelity control over the qubit, and the ability to
individually address qubits via electrostatic gate-voltage con-
trol, meeting key criteria for quantum computation[2]. The
relevant coherence times (T ⇤

2 , TH
2 and T

CPMG
2 ) of our sys-

tem exceed by two orders of magnitude the times of previ-
ous quantum dot qubits[14, 15], while the fastest measured

Rabi period of 400 ns combined with our TCPMG
2 = 28 ms

enables more than 105 computational operations within the
qubit coherence time. A recent experiment[29] on a phos-
phorus donor qubit in 28Si found out that T

CPMG
2 is lim-

ited by Johnson-Nyquist thermal noise delivered via the on-
chip ESR line, which is also the likely scenario for the quan-
tum dot qubit given the comparable coherence times. This
opens the possibility to increase coherence times even fur-
ther. Faster qubit operations could be achieved by operating
pairs of quantum dots as singlet-triplet qubits[9], with the po-
tential to further increase the number of coherent operations.
Such singlet-triplet qubits could not rely on a magnetic field
gradient from lattice nuclear spins, since these are absent in
isotopically enriched silicon, however a field gradient could
be realized via an on-chip nanomagnet. The voltage-tunable
Stark shift demonstrated here could also be exploited to create
different effective g

⇤-factors for the individual dots.

Direct gate addressability opens the prospect for many
qubits to be integrated on a single chip, with global ac mag-
netic fields applied via a cavity or on-chip transmission lines
to realize single qubit operations. Two-qubit operations could
then be achieved, for example, via gate-controlled exchange
coupling between pairs of quantum dots. A recent model,
applicable to our qubit system, predicts that 2-qubit gate op-
erations with high fidelities are also possible[30]. Taken to-
gether with the high control fidelities demonstrated for our 1-
qubit gate, this now places quantum dot spin qubits as a viable
candidate for fault-tolerant quantum computing. While scal-
ing qubits involves complex wiring and will be a formidable

Si-28 
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orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 
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Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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orders of magnitude. A third timescale, T2*, is often used to denote the 
time after which the electron phase is randomized during free evolution. 
If the spin manipulation time is less than T2*, the fidelity of the control 
can be severely reduced, which adds a second requirement for quantum 
information application.

Quantum coherence of spins in semiconductor quantum dots is lim-
ited by coupling to other degrees of freedom in the environment. Elec-
trons or holes can couple to states outside the quantum dot (Fig. 3a), and 
fluctuations in the electrical potential can indirectly lead to decoherence 
of the spin (Fig. 3b).

The absence of inversion symmetry in the lattice and the presence of 
electric fields or confinement asymmetries lead to coupling between spin 
and the motion of electrons (Fig. 3c). This spin–orbit coupling mixes 
the spin eigenstates. Except for small energy splitting, spin relaxation in 
group III–V quantum dots is typically dominated by spin–orbit coupling 
in combination with phonon emission that takes away the excess energy. 
Measurements of the spin relaxation time in many different devices have 
confirmed the theoretically predicted dependence on magnetic field and 
temperature8. However, the phase of localized electron spins is much 
less sensitive to the spin–orbit coupling15. The spin decoherence time, 
T2, of electrons in group III–V quantum dots is typically limited by the 
nuclear spins (Fig. 3d).

The hyperfine interaction with the nuclear spins has two effects on the 
electron spin42. First, each nuclear spin exerts a tiny effective magnetic 
field on the electron spin. The sum of the fields of the roughly 1 million 
nuclear spins in a quantum dot, known as the Overhauser field, can be 
large (up to several tesla) if the nuclear spins all point in the same direc-
tion. The magnetic moment associated with the nuclear spins is small, 
so the thermal polarization is tiny even at millikelvin temperatures. 
However, the Overhauser field still fluctuates around this tiny average. 
A simple estimate tells us that for n nuclear spins, the statistical variation 
is of the order of √n, which corresponds to an effective magnetic field of 
a few millitesla for a typical group III–V quantum dot. Such a field causes 
the phase of the electron spin to change by π in roughly 10 ns. A measure-
ment usually lasts tens of seconds, during which time the nuclear spins 
change orientation many times. One measurement therefore yields an 
average over many different nuclear spin configurations, leading to ran-
dom phase variations between successive measurements. This leads to 
a dephasing time, T2*, of about 10 ns (refs 13, 14), a timescale that was 
first verified in optical experiments43,44.

The Overhauser field changes slowly relative to the spin manipulation 
time, because the nuclear spins interact weakly both among themselves 
and with their surroundings. For example, recent optical experiments 

indicate that, in certain circumstances, nuclear spin polarizations in quan-
tum dots can sometimes survive for up to an hour45. Simple spin-echo 
techniques can therefore be used to eliminate the effect of the quasi-static 
Overhauser field, provided that the electron spin can be manipulated on 
a timescale that is short compared with the spin precession time in the 
Overhauser field. There are two approaches to achieving this. The most 
straightforward is to make the manipulation time very short, either by 
using the exchange energy in two-spin systems or by optical manipula-
tion using the a.c. Stark effect. Alternatively, the Overhauser field can be 
made smaller. One way of doing this is to narrow the distribution of the 
Overhauser fields by bringing the nuclear spins to a specific and stable 
quantum state46–48. Another option is to polarize all of the nuclear spins. 
Nuclear spin polarizations of up to 60% have been measured in quantum 
dots44,49, but it is anticipated that a polarization far above 90% is required 
for a significant effect50.

Another effect of the nuclear spins on the electron spin coherence 
comes from flip-flop processes42, in which a flip of the electron spin (say 
from spin up to spin down) is accompanied by a flop of one nuclear spin 
(from spin down to spin up). In a first-order process, this leads to spin 
relaxation (the electron spin is flipped). If the electron spin is continu-
ously repolarized, for example by optical pumping, the nuclear spins 
will all be flopped into the same spin state. After many such flip-flop 
events, a significant nuclear spin polarization can arise. This process 
is called dynamical nuclear polarization. If there is a large energy mis-
match between the electron spin splitting and the nuclear spin split-
ting (because there is an external magnetic field, for instance), this 
first-order process is strongly suppressed. Second-order processes — in 
which two nuclear spins exchange their state by two flip-flops with 
the electron spin — are still possible. Through these virtual flip-flops, 
the nuclear spins can change orientation much faster than is possible 
with the magnetic dipolar interaction with nearby nuclear spins. This 
effectively leads to spin diffusion. The observed T2 of about a micro-
second is thought to be compatible with this picture, although firm 
experimental evidence isolating the different causes of nuclear field 
fluctuations is still lacking8. 

Spins of holes in the valence band of group III–V semiconductors have 
wavefunctions that have zero weight at the position of the nuclei, so the 
contact hyperfine interaction should not affect the coherence of holes. 
Richard Warburton and co-workers have recently initialized single hole 
spins in quantum dots at zero magnetic field51 by adapting a procedure 
that was previously demonstrated on single elec tron spins52.

The detrimental effect of the nuclear spins on the coherence in quan-
tum dots has also spurred research into materials systems that contain 

a b c dMagnetic field

Electric
field

+

Electron
spin
Electron
spin

Electron
spin
Electron
spin

Nuclear spins

Figure 3 | Spin decoherence in quantum dots. The coherence of spins 
in quantum dots is affected by several mechanisms. a, Co-tunnelling. 
Although energy conservation forbids first-order tunnelling of charge 
carriers to states outside the dot at higher energy, second-order tunnelling 
processes (co-tunnelling) — in which a charge carrier tunnels from the 
dot to a reservoir and is replaced by a different charge carrier from the 
reservoir — are allowed83. The charge carrier from the reservoir will in 
general not be in the same spin quantum state as the one that first occupied 
the dot, so this process causes spin coherence to be lost. By increasing the 
energy difference between the dot and the reservoir states, and also making 
the tunnel coupling between them small, co-tunnelling processes can 
effectively be suppressed. b, Charge noise. Fluctuations in the electrical 
potential (charge noise) do not couple directly to the spin but can influence 
the spin dynamics indirectly. For example, the energy splitting, J, between 

singlet and triplet states in a double quantum dot depends strongly 
on the height of the tunnel barrier between the dots and the alignment 
of the levels in the dots. Any changes in the electrostatic environment 
can lead to changes (indicated by red arrows) in the barrier height and 
level misalignment, which modify J and therefore induce random phase 
shifts between the singlet and triplet states84,85. Charge switching and 
gate-voltage noise are two possible causes for such changes86. c, Spin–orbit 
coupling. The coupling between the spin and orbital of charge carriers 
leads to mixing of the spin states in a quantum dot. As a result of this 
coupling, any disturbance of the orbitals leads to phase fluctuations of 
the spin state. d, Nuclear spins. The charge carriers in the dot couple 
to the nuclear spins of the host material. These nuclear spins exert an 
effective magnetic field, and allow spin flip-flop processes that lead to spin 
relaxation and decoherence.
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How accurate is the quasistatic noise model?

IF Spin Echo experiment yields perfect memory, THEN noise is quasistatic.
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How accurate is the quasistatic noise model?

This numerically calculated Idot / Podd!!" is plotted in
Fig. 2(a) (dotted line). We see that the predicted decay
time is longer when the rotations are imperfect due to reso-
nance offsets. This is more clearly visible in Fig. 2(b),
where the computed curves are shown together with
Ramsey measurements for a wide range of driving fields.
The experimentally observed Ramsey decay time is longer
for smaller Bac, in good agreement with the numerical
result. This effect can be understood by considering that
a burst does not (much) rotate a spin when the nuclear field
pushes the resonance condition outside the Lorentzian line
shape of the excitation with width Bac. If the spin is not
rotated into a superposition, it cannot dephase either. As a
result, the cases when the nuclear field is larger than the
excitation linewidth do not contribute to the measured co-
herence decay. The recorded dephasing time is thus artifi-
cially extended when low-power rf bursts are used
(Bac=2" & 1). However, in Fig. 2(a), this is only a small
effect.

We remark that the experiments discussed here allow us
to probe single-spin coherence even though the experi-
ments are carried out with two spins and the rf excitation
is applied to both dots simultaneously. First, the two spins
have different resonance conditions due to the nuclear
fields which are generally different in the two dots.
Second, the exchange interaction between the two spins
can be neglected during the manipulation stage. Therefore,
for small enough driving fields (B1 < ") the rf pulses
rotate predominantly one spin (reported and analyzed in
[20,23]), and the observed Ramsey and echo decay is
expected to be due to single-spin decoherence.

We now test to what extent the electron spin dephasing is
reversible using a spin-echo pulse. In Fig. 3(a) the applied
pulse sequence (inset) and the measured signal as a func-
tion of the total free-evolution time (main panel) are
shown. We see immediately that the spin-echo decay
time T2;echo is much longer than the dephasing time T#2 .
This is also clear from the data in Fig. 3(c), which is taken
in a similar fashion as the Ramsey data in Fig. 2(c), but
now with an echo pulse applied halfway through the delay
time. Whereas the fringes were fully suppressed for a
150 ns delay time without an echo pulse, they are still
clearly visible after 150 ns if an echo pulse is used. As a
further check, we measured the echo signal as a function of
!1 $ !2 [Fig. 3(b)]. As expected, the echo is optimal for
!1 % !2 and deteriorates as j!1 $ !2j is increased. The dip
in the data at !1 $ !2 % 0 has a half width of &27 ns,
similar to the observed T#2 .

Upon closer inspection, the spin-echo signal in Fig. 3(a)
reveals two types of decay. First, there is an initial decay
with a typical time scale of 33 ns (obtained from a
Gaussian fit), which is comparable to the observed
Ramsey decay time when using the same Bac. This fast
initial decay occurs because the echo pulse itself is also
affected by the nuclear field. As a result it fails to reverse
the electron spin time evolution for part of the nuclear spin

configurations, in which case the fast dephasing still oc-
curs, similar as in the Ramsey decay. To confirm this, we
calculate numerically the echo signal, including the effect
of resonance offsets from the nuclear fields, similar as in
the simulations of the Ramsey experiment. We find rea-
sonable agreement of the data with the numerical curve
[dotted line in Fig. 3(a)], regarding both the decay time and
the amplitude.

The slower decay in Fig. 3(a) corresponds to the loss of
coherence that cannot be reversed by a perfect echo pulse.
We extract the spin-echo coherence time T2;echo from a best
fit of a' be$(!!1'!2"=T2;echo)d to the data (a, b, T2;echo are fit
parameters and d is kept fixed) and find T2;echo % !290*
50" ns at Bext % 42 mT for d % 3 [see Fig. 3(a), solid line].
We note that the precise functional form of the decay is
hard to extract from the data, but we find similar decay
times and reasonable fits for the range d % 2–4.

Measurements at higher Bext are shown in Figs. 4(a) and
4(b). Here, experiments were only possible by decreasing
the driving field and, as expected, we thus find a longer
initial decay time, similar as seen in Fig. 2(b) for Ramsey
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FIG. 3 (color online). (a) Spin-echo signal as a function of
total free-evolution time !1 ' !2 (each point averaged over 20 s
at constant Bext % 42 mT, fac % 210 MHz, Bac % 3 mT).
Dashed line: Best fit of a Gaussian curve to the data in the range
!1 ' !2 % 0–100 ns. Solid line: Best fit of e$(!!1'!2"=T2;echo)3 to
the data in the range !1'!2%100–800 ns. Dotted line: Nu-
merically calculated dot current Podd!m' 1"80' 25 fA, taking
" % 1:5 mT in both dots and m % 1:83. The scatter in the data
points is not due to the noise of the measurement electronics
(noise floor about 5 fA), but is caused by incomplete averaging
over the statistical nuclear field. (b) Spin-echo signal as a
function of !1 $ !2. Dashed line: Best fit of a Gaussian curve
to the data. (c) Spin-echo signal for !1 ' !2 % 150 ns as a
function of the relative phase between the first two and third
pulse. Dashed line is the best fit of a cosine to the data.
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regardless of the spin states. Once the pulse is removed,
electron tunneling is allowed again, but only for antipar-
allel spins (stages 3 and 4). The entire cycle lasts 2 !s and
is continuously repeated, resulting in a current flow which
is proportional to the average probability Podd to find
antiparallel spins at the end of stage 2.

We first use this scheme to measure the dephasing of
the spin via a Ramsey-style experiment [see pulse se-
quence in Fig. 2(a)]. After a "=2 pulse that creates a
coherent superposition between j"i and j#i, the spin is al-
lowed to freely evolve for a delay time # (for now, we rea-
son just in a single-spin picture, see below and Ref. [20]).

Subsequently, a 3"=2 pulse is applied, with a variable
phase. Ideally, if both rf pulses have the same phase (in
the rotating frame), the spin is rotated back to j"i, and the
system returns to spin blockade. If the phases between the
two pulses are 180!, the spin is rotated to j#i, and the
blockade is lifted. Figure 2(c) shows that for small #, the
signal indeed oscillates sinusoidally as a function of the
relative phase between the two rf pulses, analogous to the
well-known Ramsey interference fringes. For large #, how-
ever, the spin completely dephases during the delay time,
and the fringes disappear [Fig. 2(c)]. When the two pulses
are applied with the same phase [Fig. 2(a)], we find that the
signal saturates on a time scale of T"2 # 37 ns (obtained
from a Gaussian fit, see below), which gives a measure of
the dephasing time.

The observed Ramsey decay time is the result of the
hyperfine interaction between the electron spin and the
(about 106) randomly oriented nuclear spins in the host
material. The interaction can be described by a nuclear
field with a spectral content ranging from milliseconds to
seconds [22]. This is much longer than the 2 !s cycle time,
but much shorter than the averaging time for each mea-
surement point (#20 s). The nuclear field in the z direction
BN;z modifies the Larmor precession frequency of the
electron spin resulting in a coherence decay of e$%#=T

"
2 &2 ,

with T"2 '
!!!
2
p

@=g!b$# 30 ns [7,8] (assuming $ '
1:5 mT, extracted from the Rabi oscillations, see [23]).
This decay is plotted in Fig. 2(a) (solid line). However,
the observed Ramsey signal cannot be compared directly
with this curve because we have to take into account the
effect of the nuclear field during the "=2 and 3"=2 pulses
as well. Essentially, BN;z shifts the electron spin resonance
condition, and as a result the fixed-frequency rf pulses will
be somewhat off resonance which decreases the fidelity of
the rotations.

We include these effects in a simulation of the spin dy-
namics, and consider from here on not just a single spin but
the actual two-spin system. We thereby leave out the ex-
change interaction, as it can be neglected during the ma-
nipulation stage. At the end of the cycle, the two-spin state
is then given by j %#; BL;R&i ' UL

3"=2%BL&UR
3"=2%BR&(

VL# %BL&VR# %BR&UL
"=2%BL&UR

"=2%BR&j""i. Here, UL;R
% %BL;R& is

the single-spin time-evolution operator (for an intended %
rotation) resulting from the driving field and the z compo-
nent of the nuclear fields in the left and right dot, BL and
BR. The operator VL;R# %BL;R& represents the single-spin
evolution during a time # in the presence of the nuclear
field only. We can then compute Podd at the end of the pulse
sequence, averaging over two independent Gaussian dis-
tributions of nuclear fields in the left and right dot:

 

Podd%#& '
1

2"$2

ZZ
e$)%B

2
L*B2

R&=2$2+

( ~Podd%#; BL;R&dBLdBR;

~Podd%#; BL;R& ' jh %#; BL;R&j"#ij2 * jh %#; BL;R&j#"ij2:
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FIG. 2 (color online). (a) Ramsey signal as a function of free-
evolution time # (each point averaged over 20 s at constant
Bext ' 42 mT, fac ' 210 MHz, Bac ' 3 mT). As shown in the
inset, this gives a Rabi period #2" of 120 ns [20]. In order to
optimize the visibility of the decay, the second pulse is a 3"=2
pulse instead of the usual "=2 pulse. Solid line: Gaussian decay
with T"2 ' 30 ns, corresponding to $ ' 1:5 mT. Dotted
line: Numerically calculated current. First Podd is computed
taking $ ' 1:5 mT, and then the current is derived as Idot '
Podd%m* 1&80* 23 fA (m and offset due to background current
obtained from fit). A current of 80 fA corresponds to one
electron transition per 2 !s cycle, and m is the additional
number of electrons that tunnel through the dot on average
before the current is blocked again. Here, we find m ' 1:44;
the deviation from the expected m ' 1 is not understood and
discussed in [20]. (b) Measured and numerically calculated
Ramsey signal for a wide range of driving fields. We assume
$ ' 1:5 mT, and estimate the current as Podd%m* 1&80*
23 fA (m ' 1:5) for #2" ' 40–220 ns, and as Podd%m* 1&80*
43 fA (m ' 1:5) for #2" ' 440 ns. (c) Ramsey signal as a
function of the relative phase between the two rf bursts for # '
10 (crosses) and 150 ns (circles). Gray dashed line is a best fit of
a cosine to the data.
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Ramsey Spin Echo

Spin Echo is not perfect, but works: decay 7x slower.

Initial decay: 
time scale as in Ramsey 

caused by imperfect 

This numerically calculated Idot / Podd!!" is plotted in
Fig. 2(a) (dotted line). We see that the predicted decay
time is longer when the rotations are imperfect due to reso-
nance offsets. This is more clearly visible in Fig. 2(b),
where the computed curves are shown together with
Ramsey measurements for a wide range of driving fields.
The experimentally observed Ramsey decay time is longer
for smaller Bac, in good agreement with the numerical
result. This effect can be understood by considering that
a burst does not (much) rotate a spin when the nuclear field
pushes the resonance condition outside the Lorentzian line
shape of the excitation with width Bac. If the spin is not
rotated into a superposition, it cannot dephase either. As a
result, the cases when the nuclear field is larger than the
excitation linewidth do not contribute to the measured co-
herence decay. The recorded dephasing time is thus artifi-
cially extended when low-power rf bursts are used
(Bac=2" & 1). However, in Fig. 2(a), this is only a small
effect.

We remark that the experiments discussed here allow us
to probe single-spin coherence even though the experi-
ments are carried out with two spins and the rf excitation
is applied to both dots simultaneously. First, the two spins
have different resonance conditions due to the nuclear
fields which are generally different in the two dots.
Second, the exchange interaction between the two spins
can be neglected during the manipulation stage. Therefore,
for small enough driving fields (B1 < ") the rf pulses
rotate predominantly one spin (reported and analyzed in
[20,23]), and the observed Ramsey and echo decay is
expected to be due to single-spin decoherence.

We now test to what extent the electron spin dephasing is
reversible using a spin-echo pulse. In Fig. 3(a) the applied
pulse sequence (inset) and the measured signal as a func-
tion of the total free-evolution time (main panel) are
shown. We see immediately that the spin-echo decay
time T2;echo is much longer than the dephasing time T#2 .
This is also clear from the data in Fig. 3(c), which is taken
in a similar fashion as the Ramsey data in Fig. 2(c), but
now with an echo pulse applied halfway through the delay
time. Whereas the fringes were fully suppressed for a
150 ns delay time without an echo pulse, they are still
clearly visible after 150 ns if an echo pulse is used. As a
further check, we measured the echo signal as a function of
!1 $ !2 [Fig. 3(b)]. As expected, the echo is optimal for
!1 % !2 and deteriorates as j!1 $ !2j is increased. The dip
in the data at !1 $ !2 % 0 has a half width of &27 ns,
similar to the observed T#2 .

Upon closer inspection, the spin-echo signal in Fig. 3(a)
reveals two types of decay. First, there is an initial decay
with a typical time scale of 33 ns (obtained from a
Gaussian fit), which is comparable to the observed
Ramsey decay time when using the same Bac. This fast
initial decay occurs because the echo pulse itself is also
affected by the nuclear field. As a result it fails to reverse
the electron spin time evolution for part of the nuclear spin

configurations, in which case the fast dephasing still oc-
curs, similar as in the Ramsey decay. To confirm this, we
calculate numerically the echo signal, including the effect
of resonance offsets from the nuclear fields, similar as in
the simulations of the Ramsey experiment. We find rea-
sonable agreement of the data with the numerical curve
[dotted line in Fig. 3(a)], regarding both the decay time and
the amplitude.

The slower decay in Fig. 3(a) corresponds to the loss of
coherence that cannot be reversed by a perfect echo pulse.
We extract the spin-echo coherence time T2;echo from a best
fit of a' be$(!!1'!2"=T2;echo)d to the data (a, b, T2;echo are fit
parameters and d is kept fixed) and find T2;echo % !290*
50" ns at Bext % 42 mT for d % 3 [see Fig. 3(a), solid line].
We note that the precise functional form of the decay is
hard to extract from the data, but we find similar decay
times and reasonable fits for the range d % 2–4.

Measurements at higher Bext are shown in Figs. 4(a) and
4(b). Here, experiments were only possible by decreasing
the driving field and, as expected, we thus find a longer
initial decay time, similar as seen in Fig. 2(b) for Ramsey
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FIG. 3 (color online). (a) Spin-echo signal as a function of
total free-evolution time !1 ' !2 (each point averaged over 20 s
at constant Bext % 42 mT, fac % 210 MHz, Bac % 3 mT).
Dashed line: Best fit of a Gaussian curve to the data in the range
!1 ' !2 % 0–100 ns. Solid line: Best fit of e$(!!1'!2"=T2;echo)3 to
the data in the range !1'!2%100–800 ns. Dotted line: Nu-
merically calculated dot current Podd!m' 1"80' 25 fA, taking
" % 1:5 mT in both dots and m % 1:83. The scatter in the data
points is not due to the noise of the measurement electronics
(noise floor about 5 fA), but is caused by incomplete averaging
over the statistical nuclear field. (b) Spin-echo signal as a
function of !1 $ !2. Dashed line: Best fit of a Gaussian curve
to the data. (c) Spin-echo signal for !1 ' !2 % 150 ns as a
function of the relative phase between the first two and third
pulse. Dashed line is the best fit of a cosine to the data.
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This numerically calculated Idot / Podd!!" is plotted in
Fig. 2(a) (dotted line). We see that the predicted decay
time is longer when the rotations are imperfect due to reso-
nance offsets. This is more clearly visible in Fig. 2(b),
where the computed curves are shown together with
Ramsey measurements for a wide range of driving fields.
The experimentally observed Ramsey decay time is longer
for smaller Bac, in good agreement with the numerical
result. This effect can be understood by considering that
a burst does not (much) rotate a spin when the nuclear field
pushes the resonance condition outside the Lorentzian line
shape of the excitation with width Bac. If the spin is not
rotated into a superposition, it cannot dephase either. As a
result, the cases when the nuclear field is larger than the
excitation linewidth do not contribute to the measured co-
herence decay. The recorded dephasing time is thus artifi-
cially extended when low-power rf bursts are used
(Bac=2" & 1). However, in Fig. 2(a), this is only a small
effect.

We remark that the experiments discussed here allow us
to probe single-spin coherence even though the experi-
ments are carried out with two spins and the rf excitation
is applied to both dots simultaneously. First, the two spins
have different resonance conditions due to the nuclear
fields which are generally different in the two dots.
Second, the exchange interaction between the two spins
can be neglected during the manipulation stage. Therefore,
for small enough driving fields (B1 < ") the rf pulses
rotate predominantly one spin (reported and analyzed in
[20,23]), and the observed Ramsey and echo decay is
expected to be due to single-spin decoherence.

We now test to what extent the electron spin dephasing is
reversible using a spin-echo pulse. In Fig. 3(a) the applied
pulse sequence (inset) and the measured signal as a func-
tion of the total free-evolution time (main panel) are
shown. We see immediately that the spin-echo decay
time T2;echo is much longer than the dephasing time T#2 .
This is also clear from the data in Fig. 3(c), which is taken
in a similar fashion as the Ramsey data in Fig. 2(c), but
now with an echo pulse applied halfway through the delay
time. Whereas the fringes were fully suppressed for a
150 ns delay time without an echo pulse, they are still
clearly visible after 150 ns if an echo pulse is used. As a
further check, we measured the echo signal as a function of
!1 $ !2 [Fig. 3(b)]. As expected, the echo is optimal for
!1 % !2 and deteriorates as j!1 $ !2j is increased. The dip
in the data at !1 $ !2 % 0 has a half width of &27 ns,
similar to the observed T#2 .

Upon closer inspection, the spin-echo signal in Fig. 3(a)
reveals two types of decay. First, there is an initial decay
with a typical time scale of 33 ns (obtained from a
Gaussian fit), which is comparable to the observed
Ramsey decay time when using the same Bac. This fast
initial decay occurs because the echo pulse itself is also
affected by the nuclear field. As a result it fails to reverse
the electron spin time evolution for part of the nuclear spin

configurations, in which case the fast dephasing still oc-
curs, similar as in the Ramsey decay. To confirm this, we
calculate numerically the echo signal, including the effect
of resonance offsets from the nuclear fields, similar as in
the simulations of the Ramsey experiment. We find rea-
sonable agreement of the data with the numerical curve
[dotted line in Fig. 3(a)], regarding both the decay time and
the amplitude.

The slower decay in Fig. 3(a) corresponds to the loss of
coherence that cannot be reversed by a perfect echo pulse.
We extract the spin-echo coherence time T2;echo from a best
fit of a' be$(!!1'!2"=T2;echo)d to the data (a, b, T2;echo are fit
parameters and d is kept fixed) and find T2;echo % !290*
50" ns at Bext % 42 mT for d % 3 [see Fig. 3(a), solid line].
We note that the precise functional form of the decay is
hard to extract from the data, but we find similar decay
times and reasonable fits for the range d % 2–4.

Measurements at higher Bext are shown in Figs. 4(a) and
4(b). Here, experiments were only possible by decreasing
the driving field and, as expected, we thus find a longer
initial decay time, similar as seen in Fig. 2(b) for Ramsey
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FIG. 3 (color online). (a) Spin-echo signal as a function of
total free-evolution time !1 ' !2 (each point averaged over 20 s
at constant Bext % 42 mT, fac % 210 MHz, Bac % 3 mT).
Dashed line: Best fit of a Gaussian curve to the data in the range
!1 ' !2 % 0–100 ns. Solid line: Best fit of e$(!!1'!2"=T2;echo)3 to
the data in the range !1'!2%100–800 ns. Dotted line: Nu-
merically calculated dot current Podd!m' 1"80' 25 fA, taking
" % 1:5 mT in both dots and m % 1:83. The scatter in the data
points is not due to the noise of the measurement electronics
(noise floor about 5 fA), but is caused by incomplete averaging
over the statistical nuclear field. (b) Spin-echo signal as a
function of !1 $ !2. Dashed line: Best fit of a Gaussian curve
to the data. (c) Spin-echo signal for !1 ' !2 % 150 ns as a
function of the relative phase between the first two and third
pulse. Dashed line is the best fit of a cosine to the data.
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Spin Echo in Si-28 4

FIG. 3: Qubit coherence. The spin state statistics are normalized with respect to the visibility to account for fluctuations between
different measurements. a By varying the delay time ⌧w between two ⇡x/2 pulses (see inset), Ramsey oscillations arise in the spin-up
fraction f". Fitting the decay with fN, = e�[⌧/T⇤

2 ]↵ , with ↵ = 1.3, we deduce a dephasing time T ⇤
2 = 120 µs. b A Hahn-echo pulse sequence

incorporates an additional ⇡-pulse (inset), and compensates for slow drifts in the environment. The resulting spin-up fraction f" decay gives
the spin coherence time TH

2 = 1.2 ms. c By applying a CPMG pulse sequence (inset) we can further enhance the coherence time, giving
TCPMG
2 = 28 ms.

previously[26].

The same internal electric field that we use to tune the val-
ley splitting can also be used to tune the qubit resonance fre-
quency by more than 8 MHz (Fig. 5b, and Supplementary
Information), corresponding to more than 3000 times the min-
imum observed ESR linewidth. This tunability, which is re-
markable for a system with these long coherence times, pro-
vides encouraging prospects for scalability. We can operate
our device in regimes both above and below the spin-valley
anticrossing with no discernable impact on the ESR frequency
dependence with Fz , demonstrating a gate-addressable and
high-fidelity qubit well away from the valley anticrossing
point, where the relaxation time dramatically drops[26]. The
electric field creates a Stark shift of the electron g

⇤-factor
due to the small but finite spin-orbit coupling. Tight binding
simulations[18] and measurements on donors in silicon[28]
indicate a quadratic Stark shift in g

⇤. By fitting our data we
find a quadratic Stark coefficient of ⌘2 = 2.2 nm2/V2, compa-
rable to that calculated in Rahman et al. [18].

The results presented here demonstrate that a single elec-
tron spin confined to a quantum dot in isotopically purified sil-
icon can serve as a robust qubit platform for solid-state quan-
tum computing. We have demonstrated long qubit coherence
times, high fidelity control over the qubit, and the ability to
individually address qubits via electrostatic gate-voltage con-
trol, meeting key criteria for quantum computation[2]. The
relevant coherence times (T ⇤

2 , TH
2 and T

CPMG
2 ) of our sys-

tem exceed by two orders of magnitude the times of previ-
ous quantum dot qubits[14, 15], while the fastest measured

Rabi period of 400 ns combined with our TCPMG
2 = 28 ms

enables more than 105 computational operations within the
qubit coherence time. A recent experiment[29] on a phos-
phorus donor qubit in 28Si found out that T

CPMG
2 is lim-

ited by Johnson-Nyquist thermal noise delivered via the on-
chip ESR line, which is also the likely scenario for the quan-
tum dot qubit given the comparable coherence times. This
opens the possibility to increase coherence times even fur-
ther. Faster qubit operations could be achieved by operating
pairs of quantum dots as singlet-triplet qubits[9], with the po-
tential to further increase the number of coherent operations.
Such singlet-triplet qubits could not rely on a magnetic field
gradient from lattice nuclear spins, since these are absent in
isotopically enriched silicon, however a field gradient could
be realized via an on-chip nanomagnet. The voltage-tunable
Stark shift demonstrated here could also be exploited to create
different effective g

⇤-factors for the individual dots.

Direct gate addressability opens the prospect for many
qubits to be integrated on a single chip, with global ac mag-
netic fields applied via a cavity or on-chip transmission lines
to realize single qubit operations. Two-qubit operations could
then be achieved, for example, via gate-controlled exchange
coupling between pairs of quantum dots. A recent model,
applicable to our qubit system, predicts that 2-qubit gate op-
erations with high fidelities are also possible[30]. Taken to-
gether with the high control fidelities demonstrated for our 1-
qubit gate, this now places quantum dot spin qubits as a viable
candidate for fault-tolerant quantum computing. While scal-
ing qubits involves complex wiring and will be a formidable

Spin Echo works also in Si-28

Veldhorst et al., Nat. Nanotech 2014



Summary

1. Spin relaxation: spin-orbit + phonon emission 
2. GaAs: inhomogeneous dephasing due to nuclear spins 
3. Spin Echo prolongs the quantum memory lifetime 
4. Change GaAs to Si-28: 3000x improvement 
5. Si-28: bottleneck is T2* ~ 0.12 ms (T1 much longer)

Potential extensions
1. Role of temperature in spin relaxation 
2. Geometric spin dephasing 
3. Decay in Spin Echo: nuclear-spin dynamics (GaAs), charge noise (Si) 
4. Reducing the Overhauser field via increasing the dot size 
5. Anisotropic hyperfine interaction of holes 
6. Is spin echo useful in quantum computing? 
7. Low-frequency (1/f) charge noise 
8. Beyond lifetimes: quality of quantum gates (randomized benchmarking)


